Abstract

We present a tapered dual elliptical plasmon waveguide for terahertz waves. This element is composed of a pair of tapered elliptical metal structures and is especially suitable for the coupling of terahertz waves from an approximate plate waveguide to a two-wire waveguide. The long axes of the two ellipses gradually reduce to the same sizes as the short axes, and thus the two-ellipse structure is now a two-wire waveguide. The slowly tapered structure eliminates the reflection and scattering during the coupling process according to WKB approximation. The numerical result shows that the coupling efficiency of this connector can reach as high as 94%.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716–1718 (1995).
    [CrossRef]
  2. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
    [CrossRef]
  3. M. J. Fitch and R. Osiander, “Terahertz waves for communications and sensing,” Johns Hopkins APL Tech. Dig. 25, 348–355 (2004).
  4. G. Gallot, S. Jamison, R. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17, 851–863 (2000).
    [CrossRef]
  5. J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263–5268 (2004).
    [CrossRef]
  6. M. Goto, A. Ouema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317–L319 (2004).
    [CrossRef]
  7. M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microwave Theor. Tech. 39, 910–916 (1991).
    [CrossRef]
  8. S. Jamison, R. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76, 1987–1989 (2000).
    [CrossRef]
  9. R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88, 4449–4451 (2000).
    [CrossRef]
  10. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
    [CrossRef]
  11. Q. Cao and J. Jahns, “Azimuthally polarized surface plasmons as effective terahertz waveguides,” Opt. Express 13, 511–518 (2005).
    [CrossRef]
  12. B. Heshmat, D. Li, T. E. Darcie, and R. Gordon, “Tuning plasmonic resonances of an annular aperture in metal plate,” Opt. Express 19, 5912–5923 (2011).
    [CrossRef]
  13. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
    [CrossRef]
  14. S. I. Bozhevolnyi, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86, 3008–3011 (2001).
    [CrossRef]
  15. M. Wächter, M. Nagel, and H. Kurz, “Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires,” Opt. Express 13, 10815–10822 (2005).
    [CrossRef]
  16. H. Cao and A. Nahata, “Coupling of terahertz pulses onto a single metal wire waveguide using milled grooves,” Opt. Express 13, 7028–7034 (2005).
    [CrossRef]
  17. T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
    [CrossRef]
  18. M. Walther, M. R. Freeman, and F. A. Hegmann, “Metal-wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 87, 261107 (2005).
    [CrossRef]
  19. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
    [CrossRef]
  20. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
    [CrossRef]
  21. X. He, J. Cao, and S. Feng, “Simulation of the propagation property of metal wires terahertz waveguides,” Chin. Phys. Lett. 23, 2066–2069 (2006).
    [CrossRef]
  22. Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C. Y. Wang, “Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves,” Opt. Express 14, 13021–13029 (2006).
    [CrossRef]
  23. H. Liang, S. Ruan, and M. Zhang, “Terahertz surface wave propagation and focusing on conical metal wires,” Opt. Express 16, 18241–18248 (2008).
    [CrossRef]
  24. A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron. 14, 1515–1521 (2008).
    [CrossRef]
  25. Y. B. Ji, E. S. Lee, J. S. Jang, and T. I. Jeon, “Enhancement of the detection of THz Sommerfeld wave using a conical wire waveguide,” Opt. Express 16, 271–278 (2008).
    [CrossRef]
  26. P. Smorenburg, W. Op’t Root, and O. Luiten, “Direct generation of terahertz surface plasmon polaritons on a wire using electron bunches,” Phys. Rev. B 78, 115415 (2008).
    [CrossRef]
  27. R. Gordon, “Reflection of cylindrical surface waves,” Opt. Express 17, 18621–18629 (2009).
    [CrossRef]
  28. M. Awad, M. Nagel, and H. Kurz, “Tapered Sommerfeld wire terahertz near-field imaging,” Appl. Phys. Lett. 94, 051107 (2009).
    [CrossRef]
  29. J. Yang, Q. Cao, and C. Zhou, “An explicit formula for metal wire plasmon of terahertz wave,” Opt. Express 17, 20806–20815 (2009).
    [CrossRef]
  30. X. He, “Investigation of terahertz surface waves of a metallic nanowire,” J. Opt. Soc. Am. B 27, 2298–2303 (2010).
    [CrossRef]
  31. J. Yang, Q. Cao, and C. Zhou, “An analytical recurrence formula for the zero-order metal wire plasmon of terahertz wave,” J. Opt. Soc. Am. A 27, 1608–1612 (2010).
    [CrossRef]
  32. J. Yang, Q. Cao, and C. Zhou, “Theory for terahertz plasmons of metallic nanowires with sub-skin-depth diameters,” Opt. Express 18, 18550–18557 (2010).
    [CrossRef]
  33. L. Chusseau and J.-P. Guillet, “Coupling and propagation of Sommerfeld waves at 100 and 300  GHz,” J. Infrared Millim. Terahertz Waves 33, 174–182 (2012).
    [CrossRef]
  34. X. Guo, Y. Ma, Y. Wang, and L. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser Photon. Rev. 7, 855–881 (2013).
    [CrossRef]
  35. A. Edelmann, L. Moeller, and J. Jahns, “Coupling of terahertz radiation to metallic wire using end-fire technique,” Electron. Lett. 49, 884–886 (2013).
    [CrossRef]
  36. Z. Zheng, N. Kanda, K. Konishi, and M. Kuwata-Gonokami, “Efficient coupling of propagating broadband terahertz radial beams to metal wires,” Opt. Express 21, 10642–10650 (2013).
    [CrossRef]
  37. M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett. 95, 233506 (2009).
    [CrossRef]
  38. H. Pahlevaninezhad, T. E. Darcie, and B. Heshmat, “Two-wire waveguide for terahertz,” Opt. Express 18, 7415–7420 (2010).
    [CrossRef]
  39. H. Zhan, R. Mendis, and D. M. Mittleman, “Superfocusing terahertz waves below λ/250 using plasmonic parallel-plate waveguides,” Opt. Express 18, 9643–9650 (2010).
    [CrossRef]
  40. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999), Chap. 8, pp. 352–361.
  41. A. W. Snyder and J. Love, Optical Waveguide Theory (Chapman & Hall, 1983).
  42. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
    [CrossRef]
  43. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
    [CrossRef]
  44. P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3, 283–286 (2009).
    [CrossRef]
  45. C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
    [CrossRef]
  46. A. Rusina, M. Durach, K. A. Nelson, and M. I. Stockman, “Nanoconcentration of terahertz radiation in plasmonic waveguides,” Opt. Express 16, 18576–18589 (2008).
    [CrossRef]
  47. M. Ordal, R. J. Bell, R. Alexander, L. Long, and M. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24, 4493–4499 (1985).
    [CrossRef]

2013 (4)

X. Guo, Y. Ma, Y. Wang, and L. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser Photon. Rev. 7, 855–881 (2013).
[CrossRef]

A. Edelmann, L. Moeller, and J. Jahns, “Coupling of terahertz radiation to metallic wire using end-fire technique,” Electron. Lett. 49, 884–886 (2013).
[CrossRef]

Z. Zheng, N. Kanda, K. Konishi, and M. Kuwata-Gonokami, “Efficient coupling of propagating broadband terahertz radial beams to metal wires,” Opt. Express 21, 10642–10650 (2013).
[CrossRef]

C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
[CrossRef]

2012 (1)

L. Chusseau and J.-P. Guillet, “Coupling and propagation of Sommerfeld waves at 100 and 300  GHz,” J. Infrared Millim. Terahertz Waves 33, 174–182 (2012).
[CrossRef]

2011 (1)

2010 (5)

2009 (5)

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[CrossRef]

R. Gordon, “Reflection of cylindrical surface waves,” Opt. Express 17, 18621–18629 (2009).
[CrossRef]

M. Awad, M. Nagel, and H. Kurz, “Tapered Sommerfeld wire terahertz near-field imaging,” Appl. Phys. Lett. 94, 051107 (2009).
[CrossRef]

J. Yang, Q. Cao, and C. Zhou, “An explicit formula for metal wire plasmon of terahertz wave,” Opt. Express 17, 20806–20815 (2009).
[CrossRef]

M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett. 95, 233506 (2009).
[CrossRef]

2008 (6)

H. Liang, S. Ruan, and M. Zhang, “Terahertz surface wave propagation and focusing on conical metal wires,” Opt. Express 16, 18241–18248 (2008).
[CrossRef]

A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron. 14, 1515–1521 (2008).
[CrossRef]

Y. B. Ji, E. S. Lee, J. S. Jang, and T. I. Jeon, “Enhancement of the detection of THz Sommerfeld wave using a conical wire waveguide,” Opt. Express 16, 271–278 (2008).
[CrossRef]

P. Smorenburg, W. Op’t Root, and O. Luiten, “Direct generation of terahertz surface plasmon polaritons on a wire using electron bunches,” Phys. Rev. B 78, 115415 (2008).
[CrossRef]

A. Rusina, M. Durach, K. A. Nelson, and M. I. Stockman, “Nanoconcentration of terahertz radiation in plasmonic waveguides,” Opt. Express 16, 18576–18589 (2008).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

2006 (4)

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef]

X. He, J. Cao, and S. Feng, “Simulation of the propagation property of metal wires terahertz waveguides,” Chin. Phys. Lett. 23, 2066–2069 (2006).
[CrossRef]

Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C. Y. Wang, “Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves,” Opt. Express 14, 13021–13029 (2006).
[CrossRef]

2005 (5)

2004 (5)

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[CrossRef]

M. J. Fitch and R. Osiander, “Terahertz waves for communications and sensing,” Johns Hopkins APL Tech. Dig. 25, 348–355 (2004).

J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263–5268 (2004).
[CrossRef]

M. Goto, A. Ouema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317–L319 (2004).
[CrossRef]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef]

2002 (1)

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef]

2001 (1)

S. I. Bozhevolnyi, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86, 3008–3011 (2001).
[CrossRef]

2000 (3)

S. Jamison, R. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76, 1987–1989 (2000).
[CrossRef]

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88, 4449–4451 (2000).
[CrossRef]

G. Gallot, S. Jamison, R. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17, 851–863 (2000).
[CrossRef]

1996 (1)

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

1995 (1)

1991 (1)

M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microwave Theor. Tech. 39, 910–916 (1991).
[CrossRef]

1985 (1)

Alexander, R.

Andrews, S. R.

A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron. 14, 1515–1521 (2008).
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef]

Awad, M.

M. Awad, M. Nagel, and H. Kurz, “Tapered Sommerfeld wire terahertz near-field imaging,” Appl. Phys. Lett. 94, 051107 (2009).
[CrossRef]

Bell, R. J.

Borghs, G.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86, 3008–3011 (2001).
[CrossRef]

Cao, H.

Cao, J.

X. He, J. Cao, and S. Feng, “Simulation of the propagation property of metal wires terahertz waveguides,” Chin. Phys. Lett. 23, 2066–2069 (2006).
[CrossRef]

Cao, Q.

Chai, L.

Chang, D. E.

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef]

Chen, Y.

Chusseau, L.

L. Chusseau and J.-P. Guillet, “Coupling and propagation of Sommerfeld waves at 100 and 300  GHz,” J. Infrared Millim. Terahertz Waves 33, 174–182 (2012).
[CrossRef]

Darcie, T. E.

De Vlaminck, I.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[CrossRef]

Durach, M.

Edelmann, A.

A. Edelmann, L. Moeller, and J. Jahns, “Coupling of terahertz radiation to metallic wire using end-fire technique,” Electron. Lett. 49, 884–886 (2013).
[CrossRef]

Fang, N.

C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
[CrossRef]

Feng, S.

X. He, J. Cao, and S. Feng, “Simulation of the propagation property of metal wires terahertz waveguides,” Chin. Phys. Lett. 23, 2066–2069 (2006).
[CrossRef]

Fernández-Domínguez, A. I.

A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron. 14, 1515–1521 (2008).
[CrossRef]

Fitch, M. J.

M. J. Fitch and R. Osiander, “Terahertz waves for communications and sensing,” Johns Hopkins APL Tech. Dig. 25, 348–355 (2004).

Frankel, M. Y.

M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microwave Theor. Tech. 39, 910–916 (1991).
[CrossRef]

Freeman, M. R.

M. Walther, M. R. Freeman, and F. A. Hegmann, “Metal-wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 87, 261107 (2005).
[CrossRef]

Gallot, G.

García-Vidal, F. J.

A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron. 14, 1515–1521 (2008).
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

George, R.

Gordon, R.

Goto, M.

M. Goto, A. Ouema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317–L319 (2004).
[CrossRef]

Grischkowsky, D.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

G. Gallot, S. Jamison, R. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17, 851–863 (2000).
[CrossRef]

S. Jamison, R. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76, 1987–1989 (2000).
[CrossRef]

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88, 4449–4451 (2000).
[CrossRef]

Guillet, J.-P.

L. Chusseau and J.-P. Guillet, “Coupling and propagation of Sommerfeld waves at 100 and 300  GHz,” J. Infrared Millim. Terahertz Waves 33, 174–182 (2012).
[CrossRef]

Guo, X.

X. Guo, Y. Ma, Y. Wang, and L. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser Photon. Rev. 7, 855–881 (2013).
[CrossRef]

Gupta, S.

M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microwave Theor. Tech. 39, 910–916 (1991).
[CrossRef]

Harrington, J. A.

He, X.

X. He, “Investigation of terahertz surface waves of a metallic nanowire,” J. Opt. Soc. Am. B 27, 2298–2303 (2010).
[CrossRef]

X. He, J. Cao, and S. Feng, “Simulation of the propagation property of metal wires terahertz waveguides,” Chin. Phys. Lett. 23, 2066–2069 (2006).
[CrossRef]

Hegmann, F. A.

M. Walther, M. R. Freeman, and F. A. Hegmann, “Metal-wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 87, 261107 (2005).
[CrossRef]

Heinz, T. F.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

Hemmer, P. R.

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef]

Heshmat, B.

Hu, B. B.

Hu, M.

Huang, T. J.

C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999), Chap. 8, pp. 352–361.

Jahns, J.

A. Edelmann, L. Moeller, and J. Jahns, “Coupling of terahertz radiation to metallic wire using end-fire technique,” Electron. Lett. 49, 884–886 (2013).
[CrossRef]

Q. Cao and J. Jahns, “Azimuthally polarized surface plasmons as effective terahertz waveguides,” Opt. Express 13, 511–518 (2005).
[CrossRef]

Jamison, S.

S. Jamison, R. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76, 1987–1989 (2000).
[CrossRef]

G. Gallot, S. Jamison, R. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17, 851–863 (2000).
[CrossRef]

Jang, J. S.

Jeon, T. I.

Jeon, T.-I.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

Ji, Y. B.

Kanda, N.

Konishi, K.

Kurz, H.

M. Awad, M. Nagel, and H. Kurz, “Tapered Sommerfeld wire terahertz near-field imaging,” Appl. Phys. Lett. 94, 051107 (2009).
[CrossRef]

M. Wächter, M. Nagel, and H. Kurz, “Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires,” Opt. Express 13, 10815–10822 (2005).
[CrossRef]

Kuwata-Gonokami, M.

Lagae, L.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[CrossRef]

Lalanne, P.

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef]

Lee, E. S.

Li, D.

Li, Y.

Liang, H.

Liu, Y.

C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
[CrossRef]

Long, L.

Love, J.

A. W. Snyder and J. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

Luiten, O.

P. Smorenburg, W. Op’t Root, and O. Luiten, “Direct generation of terahertz surface plasmon polaritons on a wire using electron bunches,” Phys. Rev. B 78, 115415 (2008).
[CrossRef]

Lukin, M. D.

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef]

Ma, Y.

X. Guo, Y. Ma, Y. Wang, and L. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser Photon. Rev. 7, 855–881 (2013).
[CrossRef]

Maier, S. A.

A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron. 14, 1515–1521 (2008).
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef]

Martín-Moreno, L.

A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron. 14, 1515–1521 (2008).
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef]

Mbonye, M.

M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett. 95, 233506 (2009).
[CrossRef]

McGowan, R.

S. Jamison, R. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76, 1987–1989 (2000).
[CrossRef]

G. Gallot, S. Jamison, R. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17, 851–863 (2000).
[CrossRef]

Mendis, R.

H. Zhan, R. Mendis, and D. M. Mittleman, “Superfocusing terahertz waves below λ/250 using plasmonic parallel-plate waveguides,” Opt. Express 18, 9643–9650 (2010).
[CrossRef]

M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett. 95, 233506 (2009).
[CrossRef]

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88, 4449–4451 (2000).
[CrossRef]

Mittleman, D. M.

H. Zhan, R. Mendis, and D. M. Mittleman, “Superfocusing terahertz waves below λ/250 using plasmonic parallel-plate waveguides,” Opt. Express 18, 9643–9650 (2010).
[CrossRef]

M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett. 95, 233506 (2009).
[CrossRef]

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[CrossRef]

Moeller, L.

A. Edelmann, L. Moeller, and J. Jahns, “Coupling of terahertz radiation to metallic wire using end-fire technique,” Electron. Lett. 49, 884–886 (2013).
[CrossRef]

Mourou, G. A.

M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microwave Theor. Tech. 39, 910–916 (1991).
[CrossRef]

Mueller, E.

Nagel, M.

M. Awad, M. Nagel, and H. Kurz, “Tapered Sommerfeld wire terahertz near-field imaging,” Appl. Phys. Lett. 94, 051107 (2009).
[CrossRef]

M. Wächter, M. Nagel, and H. Kurz, “Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires,” Opt. Express 13, 10815–10822 (2005).
[CrossRef]

Nahata, A.

H. Cao and A. Nahata, “Coupling of terahertz pulses onto a single metal wire waveguide using milled grooves,” Opt. Express 13, 7028–7034 (2005).
[CrossRef]

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

Nelson, K. A.

Neutens, P.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[CrossRef]

Nuss, M. C.

Ono, S.

M. Goto, A. Ouema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317–L319 (2004).
[CrossRef]

Op’t Root, W.

P. Smorenburg, W. Op’t Root, and O. Luiten, “Direct generation of terahertz surface plasmon polaritons on a wire using electron bunches,” Phys. Rev. B 78, 115415 (2008).
[CrossRef]

Ordal, M.

Osiander, R.

M. J. Fitch and R. Osiander, “Terahertz waves for communications and sensing,” Johns Hopkins APL Tech. Dig. 25, 348–355 (2004).

Ouema, A.

M. Goto, A. Ouema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317–L319 (2004).
[CrossRef]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Pahlevaninezhad, H.

Pedersen, P.

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Querry, M.

Ruan, S.

Rusina, A.

Sarukura, N.

M. Goto, A. Ouema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317–L319 (2004).
[CrossRef]

Smorenburg, P.

P. Smorenburg, W. Op’t Root, and O. Luiten, “Direct generation of terahertz surface plasmon polaritons on a wire using electron bunches,” Phys. Rev. B 78, 115415 (2008).
[CrossRef]

Snyder, A. W.

A. W. Snyder and J. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

Song, Z.

Sørensen, A. S.

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Stockman, M. I.

Takahashi, H.

M. Goto, A. Ouema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317–L319 (2004).
[CrossRef]

Tong, L.

X. Guo, Y. Ma, Y. Wang, and L. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser Photon. Rev. 7, 855–881 (2013).
[CrossRef]

Valdmanis, J. A.

M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microwave Theor. Tech. 39, 910–916 (1991).
[CrossRef]

Van Dorpe, P.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[CrossRef]

Wächter, M.

Walther, M.

M. Walther, M. R. Freeman, and F. A. Hegmann, “Metal-wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 87, 261107 (2005).
[CrossRef]

Wang, C. Y.

Wang, K.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[CrossRef]

Wang, Y.

X. Guo, Y. Ma, Y. Wang, and L. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser Photon. Rev. 7, 855–881 (2013).
[CrossRef]

Weling, A. S.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

Xing, Q.

Yang, J.

Zhan, H.

Zhang, J.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

Zhang, M.

Zhang, X.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Zhang, Z.

Zhao, C.

C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
[CrossRef]

Zhao, Y.

C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
[CrossRef]

Zheng, Z.

Zhou, C.

Appl. Opt. (1)

Appl. Phys. Lett. (6)

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

S. Jamison, R. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76, 1987–1989 (2000).
[CrossRef]

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

M. Walther, M. R. Freeman, and F. A. Hegmann, “Metal-wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 87, 261107 (2005).
[CrossRef]

M. Awad, M. Nagel, and H. Kurz, “Tapered Sommerfeld wire terahertz near-field imaging,” Appl. Phys. Lett. 94, 051107 (2009).
[CrossRef]

M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett. 95, 233506 (2009).
[CrossRef]

Chin. Phys. Lett. (1)

X. He, J. Cao, and S. Feng, “Simulation of the propagation property of metal wires terahertz waveguides,” Chin. Phys. Lett. 23, 2066–2069 (2006).
[CrossRef]

Electron. Lett. (1)

A. Edelmann, L. Moeller, and J. Jahns, “Coupling of terahertz radiation to metallic wire using end-fire technique,” Electron. Lett. 49, 884–886 (2013).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron. 14, 1515–1521 (2008).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (1)

M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microwave Theor. Tech. 39, 910–916 (1991).
[CrossRef]

J. Appl. Phys. (1)

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88, 4449–4451 (2000).
[CrossRef]

J. Infrared Millim. Terahertz Waves (1)

L. Chusseau and J.-P. Guillet, “Coupling and propagation of Sommerfeld waves at 100 and 300  GHz,” J. Infrared Millim. Terahertz Waves 33, 174–182 (2012).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Johns Hopkins APL Tech. Dig. (1)

M. J. Fitch and R. Osiander, “Terahertz waves for communications and sensing,” Johns Hopkins APL Tech. Dig. 25, 348–355 (2004).

Jpn. J. Appl. Phys. (1)

M. Goto, A. Ouema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317–L319 (2004).
[CrossRef]

Laser Photon. Rev. (1)

X. Guo, Y. Ma, Y. Wang, and L. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser Photon. Rev. 7, 855–881 (2013).
[CrossRef]

Nat. Commun. (1)

C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
[CrossRef]

Nat. Photonics (2)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[CrossRef]

Nature (1)

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[CrossRef]

Opt. Express (15)

Q. Cao and J. Jahns, “Azimuthally polarized surface plasmons as effective terahertz waveguides,” Opt. Express 13, 511–518 (2005).
[CrossRef]

B. Heshmat, D. Li, T. E. Darcie, and R. Gordon, “Tuning plasmonic resonances of an annular aperture in metal plate,” Opt. Express 19, 5912–5923 (2011).
[CrossRef]

J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263–5268 (2004).
[CrossRef]

M. Wächter, M. Nagel, and H. Kurz, “Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires,” Opt. Express 13, 10815–10822 (2005).
[CrossRef]

H. Cao and A. Nahata, “Coupling of terahertz pulses onto a single metal wire waveguide using milled grooves,” Opt. Express 13, 7028–7034 (2005).
[CrossRef]

J. Yang, Q. Cao, and C. Zhou, “Theory for terahertz plasmons of metallic nanowires with sub-skin-depth diameters,” Opt. Express 18, 18550–18557 (2010).
[CrossRef]

H. Pahlevaninezhad, T. E. Darcie, and B. Heshmat, “Two-wire waveguide for terahertz,” Opt. Express 18, 7415–7420 (2010).
[CrossRef]

H. Zhan, R. Mendis, and D. M. Mittleman, “Superfocusing terahertz waves below λ/250 using plasmonic parallel-plate waveguides,” Opt. Express 18, 9643–9650 (2010).
[CrossRef]

R. Gordon, “Reflection of cylindrical surface waves,” Opt. Express 17, 18621–18629 (2009).
[CrossRef]

J. Yang, Q. Cao, and C. Zhou, “An explicit formula for metal wire plasmon of terahertz wave,” Opt. Express 17, 20806–20815 (2009).
[CrossRef]

Y. B. Ji, E. S. Lee, J. S. Jang, and T. I. Jeon, “Enhancement of the detection of THz Sommerfeld wave using a conical wire waveguide,” Opt. Express 16, 271–278 (2008).
[CrossRef]

Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C. Y. Wang, “Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves,” Opt. Express 14, 13021–13029 (2006).
[CrossRef]

H. Liang, S. Ruan, and M. Zhang, “Terahertz surface wave propagation and focusing on conical metal wires,” Opt. Express 16, 18241–18248 (2008).
[CrossRef]

A. Rusina, M. Durach, K. A. Nelson, and M. I. Stockman, “Nanoconcentration of terahertz radiation in plasmonic waveguides,” Opt. Express 16, 18576–18589 (2008).
[CrossRef]

Z. Zheng, N. Kanda, K. Konishi, and M. Kuwata-Gonokami, “Efficient coupling of propagating broadband terahertz radial beams to metal wires,” Opt. Express 21, 10642–10650 (2013).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

P. Smorenburg, W. Op’t Root, and O. Luiten, “Direct generation of terahertz surface plasmon polaritons on a wire using electron bunches,” Phys. Rev. B 78, 115415 (2008).
[CrossRef]

Phys. Rev. Lett. (5)

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef]

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef]

S. I. Bozhevolnyi, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86, 3008–3011 (2001).
[CrossRef]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef]

Other (2)

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999), Chap. 8, pp. 352–361.

A. W. Snyder and J. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Tapered dual elliptical plasmon waveguide. The symbols b and a are the long axis and the short axis, respectively, and the symbol D is the separating distance (center to center). (a) Front view. (b) Perspective view. (c) Gradual changing process of the waveguide. The symbol l denotes the length of the waveguide.

Fig. 2.
Fig. 2.

(a) WKB or adiabatic parameter δ. One can see clearly that δ1. (b) Imaginary parts of the effective indices of the 2D cross sections of the tapered dual elliptical plasmon waveguide. The separating distance D is 2 mm.

Fig. 3.
Fig. 3.

Electric field distribution. (a) For the input plane of the waveguide with b=10a=5mm. (b) For the output plane of the waveguide with b=a=0.5mm. The distance D for separation is 2 mm for both cases.

Fig. 4.
Fig. 4.

Coupling efficiency with respect to different separating distances. b and a are 5 and 0.5 mm, respectively, and the waveguide length l is 0.1 m.

Fig. 5.
Fig. 5.

(a) Coupling efficiency with respect to the gradient c. (b) Coupling efficiency with respect to the waveguide length l. Both (a) and (b) are obtained by use of the WKB approximation.

Fig. 6.
Fig. 6.

(a) Coupling efficiency with respect to the gradient c. (b) Coupling efficiency with respect to the waveguide length l. The black curve denotes the WKB approximation, and the black sign “×” denotes the 3D simulation by use of COMSOL Multiphysics.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

b(z)=a+c(lz),
E(x,y,z)=E(x,y)ejk0neffzH(x,y,z)=H(x,y)ejk0neffz.
[t2+k02(εrμrneff2)]{E(x,y)H(x,y)}=0,
δ=|c×d(Re(k0neff)1)/db|1,
δ=|d(Re(k0neff)1)/dz|1.
η=exp[2k00lIm(neff)dz].
η=exp[2k0Im(neff)¯l],

Metrics