Abstract

Optimal denoising works at best on raw images (the image formed at the output of the focal plane, at the CCD or CMOS detector), which display a white signal-dependent noise. The noise model of the raw image is characterized by a function that given the intensity of a pixel in the noisy image returns the corresponding standard deviation; the plot of this function is the noise curve. This paper develops a nonparametric approach estimating the noise curve directly from a single raw image. An extensive cross-validation procedure is described to compare this new method with state-of-the-art parametric methods and with laboratory calibration methods giving a reliable ground truth, even for nonlinear detectors.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Robust structure from motion estimation using inertial data

Gang Qian, Rama Chellappa, and Qinfen Zheng
J. Opt. Soc. Am. A 18(12) 2982-2997 (2001)

Drift estimation for single marker switching based imaging schemes

Claudia Geisler, Thomas Hotz, Andreas Schönle, Stefan W. Hell, Axel Munk, and Alexander Egner
Opt. Express 20(7) 7274-7289 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription