Abstract

Extreme ultraviolet (EUV) lithography is an emerging technology for high-density semiconductor patterning. Multilayer distortion caused by mask defects is regarded as one of the critical challenges of EUV lithography. To simulate the influence of the defected nanoscale structures with high accuracy and efficiency, we have developed a boundary integral spectral element method (BI-SEM) that combines the SEM with a set of surface integral equations. The SEM is used to solve the interior computational domain, while the open boundaries are truncated by the surface integral equations. Both two-dimensional (2D) and three-dimensional (3D) EUV cases are simulated. Through comparing the performance of this method with the conventional finite element method (FEM), it is shown that the proposed BI-SEM can greatly decrease both the memory cost and the computation time. For typical 2D problems, we show that the BI-SEM is 11 and 1.25 times more efficient than the FEM in terms of memory and CPU time, respectively, while for 3D problems, these factors are over 14 and 2, respectively, for smaller problems; realistic 3D problems that cannot be solved by the conventional FEM can be accurately simulated by the BI-SEM.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Expansion of the difference-field boundary element method for numerical analyses of various local defects in periodic surface-relief structures

Jun-ichiro Sugisaka, Takashi Yasui, and Koichi Hirayama
J. Opt. Soc. Am. A 32(5) 751-763 (2015)

Enhanced plasmonic light absorption engineering of graphene: simulation by boundary-integral spectral element method

Jun Niu, Ma Luo, Jinfeng Zhu, and Qing Huo Liu
Opt. Express 23(4) 4539-4551 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription