Abstract

Spatial resolution in photoacoustic and thermoacoustic tomography is ultrasound transducer (detector) bandwidth limited. For a circular scanning geometry the axial (radial) resolution is not affected by the detector aperture, but the tangential (lateral) resolution is highly dependent on the aperture size, and it is also spatially varying (depending on the location relative to the scanning center). Several approaches have been reported to counter this problem by physically attaching a negative acoustic lens in front of the nonfocused transducer or by using virtual point detectors. Here, we have implemented a modified delay-and-sum reconstruction method, which takes into account the large aperture of the detector, leading to more than fivefold improvement in the tangential resolution in photoacoustic (and thermoacoustic) tomography. Three different types of numerical phantoms were used to validate our reconstruction method. It is also shown that we were able to preserve the shape of the reconstructed objects with the modified algorithm.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. H. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
    [CrossRef]
  2. X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
    [CrossRef]
  3. G. Ku, X. D. Wang, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44, 770–775 (2005).
    [CrossRef]
  4. S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
    [CrossRef]
  5. X. D. Wang, Y. J. Pang, G. Ku, G. Stoica, and L. H. V. Wang, “Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact,” Opt. Lett. 28, 1739–1741 (2003).
    [CrossRef]
  6. D. Piras, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the Twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quantum Electron. 16, 730–739 (2010).
    [CrossRef]
  7. C. H. Li, L. H. V. Wang, A. Aguirre, J. Gamelin, A. Maurudis, and Q. Zhu, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” J. Biomed. Opt. 15, 010509 (2010).
    [CrossRef]
  8. L. H. V. Wang, X. M. Zhao, H. T. Sun, and G. Ku, “Microwave-induced acoustic imaging of biological tissues,” Rev. Sci. Instrum. 70, 3744–3748 (1999).
    [CrossRef]
  9. R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, and W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).
    [CrossRef]
  10. G. Ku and L. H. V. Wang, “Scanning microwave-induced thermoacoustic tomography: signal, resolution, and contrast,” Med. Phys. 28, 4–10 (2001).
    [CrossRef]
  11. G. Ku, B. D. Fornage, X. Jin, M. H. Xu, K. K. Hunt, and L. H. V. Wang, “Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging,” Technol. Cancer Res. T. 4, 559–565 (2005).
  12. M. Pramanik, G. Ku, C. H. Li, and L. H. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35, 2218–2223 (2008).
    [CrossRef]
  13. D. Razansky, S. Kellnberger, and V. Ntziachristos, “Near-field radiofrequency thermoacoustic tomography with impulse excitation,” Med. Phys. 37, 4602–4607 (2010).
    [CrossRef]
  14. M. Omar, S. Kellnberger, G. Sergiadis, D. Razansky, and V. Ntziachristos, “Near-field thermoacoustic imaging with transmission line pulsers,” Med. Phys. 39, 4460–4466 (2012).
    [CrossRef]
  15. M. H. Xu and L. H. V. Wang, “Pulsed-microwave-induced thermoacoustic tomography: filtered backprojection in a circular measurement configuration,” Med. Phys. 29, 1661–1669 (2002).
    [CrossRef]
  16. M. H. Xu and L. H. V. Wang, “Time-domain reconstruction for thermoacoustic tomography in a spherical geometry,” IEEE Trans. Med. Imaging 21, 814–822 (2002).
  17. Y. Xu, D. Z. Feng, and L. H. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography. I: planar geometry,” IEEE Trans. Med. Imaging 21, 823–828 (2002).
  18. Y. Xu, M. H. Xu, and L. H. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography. II: cylindrical geometry,” IEEE Trans. Med. Imaging 21, 829–833 (2002).
  19. M. Xu and L. H. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71, 016706 (2005).
    [CrossRef]
  20. M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Ku, and L. H. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imaging 24, 199–210 (2005).
  21. P. Ephrat, L. Keenliside, A. Seabrook, F. S. Prato, and J. J. L. Carson, “Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction,” J. Biomed. Opt. 13, 054052 (2008).
    [CrossRef]
  22. K. Wang, R. Su, A. A. Oraevsky, and M. A. Anastasio, “Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography,” Phys. Med. Biol. 57, 5399–5423 (2012).
    [CrossRef]
  23. C. B. Shaw, J. Prakash, M. Pramanik, and P. K. Yalavarthy, “LSQR-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography,” J. Biomed. Opt. 18, 080501 (2013).
    [CrossRef]
  24. C. Huang, K. Wang, L. Nie, L. H. V. Wang, and M. A. Anastasio, “Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media,” IEEE Trans. Med. Imaging 32, 1097–1110 (2013).
  25. J. Prakash, A. S. Raju, C. B. Shaw, M. Pramanik, and P. K. Yalavarthy, “Quantitative photoacoustic tomography with model-resolution based basis pursuit deconvolution,” Biomed. Opt. Express (submitted).
  26. M. H. Xu and L. H. V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. E 67, 056605 (2003).
    [CrossRef]
  27. N. A. Rejesh, H. Pullagurla, and M. Pramanik, “Deconvolution based deblurring of reconstructed images in photoacoustic/thermoacoustic tomography,” J. Opt. Soc. Am. A 30, 1994–2001 (2013).
    [CrossRef]
  28. C. H. Li, G. Ku, and L. H. V. Wang, “Negative lens concept for photoacoustic tomography,” Phys. Rev. E 78, 021901 (2008).
    [CrossRef]
  29. M. Pramanik, G. Ku, and L. H. V. Wang, “Tangential resolution improvement in thermoacoustic and photoacoustic tomography using a negative acoustic lens,” J. Biomed. Opt. 14, 024028 (2009).
    [CrossRef]
  30. W. Xia, D. Piras, J. C. G. van Hespen, W. Steenbergen, and S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1, 9–18 (2013).
    [CrossRef]
  31. W. Xia, D. Piras, M. K. A. Singh, J. C. G. van Hespen, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Design and evaluation of a laboratory prototype system for 3D photoacoustic full breast tomography,” Biomed. Opt. Express 4, 2555–2569 (2013).
    [CrossRef]
  32. C. H. Li and L. V. Wang, “High-numerical-aperture-based virtual point detectors for photoacoustic tomography,” Appl. Phys. Lett. 93, 033902 (2008).
    [CrossRef]
  33. C. H. Li and L. H. V. Wang, “Photoacoustic tomography of the mouse cerebral cortex with a high-numerical-aperture-based virtual point detector,” J. Biomed. Opt. 14, 024047 (2009).
    [CrossRef]
  34. B. E. Treeby and B. T. Cox, “k-wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields,” J. Biomed. Opt. 15, 021314 (2010).
    [CrossRef]

2013 (5)

C. B. Shaw, J. Prakash, M. Pramanik, and P. K. Yalavarthy, “LSQR-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography,” J. Biomed. Opt. 18, 080501 (2013).
[CrossRef]

C. Huang, K. Wang, L. Nie, L. H. V. Wang, and M. A. Anastasio, “Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media,” IEEE Trans. Med. Imaging 32, 1097–1110 (2013).

N. A. Rejesh, H. Pullagurla, and M. Pramanik, “Deconvolution based deblurring of reconstructed images in photoacoustic/thermoacoustic tomography,” J. Opt. Soc. Am. A 30, 1994–2001 (2013).
[CrossRef]

W. Xia, D. Piras, J. C. G. van Hespen, W. Steenbergen, and S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1, 9–18 (2013).
[CrossRef]

W. Xia, D. Piras, M. K. A. Singh, J. C. G. van Hespen, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Design and evaluation of a laboratory prototype system for 3D photoacoustic full breast tomography,” Biomed. Opt. Express 4, 2555–2569 (2013).
[CrossRef]

2012 (3)

K. Wang, R. Su, A. A. Oraevsky, and M. A. Anastasio, “Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography,” Phys. Med. Biol. 57, 5399–5423 (2012).
[CrossRef]

L. H. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[CrossRef]

M. Omar, S. Kellnberger, G. Sergiadis, D. Razansky, and V. Ntziachristos, “Near-field thermoacoustic imaging with transmission line pulsers,” Med. Phys. 39, 4460–4466 (2012).
[CrossRef]

2010 (4)

D. Piras, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the Twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quantum Electron. 16, 730–739 (2010).
[CrossRef]

C. H. Li, L. H. V. Wang, A. Aguirre, J. Gamelin, A. Maurudis, and Q. Zhu, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” J. Biomed. Opt. 15, 010509 (2010).
[CrossRef]

B. E. Treeby and B. T. Cox, “k-wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields,” J. Biomed. Opt. 15, 021314 (2010).
[CrossRef]

D. Razansky, S. Kellnberger, and V. Ntziachristos, “Near-field radiofrequency thermoacoustic tomography with impulse excitation,” Med. Phys. 37, 4602–4607 (2010).
[CrossRef]

2009 (3)

C. H. Li and L. H. V. Wang, “Photoacoustic tomography of the mouse cerebral cortex with a high-numerical-aperture-based virtual point detector,” J. Biomed. Opt. 14, 024047 (2009).
[CrossRef]

M. Pramanik, G. Ku, and L. H. V. Wang, “Tangential resolution improvement in thermoacoustic and photoacoustic tomography using a negative acoustic lens,” J. Biomed. Opt. 14, 024028 (2009).
[CrossRef]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[CrossRef]

2008 (4)

M. Pramanik, G. Ku, C. H. Li, and L. H. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35, 2218–2223 (2008).
[CrossRef]

C. H. Li and L. V. Wang, “High-numerical-aperture-based virtual point detectors for photoacoustic tomography,” Appl. Phys. Lett. 93, 033902 (2008).
[CrossRef]

P. Ephrat, L. Keenliside, A. Seabrook, F. S. Prato, and J. J. L. Carson, “Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction,” J. Biomed. Opt. 13, 054052 (2008).
[CrossRef]

C. H. Li, G. Ku, and L. H. V. Wang, “Negative lens concept for photoacoustic tomography,” Phys. Rev. E 78, 021901 (2008).
[CrossRef]

2005 (4)

M. Xu and L. H. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71, 016706 (2005).
[CrossRef]

M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Ku, and L. H. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imaging 24, 199–210 (2005).

G. Ku, B. D. Fornage, X. Jin, M. H. Xu, K. K. Hunt, and L. H. V. Wang, “Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging,” Technol. Cancer Res. T. 4, 559–565 (2005).

G. Ku, X. D. Wang, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44, 770–775 (2005).
[CrossRef]

2003 (3)

X. D. Wang, Y. J. Pang, G. Ku, G. Stoica, and L. H. V. Wang, “Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact,” Opt. Lett. 28, 1739–1741 (2003).
[CrossRef]

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef]

M. H. Xu and L. H. V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. E 67, 056605 (2003).
[CrossRef]

2002 (4)

M. H. Xu and L. H. V. Wang, “Pulsed-microwave-induced thermoacoustic tomography: filtered backprojection in a circular measurement configuration,” Med. Phys. 29, 1661–1669 (2002).
[CrossRef]

M. H. Xu and L. H. V. Wang, “Time-domain reconstruction for thermoacoustic tomography in a spherical geometry,” IEEE Trans. Med. Imaging 21, 814–822 (2002).

Y. Xu, D. Z. Feng, and L. H. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography. I: planar geometry,” IEEE Trans. Med. Imaging 21, 823–828 (2002).

Y. Xu, M. H. Xu, and L. H. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography. II: cylindrical geometry,” IEEE Trans. Med. Imaging 21, 829–833 (2002).

2001 (1)

G. Ku and L. H. V. Wang, “Scanning microwave-induced thermoacoustic tomography: signal, resolution, and contrast,” Med. Phys. 28, 4–10 (2001).
[CrossRef]

1999 (2)

L. H. V. Wang, X. M. Zhao, H. T. Sun, and G. Ku, “Microwave-induced acoustic imaging of biological tissues,” Rev. Sci. Instrum. 70, 3744–3748 (1999).
[CrossRef]

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, and W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).
[CrossRef]

Aguirre, A.

C. H. Li, L. H. V. Wang, A. Aguirre, J. Gamelin, A. Maurudis, and Q. Zhu, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” J. Biomed. Opt. 15, 010509 (2010).
[CrossRef]

Aisen, A. M.

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, and W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).
[CrossRef]

Anastasio, M. A.

C. Huang, K. Wang, L. Nie, L. H. V. Wang, and M. A. Anastasio, “Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media,” IEEE Trans. Med. Imaging 32, 1097–1110 (2013).

K. Wang, R. Su, A. A. Oraevsky, and M. A. Anastasio, “Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography,” Phys. Med. Biol. 57, 5399–5423 (2012).
[CrossRef]

M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Ku, and L. H. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imaging 24, 199–210 (2005).

Carson, J. J. L.

P. Ephrat, L. Keenliside, A. Seabrook, F. S. Prato, and J. J. L. Carson, “Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction,” J. Biomed. Opt. 13, 054052 (2008).
[CrossRef]

Conjusteau, A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[CrossRef]

Cox, B. T.

B. E. Treeby and B. T. Cox, “k-wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields,” J. Biomed. Opt. 15, 021314 (2010).
[CrossRef]

Ephrat, P.

P. Ephrat, L. Keenliside, A. Seabrook, F. S. Prato, and J. J. L. Carson, “Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction,” J. Biomed. Opt. 13, 054052 (2008).
[CrossRef]

Ermilov, S. A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[CrossRef]

Feng, D. Z.

Y. Xu, D. Z. Feng, and L. H. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography. I: planar geometry,” IEEE Trans. Med. Imaging 21, 823–828 (2002).

Fornage, B. D.

G. Ku, B. D. Fornage, X. Jin, M. H. Xu, K. K. Hunt, and L. H. V. Wang, “Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging,” Technol. Cancer Res. T. 4, 559–565 (2005).

Gamelin, J.

C. H. Li, L. H. V. Wang, A. Aguirre, J. Gamelin, A. Maurudis, and Q. Zhu, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” J. Biomed. Opt. 15, 010509 (2010).
[CrossRef]

Hu, S.

L. H. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[CrossRef]

Huang, C.

C. Huang, K. Wang, L. Nie, L. H. V. Wang, and M. A. Anastasio, “Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media,” IEEE Trans. Med. Imaging 32, 1097–1110 (2013).

Hunt, K. K.

G. Ku, B. D. Fornage, X. Jin, M. H. Xu, K. K. Hunt, and L. H. V. Wang, “Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging,” Technol. Cancer Res. T. 4, 559–565 (2005).

Jin, X.

G. Ku, B. D. Fornage, X. Jin, M. H. Xu, K. K. Hunt, and L. H. V. Wang, “Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging,” Technol. Cancer Res. T. 4, 559–565 (2005).

Keenliside, L.

P. Ephrat, L. Keenliside, A. Seabrook, F. S. Prato, and J. J. L. Carson, “Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction,” J. Biomed. Opt. 13, 054052 (2008).
[CrossRef]

Kellnberger, S.

M. Omar, S. Kellnberger, G. Sergiadis, D. Razansky, and V. Ntziachristos, “Near-field thermoacoustic imaging with transmission line pulsers,” Med. Phys. 39, 4460–4466 (2012).
[CrossRef]

D. Razansky, S. Kellnberger, and V. Ntziachristos, “Near-field radiofrequency thermoacoustic tomography with impulse excitation,” Med. Phys. 37, 4602–4607 (2010).
[CrossRef]

Khamapirad, T.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[CrossRef]

Kiser, W. L.

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, and W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).
[CrossRef]

Kopecky, K. K.

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, and W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).
[CrossRef]

Kruger, G. A.

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, and W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).
[CrossRef]

Kruger, R. A.

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, and W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).
[CrossRef]

Ku, G.

M. Pramanik, G. Ku, and L. H. V. Wang, “Tangential resolution improvement in thermoacoustic and photoacoustic tomography using a negative acoustic lens,” J. Biomed. Opt. 14, 024028 (2009).
[CrossRef]

C. H. Li, G. Ku, and L. H. V. Wang, “Negative lens concept for photoacoustic tomography,” Phys. Rev. E 78, 021901 (2008).
[CrossRef]

M. Pramanik, G. Ku, C. H. Li, and L. H. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35, 2218–2223 (2008).
[CrossRef]

G. Ku, X. D. Wang, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44, 770–775 (2005).
[CrossRef]

M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Ku, and L. H. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imaging 24, 199–210 (2005).

G. Ku, B. D. Fornage, X. Jin, M. H. Xu, K. K. Hunt, and L. H. V. Wang, “Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging,” Technol. Cancer Res. T. 4, 559–565 (2005).

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef]

X. D. Wang, Y. J. Pang, G. Ku, G. Stoica, and L. H. V. Wang, “Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact,” Opt. Lett. 28, 1739–1741 (2003).
[CrossRef]

G. Ku and L. H. V. Wang, “Scanning microwave-induced thermoacoustic tomography: signal, resolution, and contrast,” Med. Phys. 28, 4–10 (2001).
[CrossRef]

L. H. V. Wang, X. M. Zhao, H. T. Sun, and G. Ku, “Microwave-induced acoustic imaging of biological tissues,” Rev. Sci. Instrum. 70, 3744–3748 (1999).
[CrossRef]

Lacewell, R.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[CrossRef]

Leonard, M. H.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[CrossRef]

Li, C. H.

C. H. Li, L. H. V. Wang, A. Aguirre, J. Gamelin, A. Maurudis, and Q. Zhu, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” J. Biomed. Opt. 15, 010509 (2010).
[CrossRef]

C. H. Li and L. H. V. Wang, “Photoacoustic tomography of the mouse cerebral cortex with a high-numerical-aperture-based virtual point detector,” J. Biomed. Opt. 14, 024047 (2009).
[CrossRef]

M. Pramanik, G. Ku, C. H. Li, and L. H. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35, 2218–2223 (2008).
[CrossRef]

C. H. Li, G. Ku, and L. H. V. Wang, “Negative lens concept for photoacoustic tomography,” Phys. Rev. E 78, 021901 (2008).
[CrossRef]

C. H. Li and L. V. Wang, “High-numerical-aperture-based virtual point detectors for photoacoustic tomography,” Appl. Phys. Lett. 93, 033902 (2008).
[CrossRef]

Manohar, S.

W. Xia, D. Piras, J. C. G. van Hespen, W. Steenbergen, and S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1, 9–18 (2013).
[CrossRef]

W. Xia, D. Piras, M. K. A. Singh, J. C. G. van Hespen, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Design and evaluation of a laboratory prototype system for 3D photoacoustic full breast tomography,” Biomed. Opt. Express 4, 2555–2569 (2013).
[CrossRef]

D. Piras, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the Twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quantum Electron. 16, 730–739 (2010).
[CrossRef]

Maurudis, A.

C. H. Li, L. H. V. Wang, A. Aguirre, J. Gamelin, A. Maurudis, and Q. Zhu, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” J. Biomed. Opt. 15, 010509 (2010).
[CrossRef]

Mehta, K.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[CrossRef]

Miller, T.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[CrossRef]

Nie, L.

C. Huang, K. Wang, L. Nie, L. H. V. Wang, and M. A. Anastasio, “Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media,” IEEE Trans. Med. Imaging 32, 1097–1110 (2013).

Ntziachristos, V.

M. Omar, S. Kellnberger, G. Sergiadis, D. Razansky, and V. Ntziachristos, “Near-field thermoacoustic imaging with transmission line pulsers,” Med. Phys. 39, 4460–4466 (2012).
[CrossRef]

D. Razansky, S. Kellnberger, and V. Ntziachristos, “Near-field radiofrequency thermoacoustic tomography with impulse excitation,” Med. Phys. 37, 4602–4607 (2010).
[CrossRef]

Omar, M.

M. Omar, S. Kellnberger, G. Sergiadis, D. Razansky, and V. Ntziachristos, “Near-field thermoacoustic imaging with transmission line pulsers,” Med. Phys. 39, 4460–4466 (2012).
[CrossRef]

Oraevsky, A. A.

K. Wang, R. Su, A. A. Oraevsky, and M. A. Anastasio, “Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography,” Phys. Med. Biol. 57, 5399–5423 (2012).
[CrossRef]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[CrossRef]

Pan, X.

M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Ku, and L. H. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imaging 24, 199–210 (2005).

Pang, Y. J.

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef]

X. D. Wang, Y. J. Pang, G. Ku, G. Stoica, and L. H. V. Wang, “Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact,” Opt. Lett. 28, 1739–1741 (2003).
[CrossRef]

Piras, D.

W. Xia, D. Piras, M. K. A. Singh, J. C. G. van Hespen, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Design and evaluation of a laboratory prototype system for 3D photoacoustic full breast tomography,” Biomed. Opt. Express 4, 2555–2569 (2013).
[CrossRef]

W. Xia, D. Piras, J. C. G. van Hespen, W. Steenbergen, and S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1, 9–18 (2013).
[CrossRef]

D. Piras, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the Twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quantum Electron. 16, 730–739 (2010).
[CrossRef]

Prakash, J.

C. B. Shaw, J. Prakash, M. Pramanik, and P. K. Yalavarthy, “LSQR-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography,” J. Biomed. Opt. 18, 080501 (2013).
[CrossRef]

J. Prakash, A. S. Raju, C. B. Shaw, M. Pramanik, and P. K. Yalavarthy, “Quantitative photoacoustic tomography with model-resolution based basis pursuit deconvolution,” Biomed. Opt. Express (submitted).

Pramanik, M.

C. B. Shaw, J. Prakash, M. Pramanik, and P. K. Yalavarthy, “LSQR-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography,” J. Biomed. Opt. 18, 080501 (2013).
[CrossRef]

N. A. Rejesh, H. Pullagurla, and M. Pramanik, “Deconvolution based deblurring of reconstructed images in photoacoustic/thermoacoustic tomography,” J. Opt. Soc. Am. A 30, 1994–2001 (2013).
[CrossRef]

M. Pramanik, G. Ku, and L. H. V. Wang, “Tangential resolution improvement in thermoacoustic and photoacoustic tomography using a negative acoustic lens,” J. Biomed. Opt. 14, 024028 (2009).
[CrossRef]

M. Pramanik, G. Ku, C. H. Li, and L. H. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35, 2218–2223 (2008).
[CrossRef]

J. Prakash, A. S. Raju, C. B. Shaw, M. Pramanik, and P. K. Yalavarthy, “Quantitative photoacoustic tomography with model-resolution based basis pursuit deconvolution,” Biomed. Opt. Express (submitted).

Prato, F. S.

P. Ephrat, L. Keenliside, A. Seabrook, F. S. Prato, and J. J. L. Carson, “Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction,” J. Biomed. Opt. 13, 054052 (2008).
[CrossRef]

Pullagurla, H.

Raju, A. S.

J. Prakash, A. S. Raju, C. B. Shaw, M. Pramanik, and P. K. Yalavarthy, “Quantitative photoacoustic tomography with model-resolution based basis pursuit deconvolution,” Biomed. Opt. Express (submitted).

Razansky, D.

M. Omar, S. Kellnberger, G. Sergiadis, D. Razansky, and V. Ntziachristos, “Near-field thermoacoustic imaging with transmission line pulsers,” Med. Phys. 39, 4460–4466 (2012).
[CrossRef]

D. Razansky, S. Kellnberger, and V. Ntziachristos, “Near-field radiofrequency thermoacoustic tomography with impulse excitation,” Med. Phys. 37, 4602–4607 (2010).
[CrossRef]

Reinecke, D. R.

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, and W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).
[CrossRef]

Rejesh, N. A.

Seabrook, A.

P. Ephrat, L. Keenliside, A. Seabrook, F. S. Prato, and J. J. L. Carson, “Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction,” J. Biomed. Opt. 13, 054052 (2008).
[CrossRef]

Sergiadis, G.

M. Omar, S. Kellnberger, G. Sergiadis, D. Razansky, and V. Ntziachristos, “Near-field thermoacoustic imaging with transmission line pulsers,” Med. Phys. 39, 4460–4466 (2012).
[CrossRef]

Shaw, C. B.

C. B. Shaw, J. Prakash, M. Pramanik, and P. K. Yalavarthy, “LSQR-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography,” J. Biomed. Opt. 18, 080501 (2013).
[CrossRef]

J. Prakash, A. S. Raju, C. B. Shaw, M. Pramanik, and P. K. Yalavarthy, “Quantitative photoacoustic tomography with model-resolution based basis pursuit deconvolution,” Biomed. Opt. Express (submitted).

Singh, M. K. A.

Steenbergen, W.

W. Xia, D. Piras, M. K. A. Singh, J. C. G. van Hespen, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Design and evaluation of a laboratory prototype system for 3D photoacoustic full breast tomography,” Biomed. Opt. Express 4, 2555–2569 (2013).
[CrossRef]

W. Xia, D. Piras, J. C. G. van Hespen, W. Steenbergen, and S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1, 9–18 (2013).
[CrossRef]

D. Piras, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the Twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quantum Electron. 16, 730–739 (2010).
[CrossRef]

Stoica, G.

Su, R.

K. Wang, R. Su, A. A. Oraevsky, and M. A. Anastasio, “Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography,” Phys. Med. Biol. 57, 5399–5423 (2012).
[CrossRef]

Sun, H. T.

L. H. V. Wang, X. M. Zhao, H. T. Sun, and G. Ku, “Microwave-induced acoustic imaging of biological tissues,” Rev. Sci. Instrum. 70, 3744–3748 (1999).
[CrossRef]

Treeby, B. E.

B. E. Treeby and B. T. Cox, “k-wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields,” J. Biomed. Opt. 15, 021314 (2010).
[CrossRef]

van Hespen, J. C. G.

W. Xia, D. Piras, M. K. A. Singh, J. C. G. van Hespen, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Design and evaluation of a laboratory prototype system for 3D photoacoustic full breast tomography,” Biomed. Opt. Express 4, 2555–2569 (2013).
[CrossRef]

W. Xia, D. Piras, J. C. G. van Hespen, W. Steenbergen, and S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1, 9–18 (2013).
[CrossRef]

van Leeuwen, T. G.

W. Xia, D. Piras, M. K. A. Singh, J. C. G. van Hespen, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Design and evaluation of a laboratory prototype system for 3D photoacoustic full breast tomography,” Biomed. Opt. Express 4, 2555–2569 (2013).
[CrossRef]

D. Piras, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the Twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quantum Electron. 16, 730–739 (2010).
[CrossRef]

Wang, K.

C. Huang, K. Wang, L. Nie, L. H. V. Wang, and M. A. Anastasio, “Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media,” IEEE Trans. Med. Imaging 32, 1097–1110 (2013).

K. Wang, R. Su, A. A. Oraevsky, and M. A. Anastasio, “Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography,” Phys. Med. Biol. 57, 5399–5423 (2012).
[CrossRef]

Wang, L. H. V.

C. Huang, K. Wang, L. Nie, L. H. V. Wang, and M. A. Anastasio, “Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media,” IEEE Trans. Med. Imaging 32, 1097–1110 (2013).

L. H. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[CrossRef]

C. H. Li, L. H. V. Wang, A. Aguirre, J. Gamelin, A. Maurudis, and Q. Zhu, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” J. Biomed. Opt. 15, 010509 (2010).
[CrossRef]

M. Pramanik, G. Ku, and L. H. V. Wang, “Tangential resolution improvement in thermoacoustic and photoacoustic tomography using a negative acoustic lens,” J. Biomed. Opt. 14, 024028 (2009).
[CrossRef]

C. H. Li and L. H. V. Wang, “Photoacoustic tomography of the mouse cerebral cortex with a high-numerical-aperture-based virtual point detector,” J. Biomed. Opt. 14, 024047 (2009).
[CrossRef]

M. Pramanik, G. Ku, C. H. Li, and L. H. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35, 2218–2223 (2008).
[CrossRef]

C. H. Li, G. Ku, and L. H. V. Wang, “Negative lens concept for photoacoustic tomography,” Phys. Rev. E 78, 021901 (2008).
[CrossRef]

M. Xu and L. H. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71, 016706 (2005).
[CrossRef]

G. Ku, B. D. Fornage, X. Jin, M. H. Xu, K. K. Hunt, and L. H. V. Wang, “Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging,” Technol. Cancer Res. T. 4, 559–565 (2005).

G. Ku, X. D. Wang, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44, 770–775 (2005).
[CrossRef]

M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Ku, and L. H. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imaging 24, 199–210 (2005).

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef]

X. D. Wang, Y. J. Pang, G. Ku, G. Stoica, and L. H. V. Wang, “Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact,” Opt. Lett. 28, 1739–1741 (2003).
[CrossRef]

M. H. Xu and L. H. V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. E 67, 056605 (2003).
[CrossRef]

M. H. Xu and L. H. V. Wang, “Pulsed-microwave-induced thermoacoustic tomography: filtered backprojection in a circular measurement configuration,” Med. Phys. 29, 1661–1669 (2002).
[CrossRef]

Y. Xu, D. Z. Feng, and L. H. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography. I: planar geometry,” IEEE Trans. Med. Imaging 21, 823–828 (2002).

Y. Xu, M. H. Xu, and L. H. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography. II: cylindrical geometry,” IEEE Trans. Med. Imaging 21, 829–833 (2002).

M. H. Xu and L. H. V. Wang, “Time-domain reconstruction for thermoacoustic tomography in a spherical geometry,” IEEE Trans. Med. Imaging 21, 814–822 (2002).

G. Ku and L. H. V. Wang, “Scanning microwave-induced thermoacoustic tomography: signal, resolution, and contrast,” Med. Phys. 28, 4–10 (2001).
[CrossRef]

L. H. V. Wang, X. M. Zhao, H. T. Sun, and G. Ku, “Microwave-induced acoustic imaging of biological tissues,” Rev. Sci. Instrum. 70, 3744–3748 (1999).
[CrossRef]

Wang, L. V.

C. H. Li and L. V. Wang, “High-numerical-aperture-based virtual point detectors for photoacoustic tomography,” Appl. Phys. Lett. 93, 033902 (2008).
[CrossRef]

Wang, X. D.

Xia, W.

W. Xia, D. Piras, M. K. A. Singh, J. C. G. van Hespen, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Design and evaluation of a laboratory prototype system for 3D photoacoustic full breast tomography,” Biomed. Opt. Express 4, 2555–2569 (2013).
[CrossRef]

W. Xia, D. Piras, J. C. G. van Hespen, W. Steenbergen, and S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1, 9–18 (2013).
[CrossRef]

Xie, X. Y.

G. Ku, X. D. Wang, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44, 770–775 (2005).
[CrossRef]

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef]

Xu, M.

M. Xu and L. H. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71, 016706 (2005).
[CrossRef]

Xu, M. H.

G. Ku, B. D. Fornage, X. Jin, M. H. Xu, K. K. Hunt, and L. H. V. Wang, “Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging,” Technol. Cancer Res. T. 4, 559–565 (2005).

M. H. Xu and L. H. V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. E 67, 056605 (2003).
[CrossRef]

M. H. Xu and L. H. V. Wang, “Pulsed-microwave-induced thermoacoustic tomography: filtered backprojection in a circular measurement configuration,” Med. Phys. 29, 1661–1669 (2002).
[CrossRef]

Y. Xu, M. H. Xu, and L. H. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography. II: cylindrical geometry,” IEEE Trans. Med. Imaging 21, 829–833 (2002).

M. H. Xu and L. H. V. Wang, “Time-domain reconstruction for thermoacoustic tomography in a spherical geometry,” IEEE Trans. Med. Imaging 21, 814–822 (2002).

Xu, Y.

Y. Xu, M. H. Xu, and L. H. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography. II: cylindrical geometry,” IEEE Trans. Med. Imaging 21, 829–833 (2002).

Y. Xu, D. Z. Feng, and L. H. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography. I: planar geometry,” IEEE Trans. Med. Imaging 21, 823–828 (2002).

Yalavarthy, P. K.

C. B. Shaw, J. Prakash, M. Pramanik, and P. K. Yalavarthy, “LSQR-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography,” J. Biomed. Opt. 18, 080501 (2013).
[CrossRef]

J. Prakash, A. S. Raju, C. B. Shaw, M. Pramanik, and P. K. Yalavarthy, “Quantitative photoacoustic tomography with model-resolution based basis pursuit deconvolution,” Biomed. Opt. Express (submitted).

Zhang, J.

M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Ku, and L. H. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imaging 24, 199–210 (2005).

Zhao, X. M.

L. H. V. Wang, X. M. Zhao, H. T. Sun, and G. Ku, “Microwave-induced acoustic imaging of biological tissues,” Rev. Sci. Instrum. 70, 3744–3748 (1999).
[CrossRef]

Zhu, Q.

C. H. Li, L. H. V. Wang, A. Aguirre, J. Gamelin, A. Maurudis, and Q. Zhu, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” J. Biomed. Opt. 15, 010509 (2010).
[CrossRef]

Zou, Y.

M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Ku, and L. H. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imaging 24, 199–210 (2005).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

C. H. Li and L. V. Wang, “High-numerical-aperture-based virtual point detectors for photoacoustic tomography,” Appl. Phys. Lett. 93, 033902 (2008).
[CrossRef]

Biomed. Opt. Express (1)

IEEE J. Sel. Top. Quantum Electron. (1)

D. Piras, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the Twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quantum Electron. 16, 730–739 (2010).
[CrossRef]

IEEE Trans. Med. Imaging (5)

M. H. Xu and L. H. V. Wang, “Time-domain reconstruction for thermoacoustic tomography in a spherical geometry,” IEEE Trans. Med. Imaging 21, 814–822 (2002).

Y. Xu, D. Z. Feng, and L. H. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography. I: planar geometry,” IEEE Trans. Med. Imaging 21, 823–828 (2002).

Y. Xu, M. H. Xu, and L. H. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography. II: cylindrical geometry,” IEEE Trans. Med. Imaging 21, 829–833 (2002).

M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Ku, and L. H. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imaging 24, 199–210 (2005).

C. Huang, K. Wang, L. Nie, L. H. V. Wang, and M. A. Anastasio, “Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media,” IEEE Trans. Med. Imaging 32, 1097–1110 (2013).

J. Biomed. Opt. (7)

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[CrossRef]

M. Pramanik, G. Ku, and L. H. V. Wang, “Tangential resolution improvement in thermoacoustic and photoacoustic tomography using a negative acoustic lens,” J. Biomed. Opt. 14, 024028 (2009).
[CrossRef]

C. H. Li and L. H. V. Wang, “Photoacoustic tomography of the mouse cerebral cortex with a high-numerical-aperture-based virtual point detector,” J. Biomed. Opt. 14, 024047 (2009).
[CrossRef]

B. E. Treeby and B. T. Cox, “k-wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields,” J. Biomed. Opt. 15, 021314 (2010).
[CrossRef]

P. Ephrat, L. Keenliside, A. Seabrook, F. S. Prato, and J. J. L. Carson, “Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction,” J. Biomed. Opt. 13, 054052 (2008).
[CrossRef]

C. B. Shaw, J. Prakash, M. Pramanik, and P. K. Yalavarthy, “LSQR-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography,” J. Biomed. Opt. 18, 080501 (2013).
[CrossRef]

C. H. Li, L. H. V. Wang, A. Aguirre, J. Gamelin, A. Maurudis, and Q. Zhu, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” J. Biomed. Opt. 15, 010509 (2010).
[CrossRef]

J. Opt. Soc. Am. A (1)

Med. Phys. (5)

G. Ku and L. H. V. Wang, “Scanning microwave-induced thermoacoustic tomography: signal, resolution, and contrast,” Med. Phys. 28, 4–10 (2001).
[CrossRef]

M. Pramanik, G. Ku, C. H. Li, and L. H. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35, 2218–2223 (2008).
[CrossRef]

D. Razansky, S. Kellnberger, and V. Ntziachristos, “Near-field radiofrequency thermoacoustic tomography with impulse excitation,” Med. Phys. 37, 4602–4607 (2010).
[CrossRef]

M. Omar, S. Kellnberger, G. Sergiadis, D. Razansky, and V. Ntziachristos, “Near-field thermoacoustic imaging with transmission line pulsers,” Med. Phys. 39, 4460–4466 (2012).
[CrossRef]

M. H. Xu and L. H. V. Wang, “Pulsed-microwave-induced thermoacoustic tomography: filtered backprojection in a circular measurement configuration,” Med. Phys. 29, 1661–1669 (2002).
[CrossRef]

Nat. Biotechnol. (1)

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef]

Opt. Lett. (1)

Photoacoustics (1)

W. Xia, D. Piras, J. C. G. van Hespen, W. Steenbergen, and S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1, 9–18 (2013).
[CrossRef]

Phys. Med. Biol. (1)

K. Wang, R. Su, A. A. Oraevsky, and M. A. Anastasio, “Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography,” Phys. Med. Biol. 57, 5399–5423 (2012).
[CrossRef]

Phys. Rev. E (3)

M. Xu and L. H. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71, 016706 (2005).
[CrossRef]

C. H. Li, G. Ku, and L. H. V. Wang, “Negative lens concept for photoacoustic tomography,” Phys. Rev. E 78, 021901 (2008).
[CrossRef]

M. H. Xu and L. H. V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. E 67, 056605 (2003).
[CrossRef]

Radiology (1)

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, and W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).
[CrossRef]

Rev. Sci. Instrum. (1)

L. H. V. Wang, X. M. Zhao, H. T. Sun, and G. Ku, “Microwave-induced acoustic imaging of biological tissues,” Rev. Sci. Instrum. 70, 3744–3748 (1999).
[CrossRef]

Science (1)

L. H. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[CrossRef]

Technol. Cancer Res. T. (1)

G. Ku, B. D. Fornage, X. Jin, M. H. Xu, K. K. Hunt, and L. H. V. Wang, “Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging,” Technol. Cancer Res. T. 4, 559–565 (2005).

Other (1)

J. Prakash, A. S. Raju, C. B. Shaw, M. Pramanik, and P. K. Yalavarthy, “Quantitative photoacoustic tomography with model-resolution based basis pursuit deconvolution,” Biomed. Opt. Express (submitted).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Circular scanning geometry typically used for PAT/TAT. UST, ultrasonic transducer (detector). Also shows how axial (radial) and tangential (lateral) resolution is defined for this scanning geometry. (b) Conventional delay-and-sum algorithm. (c) Modified delay-and-sum algorithm used in this study. Both are shown for only one transducer signal acquisition location.

Fig. 2.
Fig. 2.

(a) Schematic diagram of the simulation geometry used. UST, ultrasound transducers (detectors). (b) Point targets phantom, consisting of five point targets (numbered 1–5). (c) Modified Derenzo phantom. (d) Blood vessel network phantom. Initial pressure rises on the targets (black) are 1 and outside are 0.

Fig. 3.
Fig. 3.

(a)–(c) Reconstructed point targets with ideal point detector, 12 mm diameter active area detector with conventional reconstruction method, and 12 mm detector with modified reconstruction method, respectively. 200 detector positions are considered for all the reconstructions. Images are normalized. Corresponding color bars are shown. (d)–(r) Zoomed reconstructed images for the point targets: (d)–(f) target 1, (g)–(i) target 2, (j)–(l) target 3, (m)–(o) target 4, and (p)–(r) target 5. All images are normalized in the zoomed region.

Fig. 4.
Fig. 4.

(a) Horizontal image profile along the dotted red line [Fig. 3(d)]. Axial resolution at full width at half-maximum is 0.3 mm. (b) and (c) Tangential resolution versus distance from the scanning center for 12 and 6 mm diameter detectors, respectively.

Fig. 5.
Fig. 5.

(a)–(c) Reconstructed Derenzo phantom with ideal point detector, 6 mm diameter active area detector with conventional reconstruction method, and 6 mm detector with modified reconstruction method, respectively. (d) and (e) are the same as (b) and (c) but with the 12 mm detector. (f)–(h) Reconstructed blood vessel network phantom with ideal point detector, 6 mm detector with conventional reconstruction method, and 6 mm detector with modified reconstruction method, respectively. (i) and (j) are the same as (g) and (h) but with the 12 mm detector. All images are normalized. The color bars are also shown.

Fig. 6.
Fig. 6.

Reconstructed point targets with conventional reconstruction and modified reconstruction methods for 12 mm detector for (a), (b) 100 detector positions, (c), (d) 200 detector positions, and (e), (f) 300 detector positions. (g)–(l) Similar to (a)–(f) with Derenzo phantom. (m)–(r) Similar to (a)–(f) with blood vessel network phantom. All images are normalized. For each row the color bar is shown on the right.

Fig. 7.
Fig. 7.

Reconstructed Derenzo phantom with conventional reconstruction and modified reconstruction methods for 12 mm detector for (a), (b) 0.1 mm and (c), (d) 0.05 mm pixel size, respectively. All images are normalized. For each row the color bar is shown on the right.

Tables (1)

Tables Icon

Table 1. PC of the Reconstructed Initial Pressure Distribution

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

2p(r⃗0,t)1c22t2p(r⃗0,t)=p0(r⃗)δ(t)t,
p0(r⃗)=Ω0b(r⃗0,t=|r⃗r⃗0|c)dΩ0Ω0,
b(r⃗0,t)=2p(r⃗0,t)2ctp(r⃗0,t)t.
p(r⃗0,t)=p(r⃗0,t)W(r⃗0)d2r⃗0,
PC(x,xr)=COV(x,xr)σ(x)σ(xr),

Metrics