Abstract

Optimal design of photovoltaic devices with a periodically corrugated metallic backreflector requires a rapid and reliable way to simulate the optical characteristics for wide ranges of wavelengths and angles of incidence. Two independent numerical techniques are needed for confidence in numerical results. We compared the rigorous coupled-wave approach (RCWA) and the finite element method (FEM), the former being fast and flexible, but the latter having predictable convergence even for discontinuous constitutive properties. Depending on the shape of the corrugation and the constitutive properties of the metal and dielectric materials making up the device, both techniques can exhibit slow convergence rates for p-polarized light. The chosen model problem in this paper is of this type. As rapid spatial variations of the fields are the underlying cause, suitable selective refinement of the FEM mesh can overcome this slow convergence. Therefore, it would be desirable to have a self-adaptive scheme for choosing the mesh in the FEM. This will slow down the algorithm but give a reliable way to check the RCWA results.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Adequacy of the rigorous coupled-wave approach for thin-film silicon solar cells with periodically corrugated metallic backreflectors: spectral analysis

Mikhail V. Shuba, Muhammad Faryad, Manuel E. Solano, Peter B. Monk, and Akhlesh Lakhtakia
J. Opt. Soc. Am. A 32(7) 1222-1230 (2015)

Asymptotic model for finite-element calculations of diffraction by shallow metallic surface-relief gratings

Cinthya Rivas, Manuel E. Solano, Rodolfo Rodríguez, Peter B. Monk, and Akhlesh Lakhtakia
J. Opt. Soc. Am. A 34(1) 68-79 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (32)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription