Abstract

Imaging through turbid media using visible or IR light instead of harmful x ray is still a challenging problem, especially in dynamic imaging. A method of dynamic imaging through turbid media using digital holography is presented. In order to match the coherence length between the dynamic object wave and the reference wave, a cw laser is used. To solve the problem of difficult focusing in imaging through turbid media, an autofocus technology is applied. To further enhance the image contrast, a spatial filtering technique is used. A description of digital holography and experiments of imaging the objects hidden in turbid media are presented. The experimental result shows that dynamic images of the objects can be achieved by the use of digital holography.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Schmitt, A. Knüttel, and M. Yadlowsky, “Confocal microscopy in turbid media,” J. Opt. Soc. Am. A 11, 2226–2235 (1994).
    [CrossRef]
  2. X. Gan, S. P. Schilders, and M. Gu, “Image enhancement through turbid media under a microscope by use of polarization gating methods,” J. Opt. Soc. Am. A 16, 2177–2184 (1999).
    [CrossRef]
  3. M. A. Duguay and A. T. Mattick, “Ultrahigh speed photography of picosecond light pulses and echoes,” Appl. Opt. 10, 2162–2170 (1971).
    [CrossRef]
  4. L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
    [CrossRef]
  5. F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. Carson, “Image contrast enhancement in angular domain optical imaging of turbid media,” Opt. Express 16, 21492–21504 (2008).
    [CrossRef]
  6. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography: principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
    [CrossRef]
  7. M. Toida, M. Kondo, T. Ichimura, and H. Inaba, “Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
    [CrossRef]
  8. E. N. Leith and J. Upatnieks, “Holographic imagery through diffusing media,” J. Opt. Soc. Am. 56, 523 (1966).
    [CrossRef]
  9. J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
    [CrossRef]
  10. K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5, 144–154 (2000).
    [CrossRef]
  11. Y. Chen, “Characterization of the image resolution for the first-arriving-light method,” Appl. Opt. 33, 2544–2552 (1994).
    [CrossRef]
  12. K. G. Spears, J. Serafin, N. Abramson, X. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989).
    [CrossRef]
  13. E. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, J. Rudd, P.-C. Sun, J. Valdmanis, and G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. A 9, 1148–1153 (1992).
    [CrossRef]
  14. H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, and J. Valdmanis, “Two-dimensional imaging through diffusing media using 150-fs gated electronic holography techniques,” Opt. Lett. 16, 487–489 (1991).
    [CrossRef]
  15. E. Leith, H. Chen, Y. Chen, D. Dilworth, J. Lopez, R. Masri, J. Rudd, and J. Valdmanis, “Electronic holography and speckle methods for imaging through tissue using femtosecond gated pulses,” Appl. Opt. 30, 4204–4210 (1991).
    [CrossRef]
  16. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
    [CrossRef]
  17. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999).
    [CrossRef]
  18. V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37, 4212–4214 (2012).
    [CrossRef]
  19. M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Gallic, and P. Ferraroa, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
    [CrossRef]
  20. B. Redding, G. Allen, E. R. Dufresne, and H. Cao, “Low-loss high-speed speckle reduction using a colloidal dispersion,” Appl. Opt. 52, 1168–1172 (2013).
    [CrossRef]
  21. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Express 14, 5895–5908 (2006).
    [CrossRef]
  22. Q. Z. Wang, X. Liang, L. Wang, P. P. Ho, and R. R. Alfano, “Fourier spatial filter acts as a temporal gate for light propagating through a turbid medium,” Opt. Lett. 20, 1498–1500 (1995).
    [CrossRef]

2013

2012

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37, 4212–4214 (2012).
[CrossRef]

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Gallic, and P. Ferraroa, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[CrossRef]

2008

2006

2003

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography: principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

2000

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5, 144–154 (2000).
[CrossRef]

1999

1995

1994

1992

1991

H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, and J. Valdmanis, “Two-dimensional imaging through diffusing media using 150-fs gated electronic holography techniques,” Opt. Lett. 16, 487–489 (1991).
[CrossRef]

E. Leith, H. Chen, Y. Chen, D. Dilworth, J. Lopez, R. Masri, J. Rudd, and J. Valdmanis, “Electronic holography and speckle methods for imaging through tissue using femtosecond gated pulses,” Appl. Opt. 30, 4204–4210 (1991).
[CrossRef]

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef]

M. Toida, M. Kondo, T. Ichimura, and H. Inaba, “Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
[CrossRef]

1989

K. G. Spears, J. Serafin, N. Abramson, X. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989).
[CrossRef]

1971

1966

E. N. Leith and J. Upatnieks, “Holographic imagery through diffusing media,” J. Opt. Soc. Am. 56, 523 (1966).
[CrossRef]

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
[CrossRef]

Abramson, N.

K. G. Spears, J. Serafin, N. Abramson, X. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989).
[CrossRef]

Alfano, R. R.

Q. Z. Wang, X. Liang, L. Wang, P. P. Ho, and R. R. Alfano, “Fourier spatial filter acts as a temporal gate for light propagating through a turbid medium,” Opt. Lett. 20, 1498–1500 (1995).
[CrossRef]

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef]

Allen, G.

Balduzzi, D.

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Gallic, and P. Ferraroa, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[CrossRef]

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37, 4212–4214 (2012).
[CrossRef]

Bevilacqua, F.

Bianco, V.

Bjelkhagen, H.

K. G. Spears, J. Serafin, N. Abramson, X. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989).
[CrossRef]

Callens, N.

Cao, H.

Carson, J. J.

Chapman, G. H.

Chen, C.

Chen, H.

Chen, K.

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5, 144–154 (2000).
[CrossRef]

Chen, Y.

Cuche, E.

Dasari, R. R.

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5, 144–154 (2000).
[CrossRef]

Depeursinge, C.

Dilworth, D.

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography: principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Dubois, F.

Dufresne, E. R.

Duguay, M. A.

Feld, M. S.

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5, 144–154 (2000).
[CrossRef]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography: principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Ferraro, P.

Ferraroa, P.

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Gallic, and P. Ferraroa, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[CrossRef]

Finizio, A.

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Gallic, and P. Ferraroa, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[CrossRef]

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37, 4212–4214 (2012).
[CrossRef]

Galli, A.

Gallic, A.

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Gallic, and P. Ferraroa, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[CrossRef]

Gan, X.

Goodman, J. W.

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
[CrossRef]

Gu, M.

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography: principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Ho, P. P.

Q. Z. Wang, X. Liang, L. Wang, P. P. Ho, and R. R. Alfano, “Fourier spatial filter acts as a temporal gate for light propagating through a turbid medium,” Opt. Lett. 20, 1498–1500 (1995).
[CrossRef]

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef]

Huntley, W. H.

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
[CrossRef]

Ichimura, T.

M. Toida, M. Kondo, T. Ichimura, and H. Inaba, “Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
[CrossRef]

Inaba, H.

M. Toida, M. Kondo, T. Ichimura, and H. Inaba, “Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
[CrossRef]

Jackson, D. W.

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
[CrossRef]

Jüptner, W.

Kaminska, B.

Knüttel, A.

Kondo, M.

M. Toida, M. Kondo, T. Ichimura, and H. Inaba, “Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
[CrossRef]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography: principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Lehmann, M.

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
[CrossRef]

Leith, E.

Leith, E. N.

Liang, X.

Liu, C.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef]

Lopez, J.

Masri, R.

Mattick, A. T.

Memmolo, P.

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Gallic, and P. Ferraroa, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[CrossRef]

Paturzo, M.

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Gallic, and P. Ferraroa, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[CrossRef]

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37, 4212–4214 (2012).
[CrossRef]

Perelman, L. T.

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5, 144–154 (2000).
[CrossRef]

Puglisi, R.

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Gallic, and P. Ferraroa, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[CrossRef]

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37, 4212–4214 (2012).
[CrossRef]

Redding, B.

Rudd, J.

Schilders, S. P.

Schmitt, J. M.

Schnars, U.

Schockaert, C.

Serafin, J.

K. G. Spears, J. Serafin, N. Abramson, X. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989).
[CrossRef]

Spears, K. G.

K. G. Spears, J. Serafin, N. Abramson, X. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989).
[CrossRef]

Sun, P.-C.

Toida, M.

M. Toida, M. Kondo, T. Ichimura, and H. Inaba, “Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
[CrossRef]

Upatnieks, J.

Valdmanis, J.

Vasefi, F.

Vossler, G.

Wang, L.

Q. Z. Wang, X. Liang, L. Wang, P. P. Ho, and R. R. Alfano, “Fourier spatial filter acts as a temporal gate for light propagating through a turbid medium,” Opt. Lett. 20, 1498–1500 (1995).
[CrossRef]

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef]

Wang, Q. Z.

Yadlowsky, M.

Yourassowsky, C.

Zhang, G.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef]

Zhang, Q.

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5, 144–154 (2000).
[CrossRef]

Zhu, X.

K. G. Spears, J. Serafin, N. Abramson, X. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989).
[CrossRef]

Appl. Opt.

Appl. Phys. B

M. Toida, M. Kondo, T. Ichimura, and H. Inaba, “Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
[CrossRef]

Appl. Phys. Lett.

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
[CrossRef]

IEEE Trans. Biomed. Eng.

K. G. Spears, J. Serafin, N. Abramson, X. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989).
[CrossRef]

J. Biomed. Opt.

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5, 144–154 (2000).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Lab Chip

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Gallic, and P. Ferraroa, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Rep. Prog. Phys.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography: principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Science

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef]

Supplementary Material (3)

» Media 1: MOV (8724 KB)     
» Media 2: MOV (8577 KB)     
» Media 3: MOV (8149 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

Light propagation in a turbid medium.

Fig. 2.
Fig. 2.

Schematic diagram of a collimated beam propagating through a turbid medium and spatial filter.

Fig. 3.
Fig. 3.

Experimental setup for imaging through a turbid medium.

Fig. 4.
Fig. 4.

Object images. (a) The image of the 1951 USAF resolution target without the reference beam and milk turbid medium, (b) the digital hologram of (a) through the turbid medium, and (c) the Fourier spectrum of the hologram of (b).

Fig. 5.
Fig. 5.

Finding the reconstructed distance by use of the lens imaging formula.

Fig. 6.
Fig. 6.

Evolution of the focus criterion minimum for plane at position z=1.8cm from recorded plane.

Fig. 7.
Fig. 7.

Experimental results. (a) Reconstructed intensity image of Fig. 4(b) and (b) image of the USAF resolution target viewed directly through the milk turbid medium in the absence of the reference beam. The dotted line indicates the 360th column.

Fig. 8.
Fig. 8.

Gray level values in the 360th column in Fig. 7. The dotted curve is the gray level values of the intensity reconstructed by a computer [see dotted line on Fig. 7(a)]. The solid curve is the gray level values of the intensity captured by camera directly [see dotted line on Fig. 7(b)].

Fig. 9.
Fig. 9.

Experimental setup of digital holography and spatial filter.

Fig. 10.
Fig. 10.

Holograms (a) captured without the small aperture and (b) captured with the spatial filter.

Fig. 11.
Fig. 11.

Curves of gray level values. (a) Plot of the gray level values of the 200th column in Fig. 10(a) and (b) plot of the gray level values of the 200th column in Fig. 10(b).

Fig. 12.
Fig. 12.

Reconstructed intensity images. (a) Reconstructed intensity image for Fig. 10(a) and (b) reconstructed intensity image for Fig. 10(b).

Fig. 13.
Fig. 13.

Curve of gray level values. The short-dashed curve is plotted according to the actual resolution target. The short dashed–dotted curve and solid curve are plotted separately according gray level values of the dotted lines in Figs. 12(a) and 12(b), respectively.

Fig. 14.
Fig. 14.

Results of dynamic imaging. (a) Image of mosquito larvae viewed directly through water in the absence of a reference beam (Media 1), (b) image of mosquito larvae viewed directly through the milk turbid medium in the absence of a reference beam (Media 2), (c) digital hologram of mosquito larvae in the turbid medium, and (d) corresponding intensity image of the angular spectrum reconstruction (Media 3).

Fig. 15.
Fig. 15.

Gray level values in the 700th row in Figs. 14(b) and 14(d) (see dotted line). The solid curve is the gray level values of the intensity captured by camera directly. The dotted curve is the gray level values of the intensity reconstructed by computer.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Ih=Inoise+(|R|2+|O|2)+O·R*+O*·R,
Er=R·Ih=R·Inoise+R·(|R|2+|O|2)+O·|R|2+O*·R2,
A(ξ,η)=I{Ih}=A1(ξ,η)+A2(ξ,η)+A3(ξ,η)+A4(ξ,η).
1S1+1S2=1f.
|E(x0,y0,d)|dx0dy0=Md,

Metrics