Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Forward solvers for photon migration in the presence of highly and totally absorbing objects embedded inside diffusive media

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, after a critical review of the literature, we present two forward solvers and a new methodology for description of photon migration in the presence of totally absorbing inclusions embedded in diffusive media in both time and CW domains. The first forward solver is a heuristic approach based on a higher order perturbation theory applied to the diffusion equation (DE) [denoted eighth-order perturbation theory (EOPT)]. The second forward solver [denoted eighth-order perturbation theory with the equivalence relation (EOPTER) ] is obtained by combining the EOPT solver with the adoption of the equivalence relation (ER) [J. Biomed. Opt. 18, 066014 (2013)]. These forward solvers can possibly overcome some evident limitations of previous approaches like the theory behind the so-called banana-shape regions or exact analytical solutions of the DE in the presence of highly or totally absorbing inclusions. We also propose the ER to reformulate the problem of a totally absorbing inclusion in terms of another inclusion having a finite absorption contrast and a re-scaled volume. For instance, we have shown how this approach can indeed be used to simulate black inclusions with the Born approximation. By means of comparisons with the results of Monte Carlo simulations, we have shown that the EOPTER solver can model totally absorbing inclusions with an error smaller than about 10%, whereas the EOPT solver shows an error smaller than about 20%, showing a performance largely better than that observed with solvers proposed previously.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Photon migration in the presence of a single defect: a perturbation analysis

Shechao Feng, Fan-An Zeng, and Britton Chance
Appl. Opt. 34(19) 3826-3837 (1995)

Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function. I. Theory

Angelo Sassaroli, Fabrizio Martelli, and Sergio Fantini
J. Opt. Soc. Am. A 23(9) 2105-2118 (2006)

Higher-order perturbation theory for the diffusion equation in heterogeneous media: application to layered and slab geometries

Angelo Sassaroli, Fabrizio Martelli, and Sergio Fantini
Appl. Opt. 48(10) D62-D73 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved