Abstract

We describe a technique for cancelling group-velocity dispersion in spectral-domain (SD) optical coherence tomography (OCT) based on classical intensity correlations. As a classical analogue of quantum OCT, a Hong–Ou–Mandel interferometer is combined with a conventional SD-OCT setup, and correlations between different spectral intensities are calculated. It is shown theoretically that a simple computational procedure used in SD-OCT enables scanless cross-sectional imaging with both dispersion cancellation and a factor-of-2 resolution enhancement. The method involves no ultrafast detectors and works with common light sources.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
    [CrossRef]
  2. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
    [CrossRef]
  3. A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography,” Opt. Express 9, 610–615 (2001).
    [CrossRef]
  4. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004).
    [CrossRef]
  5. A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
    [CrossRef]
  6. M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
    [CrossRef]
  7. M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Dispersion-cancelled and dispersion-sensitive quantum optical coherence tomography,” Opt. Express 12, 1353–1362 (2004).
    [CrossRef]
  8. B. I. Erkmen and J. H. Shapiro, “Phase-conjugate optical coherence tomography,” Phys. Rev. A 74, 041601(R) (2006).
    [CrossRef]
  9. J. Le Gouët, D. Venkatraman, F. N. C. Wong, and J. H. Shapiro, “Experimental realization of phase-conjugate optical coherence tomography,” Opt. Lett. 35, 1001–1003 (2010).
    [CrossRef]
  10. K. Banaszek, A. Radunsky, and I. Walmsley, “Blind dispersion compensation for optical coherence tomography,” Opt. Commun. 269, 152–155 (2007).
    [CrossRef]
  11. K. J. Resch, P. Puvanathasan, J. S. Lundeen, M. W. Mitchell, and K. Bizheva, “Classical dispersion-cancellation interferometry,” Opt. Express 15, 8797–8804 (2007).
    [CrossRef]
  12. R. Kaltenbaek, J. Lavoie, D. N. Biggerstaff, and K. J. Resch, “Quantum-inspired interferometry with chirped laser pulses,” Nat. Phys. 4, 864–868 (2008).
    [CrossRef]
  13. J. Lavoie, R. Kaltenbaek, and K. J. Resch, “Quantum-optical coherence tomography with classical light,” Opt. Express 17, 3818–3825 (2009).
    [CrossRef]
  14. M. D. Mazurek, K. M. Schreiter, R. Prevedel, R. Kaltenbaek, and K. J. Resch, “Dispersion-cancelled biological imaging with quantum-inspired interferometry,” Sci. Rep. 3, 1582 (2013).
    [CrossRef]
  15. J. D. Franson, “Nonlocal cancellation of dispersion,” Phys. Rev. A 45, 3126–3132 (1992).
    [CrossRef]
  16. A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992).
    [CrossRef]
  17. A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer,” Phys. Rev. A 45, 6659–6665 (1992).
    [CrossRef]
  18. V. Torres-Company, H. Lajunen, and A. T. Friberg, “‘Nonlocal’ dispersion cancellation with classical light,” New J. Phys. 11, 063041 (2009).
    [CrossRef]
  19. J. D. Franson, “Nonclassical nature of dispersion cancellation and nonlocal interferometry,” Phys. Rev. A 80, 032119 (2009).
    [CrossRef]
  20. J. H. Shapiro, “Dispersion cancellation with phase-sensitive Gaussian-state light,” Phys. Rev. A 81, 023824 (2010).
    [CrossRef]
  21. J. D. Franson, “Lack of dispersion cancellation with classical phase-sensitive light,” Phys. Rev. A 81, 023825 (2010).
    [CrossRef]
  22. M. C. Teich, B. E. A. Saleh, F. N. C. Wong, and J. H. Shapiro, “Variations on the theme of quantum optical coherence tomography: a review,” Quant. Info. Proc. 11, 903–923 (2012).
    [CrossRef]
  23. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
    [CrossRef]
  24. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003).
    [CrossRef]
  25. Z. Yaqoob, J. Wu, and C. Yang, “Spectral domain optical coherence tomography: a better OCT imaging strategy,” Biotechniques 39, S6–S13 (2005).
    [CrossRef]
  26. T. Shirai and A. T. Friberg, “Resolution improvement in spectral-domain optical coherence tomography based on classical intensity correlations,” Opt. Lett. 38, 115–117 (2013).
    [CrossRef]
  27. H. Lajunen, V. Torres-Company, J. Lancis, and A. T. Friberg, “Resolution-enhanced optical coherence tomography based on classical intensity interferometry,” J. Opt. Soc. Am. A 26, 1049–1054 (2009).
    [CrossRef]
  28. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
    [CrossRef]
  29. A. Zeilinger, “General properties of lossless beam splitters in interferometry,” Am. J. Phys. 49, 882–883 (1981).
    [CrossRef]
  30. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

2013 (2)

M. D. Mazurek, K. M. Schreiter, R. Prevedel, R. Kaltenbaek, and K. J. Resch, “Dispersion-cancelled biological imaging with quantum-inspired interferometry,” Sci. Rep. 3, 1582 (2013).
[CrossRef]

T. Shirai and A. T. Friberg, “Resolution improvement in spectral-domain optical coherence tomography based on classical intensity correlations,” Opt. Lett. 38, 115–117 (2013).
[CrossRef]

2012 (1)

M. C. Teich, B. E. A. Saleh, F. N. C. Wong, and J. H. Shapiro, “Variations on the theme of quantum optical coherence tomography: a review,” Quant. Info. Proc. 11, 903–923 (2012).
[CrossRef]

2010 (3)

J. Le Gouët, D. Venkatraman, F. N. C. Wong, and J. H. Shapiro, “Experimental realization of phase-conjugate optical coherence tomography,” Opt. Lett. 35, 1001–1003 (2010).
[CrossRef]

J. H. Shapiro, “Dispersion cancellation with phase-sensitive Gaussian-state light,” Phys. Rev. A 81, 023824 (2010).
[CrossRef]

J. D. Franson, “Lack of dispersion cancellation with classical phase-sensitive light,” Phys. Rev. A 81, 023825 (2010).
[CrossRef]

2009 (4)

V. Torres-Company, H. Lajunen, and A. T. Friberg, “‘Nonlocal’ dispersion cancellation with classical light,” New J. Phys. 11, 063041 (2009).
[CrossRef]

J. D. Franson, “Nonclassical nature of dispersion cancellation and nonlocal interferometry,” Phys. Rev. A 80, 032119 (2009).
[CrossRef]

J. Lavoie, R. Kaltenbaek, and K. J. Resch, “Quantum-optical coherence tomography with classical light,” Opt. Express 17, 3818–3825 (2009).
[CrossRef]

H. Lajunen, V. Torres-Company, J. Lancis, and A. T. Friberg, “Resolution-enhanced optical coherence tomography based on classical intensity interferometry,” J. Opt. Soc. Am. A 26, 1049–1054 (2009).
[CrossRef]

2008 (1)

R. Kaltenbaek, J. Lavoie, D. N. Biggerstaff, and K. J. Resch, “Quantum-inspired interferometry with chirped laser pulses,” Nat. Phys. 4, 864–868 (2008).
[CrossRef]

2007 (2)

K. J. Resch, P. Puvanathasan, J. S. Lundeen, M. W. Mitchell, and K. Bizheva, “Classical dispersion-cancellation interferometry,” Opt. Express 15, 8797–8804 (2007).
[CrossRef]

K. Banaszek, A. Radunsky, and I. Walmsley, “Blind dispersion compensation for optical coherence tomography,” Opt. Commun. 269, 152–155 (2007).
[CrossRef]

2006 (1)

B. I. Erkmen and J. H. Shapiro, “Phase-conjugate optical coherence tomography,” Phys. Rev. A 74, 041601(R) (2006).
[CrossRef]

2005 (1)

Z. Yaqoob, J. Wu, and C. Yang, “Spectral domain optical coherence tomography: a better OCT imaging strategy,” Biotechniques 39, S6–S13 (2005).
[CrossRef]

2004 (2)

2003 (4)

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[CrossRef]

M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003).
[CrossRef]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef]

2002 (1)

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[CrossRef]

2001 (2)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography,” Opt. Express 9, 610–615 (2001).
[CrossRef]

1992 (3)

J. D. Franson, “Nonlocal cancellation of dispersion,” Phys. Rev. A 45, 3126–3132 (1992).
[CrossRef]

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992).
[CrossRef]

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer,” Phys. Rev. A 45, 6659–6665 (1992).
[CrossRef]

1987 (1)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[CrossRef]

1981 (1)

A. Zeilinger, “General properties of lossless beam splitters in interferometry,” Am. J. Phys. 49, 882–883 (1981).
[CrossRef]

Abouraddy, A. F.

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Banaszek, K.

K. Banaszek, A. Radunsky, and I. Walmsley, “Blind dispersion compensation for optical coherence tomography,” Opt. Commun. 269, 152–155 (2007).
[CrossRef]

Biggerstaff, D. N.

R. Kaltenbaek, J. Lavoie, D. N. Biggerstaff, and K. J. Resch, “Quantum-inspired interferometry with chirped laser pulses,” Nat. Phys. 4, 864–868 (2008).
[CrossRef]

Bizheva, K.

Chiao, R. Y.

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992).
[CrossRef]

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer,” Phys. Rev. A 45, 6659–6665 (1992).
[CrossRef]

Choma, M. A.

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[CrossRef]

Duker, J. S.

Erkmen, B. I.

B. I. Erkmen and J. H. Shapiro, “Phase-conjugate optical coherence tomography,” Phys. Rev. A 74, 041601(R) (2006).
[CrossRef]

Fercher, A. F.

Franson, J. D.

J. D. Franson, “Lack of dispersion cancellation with classical phase-sensitive light,” Phys. Rev. A 81, 023825 (2010).
[CrossRef]

J. D. Franson, “Nonclassical nature of dispersion cancellation and nonlocal interferometry,” Phys. Rev. A 80, 032119 (2009).
[CrossRef]

J. D. Franson, “Nonlocal cancellation of dispersion,” Phys. Rev. A 45, 3126–3132 (1992).
[CrossRef]

Friberg, A. T.

Fujimoto, J. G.

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004).
[CrossRef]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[CrossRef]

Ghanta, R. K.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[CrossRef]

Hitzenberger, C. K.

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[CrossRef]

Izatt, J. A.

Kaltenbaek, R.

M. D. Mazurek, K. M. Schreiter, R. Prevedel, R. Kaltenbaek, and K. J. Resch, “Dispersion-cancelled biological imaging with quantum-inspired interferometry,” Sci. Rep. 3, 1582 (2013).
[CrossRef]

J. Lavoie, R. Kaltenbaek, and K. J. Resch, “Quantum-optical coherence tomography with classical light,” Opt. Express 17, 3818–3825 (2009).
[CrossRef]

R. Kaltenbaek, J. Lavoie, D. N. Biggerstaff, and K. J. Resch, “Quantum-inspired interferometry with chirped laser pulses,” Nat. Phys. 4, 864–868 (2008).
[CrossRef]

Karamata, B.

Kartner, F. X.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[CrossRef]

Ko, T. H.

Kowalczyk, A.

Kwiat, P. G.

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer,” Phys. Rev. A 45, 6659–6665 (1992).
[CrossRef]

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992).
[CrossRef]

Lajunen, H.

V. Torres-Company, H. Lajunen, and A. T. Friberg, “‘Nonlocal’ dispersion cancellation with classical light,” New J. Phys. 11, 063041 (2009).
[CrossRef]

H. Lajunen, V. Torres-Company, J. Lancis, and A. T. Friberg, “Resolution-enhanced optical coherence tomography based on classical intensity interferometry,” J. Opt. Soc. Am. A 26, 1049–1054 (2009).
[CrossRef]

Lancis, J.

Lasser, T.

Lavoie, J.

J. Lavoie, R. Kaltenbaek, and K. J. Resch, “Quantum-optical coherence tomography with classical light,” Opt. Express 17, 3818–3825 (2009).
[CrossRef]

R. Kaltenbaek, J. Lavoie, D. N. Biggerstaff, and K. J. Resch, “Quantum-inspired interferometry with chirped laser pulses,” Nat. Phys. 4, 864–868 (2008).
[CrossRef]

Le Gouët, J.

Leitgeb, R.

Lundeen, J. S.

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[CrossRef]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Mazurek, M. D.

M. D. Mazurek, K. M. Schreiter, R. Prevedel, R. Kaltenbaek, and K. J. Resch, “Dispersion-cancelled biological imaging with quantum-inspired interferometry,” Sci. Rep. 3, 1582 (2013).
[CrossRef]

Mitchell, M. W.

Morgner, U.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[CrossRef]

Nasr, M. B.

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Dispersion-cancelled and dispersion-sensitive quantum optical coherence tomography,” Opt. Express 12, 1353–1362 (2004).
[CrossRef]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[CrossRef]

Prevedel, R.

M. D. Mazurek, K. M. Schreiter, R. Prevedel, R. Kaltenbaek, and K. J. Resch, “Dispersion-cancelled biological imaging with quantum-inspired interferometry,” Sci. Rep. 3, 1582 (2013).
[CrossRef]

Puvanathasan, P.

Radunsky, A.

K. Banaszek, A. Radunsky, and I. Walmsley, “Blind dispersion compensation for optical coherence tomography,” Opt. Commun. 269, 152–155 (2007).
[CrossRef]

Resch, K. J.

M. D. Mazurek, K. M. Schreiter, R. Prevedel, R. Kaltenbaek, and K. J. Resch, “Dispersion-cancelled biological imaging with quantum-inspired interferometry,” Sci. Rep. 3, 1582 (2013).
[CrossRef]

J. Lavoie, R. Kaltenbaek, and K. J. Resch, “Quantum-optical coherence tomography with classical light,” Opt. Express 17, 3818–3825 (2009).
[CrossRef]

R. Kaltenbaek, J. Lavoie, D. N. Biggerstaff, and K. J. Resch, “Quantum-inspired interferometry with chirped laser pulses,” Nat. Phys. 4, 864–868 (2008).
[CrossRef]

K. J. Resch, P. Puvanathasan, J. S. Lundeen, M. W. Mitchell, and K. Bizheva, “Classical dispersion-cancellation interferometry,” Opt. Express 15, 8797–8804 (2007).
[CrossRef]

Saleh, B. E. A.

M. C. Teich, B. E. A. Saleh, F. N. C. Wong, and J. H. Shapiro, “Variations on the theme of quantum optical coherence tomography: a review,” Quant. Info. Proc. 11, 903–923 (2012).
[CrossRef]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Dispersion-cancelled and dispersion-sensitive quantum optical coherence tomography,” Opt. Express 12, 1353–1362 (2004).
[CrossRef]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Sarunic, M. V.

Schreiter, K. M.

M. D. Mazurek, K. M. Schreiter, R. Prevedel, R. Kaltenbaek, and K. J. Resch, “Dispersion-cancelled biological imaging with quantum-inspired interferometry,” Sci. Rep. 3, 1582 (2013).
[CrossRef]

Schuman, J. S.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[CrossRef]

Sergienko, A. V.

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Dispersion-cancelled and dispersion-sensitive quantum optical coherence tomography,” Opt. Express 12, 1353–1362 (2004).
[CrossRef]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Shapiro, J. H.

M. C. Teich, B. E. A. Saleh, F. N. C. Wong, and J. H. Shapiro, “Variations on the theme of quantum optical coherence tomography: a review,” Quant. Info. Proc. 11, 903–923 (2012).
[CrossRef]

J. H. Shapiro, “Dispersion cancellation with phase-sensitive Gaussian-state light,” Phys. Rev. A 81, 023824 (2010).
[CrossRef]

J. Le Gouët, D. Venkatraman, F. N. C. Wong, and J. H. Shapiro, “Experimental realization of phase-conjugate optical coherence tomography,” Opt. Lett. 35, 1001–1003 (2010).
[CrossRef]

B. I. Erkmen and J. H. Shapiro, “Phase-conjugate optical coherence tomography,” Phys. Rev. A 74, 041601(R) (2006).
[CrossRef]

Shirai, T.

Srinivasan, V. J.

Steinberg, A. M.

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer,” Phys. Rev. A 45, 6659–6665 (1992).
[CrossRef]

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992).
[CrossRef]

Sticker, M.

Teich, M. C.

M. C. Teich, B. E. A. Saleh, F. N. C. Wong, and J. H. Shapiro, “Variations on the theme of quantum optical coherence tomography: a review,” Quant. Info. Proc. 11, 903–923 (2012).
[CrossRef]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Dispersion-cancelled and dispersion-sensitive quantum optical coherence tomography,” Opt. Express 12, 1353–1362 (2004).
[CrossRef]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Torres-Company, V.

H. Lajunen, V. Torres-Company, J. Lancis, and A. T. Friberg, “Resolution-enhanced optical coherence tomography based on classical intensity interferometry,” J. Opt. Soc. Am. A 26, 1049–1054 (2009).
[CrossRef]

V. Torres-Company, H. Lajunen, and A. T. Friberg, “‘Nonlocal’ dispersion cancellation with classical light,” New J. Phys. 11, 063041 (2009).
[CrossRef]

Venkatraman, D.

Walmsley, I.

K. Banaszek, A. Radunsky, and I. Walmsley, “Blind dispersion compensation for optical coherence tomography,” Opt. Commun. 269, 152–155 (2007).
[CrossRef]

Wojtkowski, M.

Wolf, E.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Wong, F. N. C.

M. C. Teich, B. E. A. Saleh, F. N. C. Wong, and J. H. Shapiro, “Variations on the theme of quantum optical coherence tomography: a review,” Quant. Info. Proc. 11, 903–923 (2012).
[CrossRef]

J. Le Gouët, D. Venkatraman, F. N. C. Wong, and J. H. Shapiro, “Experimental realization of phase-conjugate optical coherence tomography,” Opt. Lett. 35, 1001–1003 (2010).
[CrossRef]

Wu, J.

Z. Yaqoob, J. Wu, and C. Yang, “Spectral domain optical coherence tomography: a better OCT imaging strategy,” Biotechniques 39, S6–S13 (2005).
[CrossRef]

Yang, C.

Z. Yaqoob, J. Wu, and C. Yang, “Spectral domain optical coherence tomography: a better OCT imaging strategy,” Biotechniques 39, S6–S13 (2005).
[CrossRef]

Yang, C. H.

Yaqoob, Z.

Z. Yaqoob, J. Wu, and C. Yang, “Spectral domain optical coherence tomography: a better OCT imaging strategy,” Biotechniques 39, S6–S13 (2005).
[CrossRef]

Zawadzki, R.

Zeilinger, A.

A. Zeilinger, “General properties of lossless beam splitters in interferometry,” Am. J. Phys. 49, 882–883 (1981).
[CrossRef]

Am. J. Phys. (1)

A. Zeilinger, “General properties of lossless beam splitters in interferometry,” Am. J. Phys. 49, 882–883 (1981).
[CrossRef]

Biotechniques (1)

Z. Yaqoob, J. Wu, and C. Yang, “Spectral domain optical coherence tomography: a better OCT imaging strategy,” Biotechniques 39, S6–S13 (2005).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nat. Med. (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[CrossRef]

Nat. Phys. (1)

R. Kaltenbaek, J. Lavoie, D. N. Biggerstaff, and K. J. Resch, “Quantum-inspired interferometry with chirped laser pulses,” Nat. Phys. 4, 864–868 (2008).
[CrossRef]

New J. Phys. (1)

V. Torres-Company, H. Lajunen, and A. T. Friberg, “‘Nonlocal’ dispersion cancellation with classical light,” New J. Phys. 11, 063041 (2009).
[CrossRef]

Opt. Commun. (1)

K. Banaszek, A. Radunsky, and I. Walmsley, “Blind dispersion compensation for optical coherence tomography,” Opt. Commun. 269, 152–155 (2007).
[CrossRef]

Opt. Express (7)

Opt. Lett. (2)

Phys. Rev. A (7)

B. I. Erkmen and J. H. Shapiro, “Phase-conjugate optical coherence tomography,” Phys. Rev. A 74, 041601(R) (2006).
[CrossRef]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[CrossRef]

J. D. Franson, “Nonclassical nature of dispersion cancellation and nonlocal interferometry,” Phys. Rev. A 80, 032119 (2009).
[CrossRef]

J. H. Shapiro, “Dispersion cancellation with phase-sensitive Gaussian-state light,” Phys. Rev. A 81, 023824 (2010).
[CrossRef]

J. D. Franson, “Lack of dispersion cancellation with classical phase-sensitive light,” Phys. Rev. A 81, 023825 (2010).
[CrossRef]

J. D. Franson, “Nonlocal cancellation of dispersion,” Phys. Rev. A 45, 3126–3132 (1992).
[CrossRef]

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer,” Phys. Rev. A 45, 6659–6665 (1992).
[CrossRef]

Phys. Rev. Lett. (3)

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992).
[CrossRef]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[CrossRef]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef]

Quant. Info. Proc. (1)

M. C. Teich, B. E. A. Saleh, F. N. C. Wong, and J. H. Shapiro, “Variations on the theme of quantum optical coherence tomography: a review,” Quant. Info. Proc. 11, 903–923 (2012).
[CrossRef]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Sci. Rep. (1)

M. D. Mazurek, K. M. Schreiter, R. Prevedel, R. Kaltenbaek, and K. J. Resch, “Dispersion-cancelled biological imaging with quantum-inspired interferometry,” Sci. Rep. 3, 1582 (2013).
[CrossRef]

Other (1)

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Schematic of SD-OCT based on classical intensity correlations with dispersion cancellation and resolution improvement. The method employs a beam splitter, BS2, to form an HOM interferometer at the output of a conventional SD-OCT setup consisting of a beam splitter, BS1, a sample, and reference mirrors. A diffraction grating, G, is placed in each arm after BS2 and the resulting spectral interference fringe patterns are observed by photodetectors 1 and 2. On the basis of these data, the correlations between spectral intensity components at different frequencies are calculated.

Fig. 2.
Fig. 2.

OCT signals obtained by (a) conventional SD-OCT and (b) I-SD-OCT. Two peaks and two dips characterizing the locations of the reflecting surfaces are distinct when the BK7 glass plate is removed (see solid curves). Another dip between the two dips is an artifact. When the BK7 glass plate is inserted in place, the conventional SD-OCT signal [dashed curve in (a)] is severely broadened by the dispersion effect, while the I-SD-OCT signal [solid curve in (b)] remains unchanged.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

β(ω0+ω)β0+β1ω+12β2ω2,
U1(ω)=rU0(ω)exp(iωt1)exp[iβ(ω)L]+iU0(ω)exp(iωt2),
U2(ω)=irU0(ω)exp(iωt1)exp[iβ(ω)L]+U0(ω)exp(iωt2),
C(ω)=|U1(ω0+ω)|2|U2(ω0ω)|2=|U1(ω0+ω)|2|U2(ω0ω)|2+|U1*(ω0+ω)U2(ω0ω)|2,
C(ω)=|U1(ω0+ω)|2|U2(ω0ω)|2×[1+|μ(ω0+ω,ω0ω)|2],
μ(ω1,ω2)=U0*(ω1)U0(ω2)|U0(ω1)|2|U0(ω2)|2
C(ω)=A|U1(ω0+ω)|2|U2(ω0ω)|2,
|U0(ω)|2=S(ωω0).
C(ω)=AS2(ω)n=22cn(ω),
c0(ω)=(|r|2+1)2+2Re[(r*)2exp(i2α)exp(iβ2Lω2)],
c±1(ω)=i2(|r|2+1)Re[r*exp(iα)exp(i12β2Lω2)]exp(±iτω),
c±2(ω)=|r|2exp(±i2τω).
C^(x)=C(ω)exp(ixω)dω.
C^(x)=An=22c^n(x),
c^0(x)=(|r|2+1)2G(x)+2Re[(r*)2exp(i2α)Gd2(x)],
c^±1(x)=i2(|r|2+1)Re[r*exp(iα)Gd1(xτ)],
c^±2(x)=|r|2G(x2τ).
G(x)=S2(ω)exp(ixω)dω
Gd1(x)=S2(ω)exp(i12β2Lω2)exp(ixω)dω,
Gd2(x)=S2(ω)exp(iβ2Lω2)exp(ixω)dω

Metrics