Abstract

An efficient method is developed for rigorously analyzing the scattering of light by a layered circular cylindrical object in a layered background, and it is applied to the study of the transmission of light through a subwavelength hole in a metallic film, where the hole may be filled by a dielectric material. The method relies on expanding the electromagnetic field (subtracted by one-dimensional solutions of the layered media) in one-dimensional modes, where the expansion “coefficients” are functions satisfying two-dimensional Helmholtz equations. A system of equations is established on the boundary of the circular cylinder to solve the expansion “coefficients.” The method effectively reduces the original three-dimensional scattering problem to a two-dimensional problem on the boundary of the cylinder.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (47)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription