Abstract

Fundamental core-mode cutoff and evanescent field are considered for an eccentric core optical fiber (ECOF). A method has been proposed to calculate the core-mode cutoff by solving the eigenvalue equations of an ECOF. Using conformal mapping, the asymmetric geometrical structure can be transformed into a simple, easily solved axisymmetric optical fiber with three layers. The variation of the fundamental core-mode cut-off frequency (Vc) is also calculated with different eccentric distances, wavelengths, core radii, and coating refractive indices. The fractional power of evanescent fields for ECOF is also calculated with the eccentric distances and coating refractive indices. These calculations are necessary to design the structural parameters of an ECOF for long-distance, single-mode distributed evanescent field absorption sensors.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. K. Choudhury and T. Yoshino, “On the pH response of fiber optic evanescent field absorption sensor having a U-shaped probe: an experimental analysis,” Optik 114, 13–18 (2003).
    [CrossRef]
  2. M. D. DeGrandpre and L. W. Burgess, “Long path fiber-optic sensor for evanescent field absorbance measurements,” Anal. Chem. 60, 2582–2586 (1988).
    [CrossRef]
  3. M. Marazuela and M. Moreno-Bondi, “Fiber-optic biosensors—an overview,” Anal. Bioanal. Chem. 372, 664–682 (2002).
    [CrossRef]
  4. W. Wojcik, A. Kotyra, S. Przylucki, A. Smolarz, and J. T. Szymczak, “Evanescent field absorption sensor,” Proc. SPIE 3054, 132–136 (1997).
  5. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
    [CrossRef]
  6. L. Tong, J. Lou, and E. Mazur, “Modeling of subwavelength-diameter optical wire waveguides for optical sensing applications,” Proc. SPIE 5634, 416–423 (2005).
    [CrossRef]
  7. L. Su, T. H. Lee, and S. R. Elliott, “Evanescent-wave excitation of surface-enhanced Raman scattering substrates by an optical-fiber taper,” Opt. Lett. 34, 2685–2687 (2009).
    [CrossRef]
  8. J. Senosiain, I. Diaz, A. Gaston, and J. Sevilla, “High sensitivity temperature sensor based on side-polished optical fiber,” IEEE Trans. Instrum. Meas. 50, 1656–1660 (2001).
    [CrossRef]
  9. S. T. Huntington, K. A. Nugent, A. Roberts, P. Mulvaney, and K. M. Lo, “Field characterization of a D-shaped optical fiber using scanning near-field optical microscopy,” J. Appl. Phys. 82, 510–513 (1997).
    [CrossRef]
  10. A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46, 010503 (2007).
    [CrossRef]
  11. A. Candiani, A. Bertucci, S. Giannetti, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructure optical fiber-Bragg grating,” J. Biomed. Opt. 18, 057004 (2013).
    [CrossRef]
  12. C. Y. Guan, L. B. Yuan, F. J. Tian, and Q. Dai, “Characteristics of near-surface-core optical fibers,” J. Lightwave Technol. 29, 3004–3008 (2011).
    [CrossRef]
  13. J. X. Liu, H. C. Deng, and L. B. Yuan, “Characteristics analysis of coating layer power distribution of eccentric core optical fiber,” Proc. SPIE 8561, 85611R (2012).
    [CrossRef]
  14. H. Kober, Dictionary of Conformal Representations (Dover, 1952).
  15. C. Y. Guan, L. B. Yuan, F. J. Tian, Q. Dai, and X. Z. Tian, “Mode field analysis of eccentric optical fibers by conformal mapping,” Proc. SPIE 7753, 77535W (2011).
    [CrossRef]
  16. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).
  17. C. Y. H. Tsao, D. N. Payne, and L. Li, “Modal propagation characteristics of radially stratified and D-shaped metallic optical fibers,” Appl. Opt. 28, 588–594 (1989).
    [CrossRef]
  18. E. T. Goodwin, “Recurrence relations for cross-products of Bessel functions,” Q. J. Mech. Appl. Math. 11, 72–74 (1949).
  19. R. J. Black and R. Bourbonnais, “Core-mode cutoff for finite cladding light guides,” IEE Proc-J 133, 377–384 (1986).
    [CrossRef]
  20. B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fibre optic techniques for remote spectroscopic methane detection—from concept to system realization,” Sens. Actuators B 51, 25–37 (1998).
    [CrossRef]
  21. G. Whitenett, G. Stewart, H. B. Yu, and B. Culshaw, “Investigation of a tunable mode-locked fiber laser for application to multipoint gas spectroscopy,” J. Lightwave Technol. 22, 813–819 (2004).
    [CrossRef]

2013

A. Candiani, A. Bertucci, S. Giannetti, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructure optical fiber-Bragg grating,” J. Biomed. Opt. 18, 057004 (2013).
[CrossRef]

2012

J. X. Liu, H. C. Deng, and L. B. Yuan, “Characteristics analysis of coating layer power distribution of eccentric core optical fiber,” Proc. SPIE 8561, 85611R (2012).
[CrossRef]

2011

C. Y. Guan, L. B. Yuan, F. J. Tian, Q. Dai, and X. Z. Tian, “Mode field analysis of eccentric optical fibers by conformal mapping,” Proc. SPIE 7753, 77535W (2011).
[CrossRef]

C. Y. Guan, L. B. Yuan, F. J. Tian, and Q. Dai, “Characteristics of near-surface-core optical fibers,” J. Lightwave Technol. 29, 3004–3008 (2011).
[CrossRef]

2009

2007

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46, 010503 (2007).
[CrossRef]

2005

L. Tong, J. Lou, and E. Mazur, “Modeling of subwavelength-diameter optical wire waveguides for optical sensing applications,” Proc. SPIE 5634, 416–423 (2005).
[CrossRef]

2004

2003

P. K. Choudhury and T. Yoshino, “On the pH response of fiber optic evanescent field absorption sensor having a U-shaped probe: an experimental analysis,” Optik 114, 13–18 (2003).
[CrossRef]

2002

M. Marazuela and M. Moreno-Bondi, “Fiber-optic biosensors—an overview,” Anal. Bioanal. Chem. 372, 664–682 (2002).
[CrossRef]

2001

J. Senosiain, I. Diaz, A. Gaston, and J. Sevilla, “High sensitivity temperature sensor based on side-polished optical fiber,” IEEE Trans. Instrum. Meas. 50, 1656–1660 (2001).
[CrossRef]

1998

B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fibre optic techniques for remote spectroscopic methane detection—from concept to system realization,” Sens. Actuators B 51, 25–37 (1998).
[CrossRef]

1997

S. T. Huntington, K. A. Nugent, A. Roberts, P. Mulvaney, and K. M. Lo, “Field characterization of a D-shaped optical fiber using scanning near-field optical microscopy,” J. Appl. Phys. 82, 510–513 (1997).
[CrossRef]

W. Wojcik, A. Kotyra, S. Przylucki, A. Smolarz, and J. T. Szymczak, “Evanescent field absorption sensor,” Proc. SPIE 3054, 132–136 (1997).

1989

1988

M. D. DeGrandpre and L. W. Burgess, “Long path fiber-optic sensor for evanescent field absorbance measurements,” Anal. Chem. 60, 2582–2586 (1988).
[CrossRef]

1986

R. J. Black and R. Bourbonnais, “Core-mode cutoff for finite cladding light guides,” IEE Proc-J 133, 377–384 (1986).
[CrossRef]

1949

E. T. Goodwin, “Recurrence relations for cross-products of Bessel functions,” Q. J. Mech. Appl. Math. 11, 72–74 (1949).

Bertucci, A.

A. Candiani, A. Bertucci, S. Giannetti, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructure optical fiber-Bragg grating,” J. Biomed. Opt. 18, 057004 (2013).
[CrossRef]

Black, R. J.

R. J. Black and R. Bourbonnais, “Core-mode cutoff for finite cladding light guides,” IEE Proc-J 133, 377–384 (1986).
[CrossRef]

Bourbonnais, R.

R. J. Black and R. Bourbonnais, “Core-mode cutoff for finite cladding light guides,” IEE Proc-J 133, 377–384 (1986).
[CrossRef]

Burgess, L. W.

M. D. DeGrandpre and L. W. Burgess, “Long path fiber-optic sensor for evanescent field absorbance measurements,” Anal. Chem. 60, 2582–2586 (1988).
[CrossRef]

Candiani, A.

A. Candiani, A. Bertucci, S. Giannetti, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructure optical fiber-Bragg grating,” J. Biomed. Opt. 18, 057004 (2013).
[CrossRef]

Choudhury, P. K.

P. K. Choudhury and T. Yoshino, “On the pH response of fiber optic evanescent field absorption sensor having a U-shaped probe: an experimental analysis,” Optik 114, 13–18 (2003).
[CrossRef]

Corradini, R.

A. Candiani, A. Bertucci, S. Giannetti, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructure optical fiber-Bragg grating,” J. Biomed. Opt. 18, 057004 (2013).
[CrossRef]

Cucinotta, A.

A. Candiani, A. Bertucci, S. Giannetti, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructure optical fiber-Bragg grating,” J. Biomed. Opt. 18, 057004 (2013).
[CrossRef]

Culshaw, B.

G. Whitenett, G. Stewart, H. B. Yu, and B. Culshaw, “Investigation of a tunable mode-locked fiber laser for application to multipoint gas spectroscopy,” J. Lightwave Technol. 22, 813–819 (2004).
[CrossRef]

B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fibre optic techniques for remote spectroscopic methane detection—from concept to system realization,” Sens. Actuators B 51, 25–37 (1998).
[CrossRef]

Dai, Q.

C. Y. Guan, L. B. Yuan, F. J. Tian, and Q. Dai, “Characteristics of near-surface-core optical fibers,” J. Lightwave Technol. 29, 3004–3008 (2011).
[CrossRef]

C. Y. Guan, L. B. Yuan, F. J. Tian, Q. Dai, and X. Z. Tian, “Mode field analysis of eccentric optical fibers by conformal mapping,” Proc. SPIE 7753, 77535W (2011).
[CrossRef]

DeGrandpre, M. D.

M. D. DeGrandpre and L. W. Burgess, “Long path fiber-optic sensor for evanescent field absorbance measurements,” Anal. Chem. 60, 2582–2586 (1988).
[CrossRef]

Deng, H. C.

J. X. Liu, H. C. Deng, and L. B. Yuan, “Characteristics analysis of coating layer power distribution of eccentric core optical fiber,” Proc. SPIE 8561, 85611R (2012).
[CrossRef]

Diaz, I.

J. Senosiain, I. Diaz, A. Gaston, and J. Sevilla, “High sensitivity temperature sensor based on side-polished optical fiber,” IEEE Trans. Instrum. Meas. 50, 1656–1660 (2001).
[CrossRef]

Dong, F.

B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fibre optic techniques for remote spectroscopic methane detection—from concept to system realization,” Sens. Actuators B 51, 25–37 (1998).
[CrossRef]

Elliott, S. R.

Gaston, A.

J. Senosiain, I. Diaz, A. Gaston, and J. Sevilla, “High sensitivity temperature sensor based on side-polished optical fiber,” IEEE Trans. Instrum. Meas. 50, 1656–1660 (2001).
[CrossRef]

Giannetti, S.

A. Candiani, A. Bertucci, S. Giannetti, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructure optical fiber-Bragg grating,” J. Biomed. Opt. 18, 057004 (2013).
[CrossRef]

Goodwin, E. T.

E. T. Goodwin, “Recurrence relations for cross-products of Bessel functions,” Q. J. Mech. Appl. Math. 11, 72–74 (1949).

Guan, C. Y.

C. Y. Guan, L. B. Yuan, F. J. Tian, and Q. Dai, “Characteristics of near-surface-core optical fibers,” J. Lightwave Technol. 29, 3004–3008 (2011).
[CrossRef]

C. Y. Guan, L. B. Yuan, F. J. Tian, Q. Dai, and X. Z. Tian, “Mode field analysis of eccentric optical fibers by conformal mapping,” Proc. SPIE 7753, 77535W (2011).
[CrossRef]

Huntington, S. T.

S. T. Huntington, K. A. Nugent, A. Roberts, P. Mulvaney, and K. M. Lo, “Field characterization of a D-shaped optical fiber using scanning near-field optical microscopy,” J. Appl. Phys. 82, 510–513 (1997).
[CrossRef]

Kober, H.

H. Kober, Dictionary of Conformal Representations (Dover, 1952).

Kotyra, A.

W. Wojcik, A. Kotyra, S. Przylucki, A. Smolarz, and J. T. Szymczak, “Evanescent field absorption sensor,” Proc. SPIE 3054, 132–136 (1997).

Lee, T. H.

Li, L.

Liu, J. X.

J. X. Liu, H. C. Deng, and L. B. Yuan, “Characteristics analysis of coating layer power distribution of eccentric core optical fiber,” Proc. SPIE 8561, 85611R (2012).
[CrossRef]

Lo, K. M.

S. T. Huntington, K. A. Nugent, A. Roberts, P. Mulvaney, and K. M. Lo, “Field characterization of a D-shaped optical fiber using scanning near-field optical microscopy,” J. Appl. Phys. 82, 510–513 (1997).
[CrossRef]

Lou, J.

L. Tong, J. Lou, and E. Mazur, “Modeling of subwavelength-diameter optical wire waveguides for optical sensing applications,” Proc. SPIE 5634, 416–423 (2005).
[CrossRef]

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
[CrossRef]

Love, J. D.

W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

Marazuela, M.

M. Marazuela and M. Moreno-Bondi, “Fiber-optic biosensors—an overview,” Anal. Bioanal. Chem. 372, 664–682 (2002).
[CrossRef]

Mazur, E.

L. Tong, J. Lou, and E. Mazur, “Modeling of subwavelength-diameter optical wire waveguides for optical sensing applications,” Proc. SPIE 5634, 416–423 (2005).
[CrossRef]

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
[CrossRef]

Moodie, D.

B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fibre optic techniques for remote spectroscopic methane detection—from concept to system realization,” Sens. Actuators B 51, 25–37 (1998).
[CrossRef]

Moreno-Bondi, M.

M. Marazuela and M. Moreno-Bondi, “Fiber-optic biosensors—an overview,” Anal. Bioanal. Chem. 372, 664–682 (2002).
[CrossRef]

Mulvaney, P.

S. T. Huntington, K. A. Nugent, A. Roberts, P. Mulvaney, and K. M. Lo, “Field characterization of a D-shaped optical fiber using scanning near-field optical microscopy,” J. Appl. Phys. 82, 510–513 (1997).
[CrossRef]

Nugent, K. A.

S. T. Huntington, K. A. Nugent, A. Roberts, P. Mulvaney, and K. M. Lo, “Field characterization of a D-shaped optical fiber using scanning near-field optical microscopy,” J. Appl. Phys. 82, 510–513 (1997).
[CrossRef]

Payne, D. N.

Poletti, F.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46, 010503 (2007).
[CrossRef]

Przylucki, S.

W. Wojcik, A. Kotyra, S. Przylucki, A. Smolarz, and J. T. Szymczak, “Evanescent field absorption sensor,” Proc. SPIE 3054, 132–136 (1997).

Richardson, D. J.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46, 010503 (2007).
[CrossRef]

Roberts, A.

S. T. Huntington, K. A. Nugent, A. Roberts, P. Mulvaney, and K. M. Lo, “Field characterization of a D-shaped optical fiber using scanning near-field optical microscopy,” J. Appl. Phys. 82, 510–513 (1997).
[CrossRef]

Sahu, J. K.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46, 010503 (2007).
[CrossRef]

Selleri, S.

A. Candiani, A. Bertucci, S. Giannetti, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructure optical fiber-Bragg grating,” J. Biomed. Opt. 18, 057004 (2013).
[CrossRef]

Senosiain, J.

J. Senosiain, I. Diaz, A. Gaston, and J. Sevilla, “High sensitivity temperature sensor based on side-polished optical fiber,” IEEE Trans. Instrum. Meas. 50, 1656–1660 (2001).
[CrossRef]

Sevilla, J.

J. Senosiain, I. Diaz, A. Gaston, and J. Sevilla, “High sensitivity temperature sensor based on side-polished optical fiber,” IEEE Trans. Instrum. Meas. 50, 1656–1660 (2001).
[CrossRef]

Smolarz, A.

W. Wojcik, A. Kotyra, S. Przylucki, A. Smolarz, and J. T. Szymczak, “Evanescent field absorption sensor,” Proc. SPIE 3054, 132–136 (1997).

Snyder, W.

W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

Stewart, G.

G. Whitenett, G. Stewart, H. B. Yu, and B. Culshaw, “Investigation of a tunable mode-locked fiber laser for application to multipoint gas spectroscopy,” J. Lightwave Technol. 22, 813–819 (2004).
[CrossRef]

B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fibre optic techniques for remote spectroscopic methane detection—from concept to system realization,” Sens. Actuators B 51, 25–37 (1998).
[CrossRef]

Su, L.

Szymczak, J. T.

W. Wojcik, A. Kotyra, S. Przylucki, A. Smolarz, and J. T. Szymczak, “Evanescent field absorption sensor,” Proc. SPIE 3054, 132–136 (1997).

Tandy, C.

B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fibre optic techniques for remote spectroscopic methane detection—from concept to system realization,” Sens. Actuators B 51, 25–37 (1998).
[CrossRef]

Tian, F. J.

C. Y. Guan, L. B. Yuan, F. J. Tian, Q. Dai, and X. Z. Tian, “Mode field analysis of eccentric optical fibers by conformal mapping,” Proc. SPIE 7753, 77535W (2011).
[CrossRef]

C. Y. Guan, L. B. Yuan, F. J. Tian, and Q. Dai, “Characteristics of near-surface-core optical fibers,” J. Lightwave Technol. 29, 3004–3008 (2011).
[CrossRef]

Tian, X. Z.

C. Y. Guan, L. B. Yuan, F. J. Tian, Q. Dai, and X. Z. Tian, “Mode field analysis of eccentric optical fibers by conformal mapping,” Proc. SPIE 7753, 77535W (2011).
[CrossRef]

Tong, L.

L. Tong, J. Lou, and E. Mazur, “Modeling of subwavelength-diameter optical wire waveguides for optical sensing applications,” Proc. SPIE 5634, 416–423 (2005).
[CrossRef]

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
[CrossRef]

Tsao, C. Y. H.

Webb, A. S.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46, 010503 (2007).
[CrossRef]

Whitenett, G.

Wojcik, W.

W. Wojcik, A. Kotyra, S. Przylucki, A. Smolarz, and J. T. Szymczak, “Evanescent field absorption sensor,” Proc. SPIE 3054, 132–136 (1997).

Yoshino, T.

P. K. Choudhury and T. Yoshino, “On the pH response of fiber optic evanescent field absorption sensor having a U-shaped probe: an experimental analysis,” Optik 114, 13–18 (2003).
[CrossRef]

Yu, H. B.

Yuan, L. B.

J. X. Liu, H. C. Deng, and L. B. Yuan, “Characteristics analysis of coating layer power distribution of eccentric core optical fiber,” Proc. SPIE 8561, 85611R (2012).
[CrossRef]

C. Y. Guan, L. B. Yuan, F. J. Tian, and Q. Dai, “Characteristics of near-surface-core optical fibers,” J. Lightwave Technol. 29, 3004–3008 (2011).
[CrossRef]

C. Y. Guan, L. B. Yuan, F. J. Tian, Q. Dai, and X. Z. Tian, “Mode field analysis of eccentric optical fibers by conformal mapping,” Proc. SPIE 7753, 77535W (2011).
[CrossRef]

Anal. Bioanal. Chem.

M. Marazuela and M. Moreno-Bondi, “Fiber-optic biosensors—an overview,” Anal. Bioanal. Chem. 372, 664–682 (2002).
[CrossRef]

Anal. Chem.

M. D. DeGrandpre and L. W. Burgess, “Long path fiber-optic sensor for evanescent field absorbance measurements,” Anal. Chem. 60, 2582–2586 (1988).
[CrossRef]

Appl. Opt.

IEE Proc-J

R. J. Black and R. Bourbonnais, “Core-mode cutoff for finite cladding light guides,” IEE Proc-J 133, 377–384 (1986).
[CrossRef]

IEEE Trans. Instrum. Meas.

J. Senosiain, I. Diaz, A. Gaston, and J. Sevilla, “High sensitivity temperature sensor based on side-polished optical fiber,” IEEE Trans. Instrum. Meas. 50, 1656–1660 (2001).
[CrossRef]

J. Appl. Phys.

S. T. Huntington, K. A. Nugent, A. Roberts, P. Mulvaney, and K. M. Lo, “Field characterization of a D-shaped optical fiber using scanning near-field optical microscopy,” J. Appl. Phys. 82, 510–513 (1997).
[CrossRef]

J. Biomed. Opt.

A. Candiani, A. Bertucci, S. Giannetti, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructure optical fiber-Bragg grating,” J. Biomed. Opt. 18, 057004 (2013).
[CrossRef]

J. Lightwave Technol.

Opt. Eng.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46, 010503 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Optik

P. K. Choudhury and T. Yoshino, “On the pH response of fiber optic evanescent field absorption sensor having a U-shaped probe: an experimental analysis,” Optik 114, 13–18 (2003).
[CrossRef]

Proc. SPIE

W. Wojcik, A. Kotyra, S. Przylucki, A. Smolarz, and J. T. Szymczak, “Evanescent field absorption sensor,” Proc. SPIE 3054, 132–136 (1997).

L. Tong, J. Lou, and E. Mazur, “Modeling of subwavelength-diameter optical wire waveguides for optical sensing applications,” Proc. SPIE 5634, 416–423 (2005).
[CrossRef]

J. X. Liu, H. C. Deng, and L. B. Yuan, “Characteristics analysis of coating layer power distribution of eccentric core optical fiber,” Proc. SPIE 8561, 85611R (2012).
[CrossRef]

C. Y. Guan, L. B. Yuan, F. J. Tian, Q. Dai, and X. Z. Tian, “Mode field analysis of eccentric optical fibers by conformal mapping,” Proc. SPIE 7753, 77535W (2011).
[CrossRef]

Q. J. Mech. Appl. Math.

E. T. Goodwin, “Recurrence relations for cross-products of Bessel functions,” Q. J. Mech. Appl. Math. 11, 72–74 (1949).

Sens. Actuators B

B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fibre optic techniques for remote spectroscopic methane detection—from concept to system realization,” Sens. Actuators B 51, 25–37 (1998).
[CrossRef]

Other

W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

H. Kober, Dictionary of Conformal Representations (Dover, 1952).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Cross-sectional view of the ECOF.

Fig. 2.
Fig. 2.

Cross section of eccentric core fiber on the z plane.

Fig. 3.
Fig. 3.

Three concentric circles mapped on the ζ plane.

Fig. 4.
Fig. 4.

Plot of Vc versus (a) eccentric distance, (b) wavelength, (c) refractive index of the coating, and (d) core radius for different eccentric distances.

Fig. 5.
Fig. 5.

Plot of evanescent field versus (a) eccentric distance and (b) coating refractive index.

Tables (1)

Tables Icon

Table 1. Normalized Frequency and Y-Values Corresponding to Absorption Wavelength of Gases [20,21]

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

[2+(1y1/y2)(k02n2β2)]ψ=0.
{y1y2=R22(y1L)(y2L)=R02,
ψ1=AJm(u1r/R1)cos(mϕ)ψ2={[BIm(w2r/R1)+CKm(w2r/R1)]cos(mϕ)[BJm(u2r/R1)+CYm(u2r/R1)]cos(mϕ)ψ3=DKm(w3r/R2)cos(mϕ)β>k0n2β<k0n2,
u1=R1(k02n12β2)1/2(1y1/y2)u2=R1(k02n22β2)1/2(1y1/y2)w2=R1(β2k02n22)1/2(1y1/y2)w3=R2(β2k02n32)1/2(1y1/y2),
Jm(u1)Km(w3)R2Jm(u1)Km(w3)pmw2Jm(u1)w3R1Jm(u1)rm=w2Km(w3)u1R2Km(w3)qmw22u1w3R1sm,
pm=Im(w2R)Km(w2)Im(w2)Km(w2R),qm=Im(w2R)Km(w2)Im(w2)Km(w2R),rm=Im(w2R)Km(w2)Im(w2)Km(w2R),sm=Im(w2R)Km(w2)Im(w2)Km(w2R),
J0(Vc)K0(w3)R2J0(Vc)K0(w3)lnRJ0(Vc)w3R1RJ0(Vc)+K0(w3)VcR2K0(w3)=0.
V=2πλ·R0·n12n22,
Y=R0·n12n22.
η=PcoatingPtotal=n3R22[K12(w3R2)K02(w3R2)]2K02(w3R2)Ptotal,

Metrics