Abstract

Plasmonic nanoantennas permit many functional components for future generations of nanoscale optical devices. They have been intensively studied and means were devised to engineer their optical response. However, as a metal-based resonator, the low quality factor of a plasmonic antenna hinders its further applications. Here, we propose a novel design to improve the quality factor of a dipolar nanoantenna by combining it with plasmonic Bragg gratings. This specific antenna design can support extraordinary sharp resonances and highly directional emissivity. Therefore, it promises to achieve many novel applications, e.g., in the field of cavity quantum electrodynamics where the strong coupling regime for light and matter comes in reach.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  2. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
    [CrossRef]
  3. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
    [CrossRef]
  4. J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10, 3596–3603 (2010).
    [CrossRef]
  5. A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101, 043901 (2008).
    [CrossRef]
  6. A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2, 307–310 (2008).
    [CrossRef]
  7. S. Zhang, Z. Ye, Y. Wang, Y. Park, G. Bartal, M. Mrejen, X. Yin, and X. Zhang, “Anti-Hermitian plasmon coupling of an array of gold thin-film antennas for controlling light at the nanoscale,” Phys. Rev. Lett. 109, 193902 (2012).
    [CrossRef]
  8. T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011).
    [CrossRef]
  9. R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104, 026802 (2010).
    [CrossRef]
  10. J. Zhang, W. Zhang, X. Zhu, J. Yang, J. Xu, and D. Yu, “Resonant slot nanoantennas for surface plasmon radiation in optical frequency range,” Appl. Phys. Lett. 100, 241115 (2012).
    [CrossRef]
  11. R. Filter, J. Qi, C. Rockstuhl, and F. Lederer, “Circular optical nanoantennas: an analytical theory,” Phys. Rev. B 85, 125429 (2012).
    [CrossRef]
  12. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
    [CrossRef]
  13. G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12, 5481–5486 (2012).
    [CrossRef]
  14. K. Thyagarajan, S. Rivier, A. Lovera, and O. J. F. Martin, “Enhanced second-harmonic generation from double resonant plasmonic antennae,” Opt. Express 20, 12860–12865 (2012).
    [CrossRef]
  15. M. Hentschel, T. Utikal, H. Giessen, and M. Lippitz, “Quantitative modeling of the third harmonic emission spectrum of plasmonic nanoantennas,” Nano Lett. 12, 3778–3782 (2012).
    [CrossRef]
  16. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
    [CrossRef]
  17. H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11, 637–644 (2011).
    [CrossRef]
  18. T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4, 312–315 (2010).
    [CrossRef]
  19. D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical YagiUda nanoantenna array,” Nat. Commun. 2, 267 (2011).
    [CrossRef]
  20. S. B. Hasan, R. Filter, A. Ahmed, R. Vogelgesang, R. Gordon, C. Rockstuhl, and F. Lederer, “Relating localized nanoparticle resonances to an associated antenna problem,” Phys. Rev. B 84, 195405 (2011).
    [CrossRef]
  21. A. Hänsel, O. A. Egorov, S. B. Hasan, C. Rockstuhl, and F. Lederer, “Optical bistability in a doubly resonant χ(2)-nonlinear plasmonic nanocavity,” Phys. Rev. A 85, 053843 (2012).
    [CrossRef]
  22. G. Lévêque and O. J. F. Martin, “Optimization of finite diffraction gratings for the excitation of surface plasmons,” J. Appl. Phys. 100, 124301 (2006).
    [CrossRef]
  23. A. Baron, E. Devaux, J.-C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
    [CrossRef]
  24. C. Chen and P. Berini, “Grating couplers for broadside input and output coupling of long-range surface plasmons,” Opt. Express 18, 8006–8018 (2010).
    [CrossRef]
  25. G. Li, L. Cai, F. Xiao, Y. Pei, and A. Xu, “A quantitative theory and the generalized Bragg condition for surface plasmon Bragg reflectors,” Opt. Express 18, 10487–10499 (2010).
    [CrossRef]
  26. W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333, 1720–1723 (2011).
    [CrossRef]
  27. F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. Garca-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
    [CrossRef]
  28. A. Hosseini, H. Nejati, and Y. Massoud, “Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors,” Opt. Express 16, 1475–1480 (2008).
    [CrossRef]
  29. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. Garca-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
    [CrossRef]
  30. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
    [CrossRef]
  31. O. Mahboub, S. Carretero Palacios, C. Genet, F. J. Garca-Vida, S. G. Rodrigo, L. Martín-Moreno, and T. W. Ebbesen, “Optimization of bulls eye structures for transmission enhancement,” Opt. Express 18, 11292–11299 (2010).
    [CrossRef]
  32. S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  33. B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44, 13556–13572 (1991).
    [CrossRef]
  34. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981).
    [CrossRef]
  35. J. P. Hugonin and P. Lalanne, “Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization,” J. Opt. Soc. Am. A 22, 1844–1849 (2005).
    [CrossRef]
  36. E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18, 2865–2875 (2001).
    [CrossRef]
  37. P. Lalanne and E. Silberstein, “Fourier-modal methods applied to waveguide computational problems,” Opt. Lett. 25, 1092–1094 (2000).
    [CrossRef]
  38. G. Lecamp, J. P. Hugonin, and P. Lalanne, “Theoretical and computational concepts for periodic optical waveguides,” Opt. Express 15, 11042–11060 (2007).
    [CrossRef]
  39. K. S. Yee, “Numerical solution of initial boundary value problems involving maxwells equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
    [CrossRef]
  40. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [CrossRef]
  41. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2005).
  42. K. Słowik, R. Filter, J. Straubel, F. Lederer, and C. Rockstuhl, “Strong coupling of optical nanoantennas and atomic systems,” Phys. Rev. B 88, 195414 (2013).
    [CrossRef]

2013 (1)

K. Słowik, R. Filter, J. Straubel, F. Lederer, and C. Rockstuhl, “Strong coupling of optical nanoantennas and atomic systems,” Phys. Rev. B 88, 195414 (2013).
[CrossRef]

2012 (7)

S. Zhang, Z. Ye, Y. Wang, Y. Park, G. Bartal, M. Mrejen, X. Yin, and X. Zhang, “Anti-Hermitian plasmon coupling of an array of gold thin-film antennas for controlling light at the nanoscale,” Phys. Rev. Lett. 109, 193902 (2012).
[CrossRef]

J. Zhang, W. Zhang, X. Zhu, J. Yang, J. Xu, and D. Yu, “Resonant slot nanoantennas for surface plasmon radiation in optical frequency range,” Appl. Phys. Lett. 100, 241115 (2012).
[CrossRef]

R. Filter, J. Qi, C. Rockstuhl, and F. Lederer, “Circular optical nanoantennas: an analytical theory,” Phys. Rev. B 85, 125429 (2012).
[CrossRef]

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12, 5481–5486 (2012).
[CrossRef]

K. Thyagarajan, S. Rivier, A. Lovera, and O. J. F. Martin, “Enhanced second-harmonic generation from double resonant plasmonic antennae,” Opt. Express 20, 12860–12865 (2012).
[CrossRef]

M. Hentschel, T. Utikal, H. Giessen, and M. Lippitz, “Quantitative modeling of the third harmonic emission spectrum of plasmonic nanoantennas,” Nano Lett. 12, 3778–3782 (2012).
[CrossRef]

A. Hänsel, O. A. Egorov, S. B. Hasan, C. Rockstuhl, and F. Lederer, “Optical bistability in a doubly resonant χ(2)-nonlinear plasmonic nanocavity,” Phys. Rev. A 85, 053843 (2012).
[CrossRef]

2011 (7)

A. Baron, E. Devaux, J.-C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[CrossRef]

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333, 1720–1723 (2011).
[CrossRef]

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11, 637–644 (2011).
[CrossRef]

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical YagiUda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[CrossRef]

S. B. Hasan, R. Filter, A. Ahmed, R. Vogelgesang, R. Gordon, C. Rockstuhl, and F. Lederer, “Relating localized nanoparticle resonances to an associated antenna problem,” Phys. Rev. B 84, 195405 (2011).
[CrossRef]

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011).
[CrossRef]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[CrossRef]

2010 (9)

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10, 3596–3603 (2010).
[CrossRef]

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104, 026802 (2010).
[CrossRef]

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4, 312–315 (2010).
[CrossRef]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

C. Chen and P. Berini, “Grating couplers for broadside input and output coupling of long-range surface plasmons,” Opt. Express 18, 8006–8018 (2010).
[CrossRef]

G. Li, L. Cai, F. Xiao, Y. Pei, and A. Xu, “A quantitative theory and the generalized Bragg condition for surface plasmon Bragg reflectors,” Opt. Express 18, 10487–10499 (2010).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

O. Mahboub, S. Carretero Palacios, C. Genet, F. J. Garca-Vida, S. G. Rodrigo, L. Martín-Moreno, and T. W. Ebbesen, “Optimization of bulls eye structures for transmission enhancement,” Opt. Express 18, 11292–11299 (2010).
[CrossRef]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

2009 (1)

2008 (3)

A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101, 043901 (2008).
[CrossRef]

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2, 307–310 (2008).
[CrossRef]

A. Hosseini, H. Nejati, and Y. Massoud, “Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors,” Opt. Express 16, 1475–1480 (2008).
[CrossRef]

2007 (2)

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. Garca-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

G. Lecamp, J. P. Hugonin, and P. Lalanne, “Theoretical and computational concepts for periodic optical waveguides,” Opt. Express 15, 11042–11060 (2007).
[CrossRef]

2006 (1)

G. Lévêque and O. J. F. Martin, “Optimization of finite diffraction gratings for the excitation of surface plasmons,” J. Appl. Phys. 100, 124301 (2006).
[CrossRef]

2005 (2)

J. P. Hugonin and P. Lalanne, “Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization,” J. Opt. Soc. Am. A 22, 1844–1849 (2005).
[CrossRef]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. Garca-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

2001 (1)

2000 (1)

1991 (1)

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44, 13556–13572 (1991).
[CrossRef]

1981 (1)

1966 (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving maxwells equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[CrossRef]

Ahmed, A.

S. B. Hasan, R. Filter, A. Ahmed, R. Vogelgesang, R. Gordon, C. Rockstuhl, and F. Lederer, “Relating localized nanoparticle resonances to an associated antenna problem,” Phys. Rev. B 84, 195405 (2011).
[CrossRef]

Alù, A.

A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101, 043901 (2008).
[CrossRef]

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2, 307–310 (2008).
[CrossRef]

Aouani, H.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11, 637–644 (2011).
[CrossRef]

Balanis, C. A.

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2005).

Baron, A.

A. Baron, E. Devaux, J.-C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[CrossRef]

Bartal, G.

S. Zhang, Z. Ye, Y. Wang, Y. Park, G. Bartal, M. Mrejen, X. Yin, and X. Zhang, “Anti-Hermitian plasmon coupling of an array of gold thin-film antennas for controlling light at the nanoscale,” Phys. Rev. Lett. 109, 193902 (2012).
[CrossRef]

Barten, T.

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12, 5481–5486 (2012).
[CrossRef]

Berini, P.

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Bharadwaj, P.

Bozhevolnyi, S. I.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. Garca-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Brongersma, M. L.

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333, 1720–1723 (2011).
[CrossRef]

Cai, L.

Cai, W.

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333, 1720–1723 (2011).
[CrossRef]

Cao, Q.

Carretero Palacios, S.

Chen, C.

Curto, A. G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. Garca-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Dereux, A.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. Garca-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Deutsch, B.

Devaux, E.

A. Baron, E. Devaux, J.-C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[CrossRef]

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11, 637–644 (2011).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. Garca-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. Garca-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Dorfmüller, J.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical YagiUda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[CrossRef]

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10, 3596–3603 (2010).
[CrossRef]

Dregely, D.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical YagiUda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[CrossRef]

Ebbesen, T. W.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11, 637–644 (2011).
[CrossRef]

A. Baron, E. Devaux, J.-C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

O. Mahboub, S. Carretero Palacios, C. Genet, F. J. Garca-Vida, S. G. Rodrigo, L. Martín-Moreno, and T. W. Ebbesen, “Optimization of bulls eye structures for transmission enhancement,” Opt. Express 18, 11292–11299 (2010).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. Garca-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. Garca-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Egorov, O. A.

A. Hänsel, O. A. Egorov, S. B. Hasan, C. Rockstuhl, and F. Lederer, “Optical bistability in a doubly resonant χ(2)-nonlinear plasmonic nanocavity,” Phys. Rev. A 85, 053843 (2012).
[CrossRef]

Eisler, H. J.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef]

Engheta, N.

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2, 307–310 (2008).
[CrossRef]

A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101, 043901 (2008).
[CrossRef]

Esteban, R.

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104, 026802 (2010).
[CrossRef]

Etrich, C.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10, 3596–3603 (2010).
[CrossRef]

Filter, R.

K. Słowik, R. Filter, J. Straubel, F. Lederer, and C. Rockstuhl, “Strong coupling of optical nanoantennas and atomic systems,” Phys. Rev. B 88, 195414 (2013).
[CrossRef]

R. Filter, J. Qi, C. Rockstuhl, and F. Lederer, “Circular optical nanoantennas: an analytical theory,” Phys. Rev. B 85, 125429 (2012).
[CrossRef]

S. B. Hasan, R. Filter, A. Ahmed, R. Vogelgesang, R. Gordon, C. Rockstuhl, and F. Lederer, “Relating localized nanoparticle resonances to an associated antenna problem,” Phys. Rev. B 84, 195405 (2011).
[CrossRef]

Fontana, Y.

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12, 5481–5486 (2012).
[CrossRef]

Garca-Vida, F. J.

Garca-Vidal, F. J.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. Garca-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. Garca-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

Gaylord, T. K.

Genet, C.

A. Baron, E. Devaux, J.-C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[CrossRef]

O. Mahboub, S. Carretero Palacios, C. Genet, F. J. Garca-Vida, S. G. Rodrigo, L. Martín-Moreno, and T. W. Ebbesen, “Optimization of bulls eye structures for transmission enhancement,” Opt. Express 18, 11292–11299 (2010).
[CrossRef]

Giessen, H.

M. Hentschel, T. Utikal, H. Giessen, and M. Lippitz, “Quantitative modeling of the third harmonic emission spectrum of plasmonic nanoantennas,” Nano Lett. 12, 3778–3782 (2012).
[CrossRef]

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011).
[CrossRef]

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical YagiUda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[CrossRef]

Gómez Rivas, J.

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12, 5481–5486 (2012).
[CrossRef]

González, M. U.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. Garca-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Gordon, R.

S. B. Hasan, R. Filter, A. Ahmed, R. Vogelgesang, R. Gordon, C. Rockstuhl, and F. Lederer, “Relating localized nanoparticle resonances to an associated antenna problem,” Phys. Rev. B 84, 195405 (2011).
[CrossRef]

Greffet, J. J.

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104, 026802 (2010).
[CrossRef]

Grzela, G.

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12, 5481–5486 (2012).
[CrossRef]

Hänsel, A.

A. Hänsel, O. A. Egorov, S. B. Hasan, C. Rockstuhl, and F. Lederer, “Optical bistability in a doubly resonant χ(2)-nonlinear plasmonic nanocavity,” Phys. Rev. A 85, 053843 (2012).
[CrossRef]

Hasan, S. B.

A. Hänsel, O. A. Egorov, S. B. Hasan, C. Rockstuhl, and F. Lederer, “Optical bistability in a doubly resonant χ(2)-nonlinear plasmonic nanocavity,” Phys. Rev. A 85, 053843 (2012).
[CrossRef]

S. B. Hasan, R. Filter, A. Ahmed, R. Vogelgesang, R. Gordon, C. Rockstuhl, and F. Lederer, “Relating localized nanoparticle resonances to an associated antenna problem,” Phys. Rev. B 84, 195405 (2011).
[CrossRef]

Hecht, B.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Hentschel, M.

M. Hentschel, T. Utikal, H. Giessen, and M. Lippitz, “Quantitative modeling of the third harmonic emission spectrum of plasmonic nanoantennas,” Nano Lett. 12, 3778–3782 (2012).
[CrossRef]

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011).
[CrossRef]

Hofmann, H. F.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4, 312–315 (2010).
[CrossRef]

Hosseini, A.

Hugonin, J. P.

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Kadoya, Y.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4, 312–315 (2010).
[CrossRef]

Kern, K.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical YagiUda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[CrossRef]

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10, 3596–3603 (2010).
[CrossRef]

Khunsin, W.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10, 3596–3603 (2010).
[CrossRef]

Kosako, T.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4, 312–315 (2010).
[CrossRef]

Kratzer, K.

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011).
[CrossRef]

Krenn, J. R.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. Garca-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

Lalanne, P.

Lecamp, G.

Lederer, F.

K. Słowik, R. Filter, J. Straubel, F. Lederer, and C. Rockstuhl, “Strong coupling of optical nanoantennas and atomic systems,” Phys. Rev. B 88, 195414 (2013).
[CrossRef]

A. Hänsel, O. A. Egorov, S. B. Hasan, C. Rockstuhl, and F. Lederer, “Optical bistability in a doubly resonant χ(2)-nonlinear plasmonic nanocavity,” Phys. Rev. A 85, 053843 (2012).
[CrossRef]

R. Filter, J. Qi, C. Rockstuhl, and F. Lederer, “Circular optical nanoantennas: an analytical theory,” Phys. Rev. B 85, 125429 (2012).
[CrossRef]

S. B. Hasan, R. Filter, A. Ahmed, R. Vogelgesang, R. Gordon, C. Rockstuhl, and F. Lederer, “Relating localized nanoparticle resonances to an associated antenna problem,” Phys. Rev. B 84, 195405 (2011).
[CrossRef]

Lévêque, G.

G. Lévêque and O. J. F. Martin, “Optimization of finite diffraction gratings for the excitation of surface plasmons,” J. Appl. Phys. 100, 124301 (2006).
[CrossRef]

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. Garca-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Li, G.

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. Garca-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Lippitz, M.

M. Hentschel, T. Utikal, H. Giessen, and M. Lippitz, “Quantitative modeling of the third harmonic emission spectrum of plasmonic nanoantennas,” Nano Lett. 12, 3778–3782 (2012).
[CrossRef]

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011).
[CrossRef]

López-Tejeira, F.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. Garca-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Lovera, A.

Mahboub, O.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11, 637–644 (2011).
[CrossRef]

O. Mahboub, S. Carretero Palacios, C. Genet, F. J. Garca-Vida, S. G. Rodrigo, L. Martín-Moreno, and T. W. Ebbesen, “Optimization of bulls eye structures for transmission enhancement,” Opt. Express 18, 11292–11299 (2010).
[CrossRef]

Maier, S.

S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Martin, O. J. F.

K. Thyagarajan, S. Rivier, A. Lovera, and O. J. F. Martin, “Enhanced second-harmonic generation from double resonant plasmonic antennae,” Opt. Express 20, 12860–12865 (2012).
[CrossRef]

G. Lévêque and O. J. F. Martin, “Optimization of finite diffraction gratings for the excitation of surface plasmons,” J. Appl. Phys. 100, 124301 (2006).
[CrossRef]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

Martín-Moreno, L.

O. Mahboub, S. Carretero Palacios, C. Genet, F. J. Garca-Vida, S. G. Rodrigo, L. Martín-Moreno, and T. W. Ebbesen, “Optimization of bulls eye structures for transmission enhancement,” Opt. Express 18, 11292–11299 (2010).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. Garca-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. Garca-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Massoud, Y.

Moharam, M. G.

Molnar, D.

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011).
[CrossRef]

Mrejen, M.

S. Zhang, Z. Ye, Y. Wang, Y. Park, G. Bartal, M. Mrejen, X. Yin, and X. Zhang, “Anti-Hermitian plasmon coupling of an array of gold thin-film antennas for controlling light at the nanoscale,” Phys. Rev. Lett. 109, 193902 (2012).
[CrossRef]

Mühlschlegel, P.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef]

Mysyrowicz, A.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44, 13556–13572 (1991).
[CrossRef]

Nejati, H.

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[CrossRef]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
[CrossRef]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Paniagua-Domínguez, R.

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12, 5481–5486 (2012).
[CrossRef]

Park, Y.

S. Zhang, Z. Ye, Y. Wang, Y. Park, G. Bartal, M. Mrejen, X. Yin, and X. Zhang, “Anti-Hermitian plasmon coupling of an array of gold thin-film antennas for controlling light at the nanoscale,” Phys. Rev. Lett. 109, 193902 (2012).
[CrossRef]

Pei, Y.

Pohl, D. W.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef]

Prade, B.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44, 13556–13572 (1991).
[CrossRef]

Qi, J.

R. Filter, J. Qi, C. Rockstuhl, and F. Lederer, “Circular optical nanoantennas: an analytical theory,” Phys. Rev. B 85, 125429 (2012).
[CrossRef]

Quidant, R.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

Radko, I. P.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. Garca-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Rigneault, H.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11, 637–644 (2011).
[CrossRef]

Rivier, S.

Rockstuhl, C.

K. Słowik, R. Filter, J. Straubel, F. Lederer, and C. Rockstuhl, “Strong coupling of optical nanoantennas and atomic systems,” Phys. Rev. B 88, 195414 (2013).
[CrossRef]

R. Filter, J. Qi, C. Rockstuhl, and F. Lederer, “Circular optical nanoantennas: an analytical theory,” Phys. Rev. B 85, 125429 (2012).
[CrossRef]

A. Hänsel, O. A. Egorov, S. B. Hasan, C. Rockstuhl, and F. Lederer, “Optical bistability in a doubly resonant χ(2)-nonlinear plasmonic nanocavity,” Phys. Rev. A 85, 053843 (2012).
[CrossRef]

S. B. Hasan, R. Filter, A. Ahmed, R. Vogelgesang, R. Gordon, C. Rockstuhl, and F. Lederer, “Relating localized nanoparticle resonances to an associated antenna problem,” Phys. Rev. B 84, 195405 (2011).
[CrossRef]

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10, 3596–3603 (2010).
[CrossRef]

Rodier, J.-C.

A. Baron, E. Devaux, J.-C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[CrossRef]

Rodrigo, S. G.

O. Mahboub, S. Carretero Palacios, C. Genet, F. J. Garca-Vida, S. G. Rodrigo, L. Martín-Moreno, and T. W. Ebbesen, “Optimization of bulls eye structures for transmission enhancement,” Opt. Express 18, 11292–11299 (2010).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. Garca-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Rousseau, E.

A. Baron, E. Devaux, J.-C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[CrossRef]

Sánchez-Gil, J. A.

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12, 5481–5486 (2012).
[CrossRef]

Schumacher, T.

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011).
[CrossRef]

Silberstein, E.

Slowik, K.

K. Słowik, R. Filter, J. Straubel, F. Lederer, and C. Rockstuhl, “Strong coupling of optical nanoantennas and atomic systems,” Phys. Rev. B 88, 195414 (2013).
[CrossRef]

Straubel, J.

K. Słowik, R. Filter, J. Straubel, F. Lederer, and C. Rockstuhl, “Strong coupling of optical nanoantennas and atomic systems,” Phys. Rev. B 88, 195414 (2013).
[CrossRef]

Taminiau, T. H.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

Taubert, R.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical YagiUda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[CrossRef]

Teperik, T. V.

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104, 026802 (2010).
[CrossRef]

Thyagarajan, K.

Utikal, T.

M. Hentschel, T. Utikal, H. Giessen, and M. Lippitz, “Quantitative modeling of the third harmonic emission spectrum of plasmonic nanoantennas,” Nano Lett. 12, 3778–3782 (2012).
[CrossRef]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[CrossRef]

van Hulst, N. F.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

Vasudev, A. P.

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333, 1720–1723 (2011).
[CrossRef]

Vinet, J. Y.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44, 13556–13572 (1991).
[CrossRef]

Vogelgesang, R.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical YagiUda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[CrossRef]

S. B. Hasan, R. Filter, A. Ahmed, R. Vogelgesang, R. Gordon, C. Rockstuhl, and F. Lederer, “Relating localized nanoparticle resonances to an associated antenna problem,” Phys. Rev. B 84, 195405 (2011).
[CrossRef]

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10, 3596–3603 (2010).
[CrossRef]

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

Wang, Y.

S. Zhang, Z. Ye, Y. Wang, Y. Park, G. Bartal, M. Mrejen, X. Yin, and X. Zhang, “Anti-Hermitian plasmon coupling of an array of gold thin-film antennas for controlling light at the nanoscale,” Phys. Rev. Lett. 109, 193902 (2012).
[CrossRef]

Weeber, J. C.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. Garca-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Wenger, J.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11, 637–644 (2011).
[CrossRef]

Xiao, F.

Xu, A.

Xu, J.

J. Zhang, W. Zhang, X. Zhu, J. Yang, J. Xu, and D. Yu, “Resonant slot nanoantennas for surface plasmon radiation in optical frequency range,” Appl. Phys. Lett. 100, 241115 (2012).
[CrossRef]

Yang, J.

J. Zhang, W. Zhang, X. Zhu, J. Yang, J. Xu, and D. Yu, “Resonant slot nanoantennas for surface plasmon radiation in optical frequency range,” Appl. Phys. Lett. 100, 241115 (2012).
[CrossRef]

Ye, Z.

S. Zhang, Z. Ye, Y. Wang, Y. Park, G. Bartal, M. Mrejen, X. Yin, and X. Zhang, “Anti-Hermitian plasmon coupling of an array of gold thin-film antennas for controlling light at the nanoscale,” Phys. Rev. Lett. 109, 193902 (2012).
[CrossRef]

Yee, K. S.

K. S. Yee, “Numerical solution of initial boundary value problems involving maxwells equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[CrossRef]

Yin, X.

S. Zhang, Z. Ye, Y. Wang, Y. Park, G. Bartal, M. Mrejen, X. Yin, and X. Zhang, “Anti-Hermitian plasmon coupling of an array of gold thin-film antennas for controlling light at the nanoscale,” Phys. Rev. Lett. 109, 193902 (2012).
[CrossRef]

Yu, D.

J. Zhang, W. Zhang, X. Zhu, J. Yang, J. Xu, and D. Yu, “Resonant slot nanoantennas for surface plasmon radiation in optical frequency range,” Appl. Phys. Lett. 100, 241115 (2012).
[CrossRef]

Zhang, J.

J. Zhang, W. Zhang, X. Zhu, J. Yang, J. Xu, and D. Yu, “Resonant slot nanoantennas for surface plasmon radiation in optical frequency range,” Appl. Phys. Lett. 100, 241115 (2012).
[CrossRef]

Zhang, S.

S. Zhang, Z. Ye, Y. Wang, Y. Park, G. Bartal, M. Mrejen, X. Yin, and X. Zhang, “Anti-Hermitian plasmon coupling of an array of gold thin-film antennas for controlling light at the nanoscale,” Phys. Rev. Lett. 109, 193902 (2012).
[CrossRef]

Zhang, W.

J. Zhang, W. Zhang, X. Zhu, J. Yang, J. Xu, and D. Yu, “Resonant slot nanoantennas for surface plasmon radiation in optical frequency range,” Appl. Phys. Lett. 100, 241115 (2012).
[CrossRef]

Zhang, X.

S. Zhang, Z. Ye, Y. Wang, Y. Park, G. Bartal, M. Mrejen, X. Yin, and X. Zhang, “Anti-Hermitian plasmon coupling of an array of gold thin-film antennas for controlling light at the nanoscale,” Phys. Rev. Lett. 109, 193902 (2012).
[CrossRef]

Zhu, X.

J. Zhang, W. Zhang, X. Zhu, J. Yang, J. Xu, and D. Yu, “Resonant slot nanoantennas for surface plasmon radiation in optical frequency range,” Appl. Phys. Lett. 100, 241115 (2012).
[CrossRef]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (1)

J. Zhang, W. Zhang, X. Zhu, J. Yang, J. Xu, and D. Yu, “Resonant slot nanoantennas for surface plasmon radiation in optical frequency range,” Appl. Phys. Lett. 100, 241115 (2012).
[CrossRef]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving maxwells equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[CrossRef]

J. Appl. Phys. (1)

G. Lévêque and O. J. F. Martin, “Optimization of finite diffraction gratings for the excitation of surface plasmons,” J. Appl. Phys. 100, 124301 (2006).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Nano Lett. (5)

A. Baron, E. Devaux, J.-C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[CrossRef]

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12, 5481–5486 (2012).
[CrossRef]

M. Hentschel, T. Utikal, H. Giessen, and M. Lippitz, “Quantitative modeling of the third harmonic emission spectrum of plasmonic nanoantennas,” Nano Lett. 12, 3778–3782 (2012).
[CrossRef]

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11, 637–644 (2011).
[CrossRef]

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10, 3596–3603 (2010).
[CrossRef]

Nat. Commun. (2)

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011).
[CrossRef]

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical YagiUda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[CrossRef]

Nat. Photonics (3)

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2, 307–310 (2008).
[CrossRef]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[CrossRef]

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4, 312–315 (2010).
[CrossRef]

Nat. Phys. (1)

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. Garca-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. A (1)

A. Hänsel, O. A. Egorov, S. B. Hasan, C. Rockstuhl, and F. Lederer, “Optical bistability in a doubly resonant χ(2)-nonlinear plasmonic nanocavity,” Phys. Rev. A 85, 053843 (2012).
[CrossRef]

Phys. Rev. B (4)

S. B. Hasan, R. Filter, A. Ahmed, R. Vogelgesang, R. Gordon, C. Rockstuhl, and F. Lederer, “Relating localized nanoparticle resonances to an associated antenna problem,” Phys. Rev. B 84, 195405 (2011).
[CrossRef]

R. Filter, J. Qi, C. Rockstuhl, and F. Lederer, “Circular optical nanoantennas: an analytical theory,” Phys. Rev. B 85, 125429 (2012).
[CrossRef]

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44, 13556–13572 (1991).
[CrossRef]

K. Słowik, R. Filter, J. Straubel, F. Lederer, and C. Rockstuhl, “Strong coupling of optical nanoantennas and atomic systems,” Phys. Rev. B 88, 195414 (2013).
[CrossRef]

Phys. Rev. Lett. (3)

A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101, 043901 (2008).
[CrossRef]

S. Zhang, Z. Ye, Y. Wang, Y. Park, G. Bartal, M. Mrejen, X. Yin, and X. Zhang, “Anti-Hermitian plasmon coupling of an array of gold thin-film antennas for controlling light at the nanoscale,” Phys. Rev. Lett. 109, 193902 (2012).
[CrossRef]

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104, 026802 (2010).
[CrossRef]

Rev. Mod. Phys. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

Science (4)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. Garca-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333, 1720–1723 (2011).
[CrossRef]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

Other (3)

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic illustration of the investigated nanoantenna terminated with Bragg gratings. All geometrical parameters are defined in this figure. Quantities are given in the text.

Fig. 2.
Fig. 2.

(a) Dependence of reflection coefficient amplitude on the number of grating periods. (b) Amplitude (top) and phase (bottom) of the reflection coefficient of plasmonic Bragg mirrors as a function of geometrical parameters at a frequency of 315 THz.

Fig. 3.
Fig. 3.

(a) Comparison between resonant field enhancement (black solid curve) and reflection coefficient of plasmonic Bragg mirrors (red dash and green dash–dot curves). The amplitude and phase curves here correspond to the black dashed line cut at 90% filling factor in Fig. 2(b). For better illustration, the amplitude of the reflection coefficient is enhanced by a factor of 3.5 to match the scale. (b) Distributions of electric field amplitude in the central nanoantenna with (top) and without (bottom) tuned Bragg gratings.

Fig. 4.
Fig. 4.

Enhancement of the intensity of the normal electric field component |Eymax|2 above the nanoantenna with (two, five, and nine grating periods) and without optimized gratings. The optimized grating terminations had a 100% corrugation depth and 90% filling factor. They were attached to both sides of the central nanoantenna.

Fig. 5.
Fig. 5.

(a) Radiation patterns of the nanoantenna with (red solid curve) and without optimized gratings (blue dash curve). The optimized grating termination had five grating periods, a 100% corrugation depth, and 90% filling factor. The radiation pattern of a bare nanoantenna was enhanced here by a factor of 4 to match the scale. (b) Beam width and directivity of the nanoantenna with different numbers of grating periods.

Metrics