Abstract

We present an efficient Fourier modal method for wave scattering by perfectly conducting gratings (in the two polarizations). The method uses a geometrical transformation, similar to the one used in the C-method, that transforms the grating surface into a flat surface, thus avoiding to question the Rayleigh hypothesis; also, the transformation only affects a bounded inner region that naturally matches the outer region; this allows applying a simple criterion to select the ingoing and outgoing waves. The method is shown to satisfy reciprocity and energy conservation, and it has an exponential rate of convergence for regular groove shapes. Besides, it is shown that the size of the inner region, where the solution is computed, can be reduced to the groove depth, that is, to the minimal computation domain.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modal analysis and suppression of the Fourier modal method instabilities in highly conductive gratings

Nikolay M. Lyndin, Olivier Parriaux, and Alexander V. Tishchenko
J. Opt. Soc. Am. A 24(12) 3781-3788 (2007)

Fourier-matching pseudospectral modal method for diffraction gratings

Dawei Song, Lijun Yuan, and Ya Yan Lu
J. Opt. Soc. Am. A 28(4) 613-620 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (39)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription