Abstract

In this paper, we present theoretical details and the underlying architecture of a hybrid optoelectronic correlator (HOC) that correlates images using spatial light modulators (SLMs), detector arrays, and field programmable gate array (FPGA). The proposed architecture bypasses the need for nonlinear materials such as photorefractive polymer films by using detectors instead, and the phase information is yet conserved by the interference of plane waves with the images. However, the output of such an HOC has four terms: two convolution signals and two cross-correlation signals. By implementing a phase stabilization and scanning circuit, the convolution terms can be eliminated, so that the behavior of an HOC becomes essentially identical to that of a conventional holographic correlator (CHC). To achieve the ultimate speed of such a correlator, we also propose an integrated graphic processing unit, which would perform all the electrical processes in a parallel manner. The HOC architecture along with the phase stabilization technique would thus be as good as a CHC, capable of high-speed image recognition in a translation-invariant manner.

© 2013 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Heifetz, G. S. Pati, J. T. Shen, J.-K. Lee, M. S. Shahriar, C. Phan, and M. Yamomoto, “Shift-invariant real-time edge-enhanced VanderLugt correlator using video-rate compatible photorefractive polymer,” Appl. Opt. 45, 6148–6153 (2006).
  2. A. Heifetz, J. T. Shen, J.-K. Lee, R. Tripathi, and M. S. Shahriar, “Translation-invariant object recognition system using an optical correlator and a super-parallel holographic RAM,” Opt. Eng. 45, 025201 (2006).
    [CrossRef]
  3. H. N. Yum, P. R. Hemmer, R. Tripathi, J. T. Shen, and M. S. Shahriar, “Demonstration of a simple technique for determining the M/# of a holographic substrate by use of a single exposure,” Opt. Lett. 29, 1784–1786 (2004).
    [CrossRef]
  4. M. S. Shahriar, R. Tripathi, M. Huq, and J. T. Shen, “Shared hardware alternating operation of a super-parallel holographic optical correlator and a super-parallel holographic RAM,” Opt. Eng. 43, 1856–1861 (2004).
    [CrossRef]
  5. M. S. Shahriar, M. Kleinschmit, R. Tripathi, and J. Shen, “Super-parallel holographic correlator for ultrafast database search,” Opt. Lett. 28, 525–527 (2003).
    [CrossRef]
  6. M. S. Shahriar, L. Wong, M. Bock, B. Ham, J. Ludman, and P. Hemmer, “Ultra-high density optical data storage,” in Symposium on Electro-Opticsl Present and Future, H. Haus, ed., Trends in Optics and Photonics (Optical Society of America, 1998), pp. 97–104.
  7. A. Heifetz, J. T. Shen, S. C. Tseng, G. S. Pati, J.-K. Lee, and M. S. Shahriar, “Angular directivity of diffracted wave in Bragg-mismatched readout of volume holographic gratings,” Opt. Commun. 280, 311–316 (2007).
    [CrossRef]
  8. J. Khoury, M. C. Golomb, P. Gianino, and C. Woods, “Photorefractive two-beam-coupling nonlinear joint-transform correlator,” J. Opt. Soc. Am. B 11, 2167–2174 (1994).
    [CrossRef]
  9. Q. Tang and B. Javidi, “Multiple-object detection with a chirp-encoded joint transform correlator,” Appl. Opt. 32, 5079–5088 (1993).
    [CrossRef]
  10. A. Vander Lugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory 10, 139–145 (1964).
    [CrossRef]
  11. B. Javidi and C. Kuo, “Joint transform image correlation using a binary spatial light modulator at the Fourier plane,” Appl. Opt. 27, 663–665 (1988).
    [CrossRef]
  12. This, of course, would require slight modification of the optical architecture. Specifically, for the reference channel, an additional beam splitter is inserted to produce an isolated copy of the plane wave, C, to be recorded by FPA-1C, thus obviating the need for storage of |C|2 for later subtraction. The same is done for the query channel.
  13. O. G. Memis, J. Kohoutek, W. Wu, R. M. Gelfand, and H. Mohseni, “A short-wave infrared nano-injection imager with 2,500 A/W responsivity and low excess noise,” IEEE Photon. J. 2, 858–864 (2010).
    [CrossRef]
  14. O. G. Memis, J. Kohoutek, W. Wu, R. M. Gelfand, and H. Mohseni, “Signal-to-noise performance of a short-wave infrared nanoinjection imager,” Opt. Lett. 35, 2699–2701 (2010).
    [CrossRef]
  15. P. Gray, P. Hurst, S. Lewis, and R. Meyer, Analysis and Design of Analog Integrated Circuits (Wiley, 2009).
  16. H. Mohseni, “InP-based phase modulators and methods for making and using for same,” U.S. patent7,064,881 (June20, 2006).
  17. H. Mohseni, H. An, Z. A. Shellenbarger, M. H. Kwakernaak, and J. H. Abeles, “Enhanced electro-optic effect in GaInAsP/InP three-step quantum wells,” Appl. Phys. Lett. 84, 1823–1826 (2004).
    [CrossRef]
  18. H. Mohseni, W. K. Chan, H. An, A. Ulmer, and D. Capewell, “High-performance surface-normal modulators based on stepped quantum wells,” Proc. SPIE 5814, 191–198 (2005).
    [CrossRef]
  19. H. Mohseni, W. K. Chan, H. An, A. Ulmer, and D. Capewell, “Tunable surface-normal modulators operating near 1550 nm with a high-extinction ratio at high temperatures,” IEEE Photon. Technol. Lett. 18, 214–216 (2006).
    [CrossRef]
  20. H. Mohseni, E. Michel, J. Sandoen, M. Razeghi, W. Mitchel, and G. Brown, “Growth and characterization of InAs/GaSb photoconductors for long wavelength infrared range,” Appl. Phys. Lett. 71, 1403–1405 (1997).
    [CrossRef]
  21. M. S. Monjur, S. Tseng, R. Tripathi, J. Donoghue, and M. S. Shahriar, “Incorporation of polar Mellin transform in a hybrid optoelectronic correlator for scale & rotation invariant target recognition,” arXiv:1307.8019 (2013).

2010 (2)

O. G. Memis, J. Kohoutek, W. Wu, R. M. Gelfand, and H. Mohseni, “A short-wave infrared nano-injection imager with 2,500 A/W responsivity and low excess noise,” IEEE Photon. J. 2, 858–864 (2010).
[CrossRef]

O. G. Memis, J. Kohoutek, W. Wu, R. M. Gelfand, and H. Mohseni, “Signal-to-noise performance of a short-wave infrared nanoinjection imager,” Opt. Lett. 35, 2699–2701 (2010).
[CrossRef]

2007 (1)

A. Heifetz, J. T. Shen, S. C. Tseng, G. S. Pati, J.-K. Lee, and M. S. Shahriar, “Angular directivity of diffracted wave in Bragg-mismatched readout of volume holographic gratings,” Opt. Commun. 280, 311–316 (2007).
[CrossRef]

2006 (3)

A. Heifetz, J. T. Shen, J.-K. Lee, R. Tripathi, and M. S. Shahriar, “Translation-invariant object recognition system using an optical correlator and a super-parallel holographic RAM,” Opt. Eng. 45, 025201 (2006).
[CrossRef]

H. Mohseni, W. K. Chan, H. An, A. Ulmer, and D. Capewell, “Tunable surface-normal modulators operating near 1550 nm with a high-extinction ratio at high temperatures,” IEEE Photon. Technol. Lett. 18, 214–216 (2006).
[CrossRef]

A. Heifetz, G. S. Pati, J. T. Shen, J.-K. Lee, M. S. Shahriar, C. Phan, and M. Yamomoto, “Shift-invariant real-time edge-enhanced VanderLugt correlator using video-rate compatible photorefractive polymer,” Appl. Opt. 45, 6148–6153 (2006).

2005 (1)

H. Mohseni, W. K. Chan, H. An, A. Ulmer, and D. Capewell, “High-performance surface-normal modulators based on stepped quantum wells,” Proc. SPIE 5814, 191–198 (2005).
[CrossRef]

2004 (3)

H. Mohseni, H. An, Z. A. Shellenbarger, M. H. Kwakernaak, and J. H. Abeles, “Enhanced electro-optic effect in GaInAsP/InP three-step quantum wells,” Appl. Phys. Lett. 84, 1823–1826 (2004).
[CrossRef]

M. S. Shahriar, R. Tripathi, M. Huq, and J. T. Shen, “Shared hardware alternating operation of a super-parallel holographic optical correlator and a super-parallel holographic RAM,” Opt. Eng. 43, 1856–1861 (2004).
[CrossRef]

H. N. Yum, P. R. Hemmer, R. Tripathi, J. T. Shen, and M. S. Shahriar, “Demonstration of a simple technique for determining the M/# of a holographic substrate by use of a single exposure,” Opt. Lett. 29, 1784–1786 (2004).
[CrossRef]

2003 (1)

1997 (1)

H. Mohseni, E. Michel, J. Sandoen, M. Razeghi, W. Mitchel, and G. Brown, “Growth and characterization of InAs/GaSb photoconductors for long wavelength infrared range,” Appl. Phys. Lett. 71, 1403–1405 (1997).
[CrossRef]

1994 (1)

1993 (1)

1988 (1)

1964 (1)

A. Vander Lugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory 10, 139–145 (1964).
[CrossRef]

Abeles, J. H.

H. Mohseni, H. An, Z. A. Shellenbarger, M. H. Kwakernaak, and J. H. Abeles, “Enhanced electro-optic effect in GaInAsP/InP three-step quantum wells,” Appl. Phys. Lett. 84, 1823–1826 (2004).
[CrossRef]

An, H.

H. Mohseni, W. K. Chan, H. An, A. Ulmer, and D. Capewell, “Tunable surface-normal modulators operating near 1550 nm with a high-extinction ratio at high temperatures,” IEEE Photon. Technol. Lett. 18, 214–216 (2006).
[CrossRef]

H. Mohseni, W. K. Chan, H. An, A. Ulmer, and D. Capewell, “High-performance surface-normal modulators based on stepped quantum wells,” Proc. SPIE 5814, 191–198 (2005).
[CrossRef]

H. Mohseni, H. An, Z. A. Shellenbarger, M. H. Kwakernaak, and J. H. Abeles, “Enhanced electro-optic effect in GaInAsP/InP three-step quantum wells,” Appl. Phys. Lett. 84, 1823–1826 (2004).
[CrossRef]

Bock, M.

M. S. Shahriar, L. Wong, M. Bock, B. Ham, J. Ludman, and P. Hemmer, “Ultra-high density optical data storage,” in Symposium on Electro-Opticsl Present and Future, H. Haus, ed., Trends in Optics and Photonics (Optical Society of America, 1998), pp. 97–104.

Brown, G.

H. Mohseni, E. Michel, J. Sandoen, M. Razeghi, W. Mitchel, and G. Brown, “Growth and characterization of InAs/GaSb photoconductors for long wavelength infrared range,” Appl. Phys. Lett. 71, 1403–1405 (1997).
[CrossRef]

Capewell, D.

H. Mohseni, W. K. Chan, H. An, A. Ulmer, and D. Capewell, “Tunable surface-normal modulators operating near 1550 nm with a high-extinction ratio at high temperatures,” IEEE Photon. Technol. Lett. 18, 214–216 (2006).
[CrossRef]

H. Mohseni, W. K. Chan, H. An, A. Ulmer, and D. Capewell, “High-performance surface-normal modulators based on stepped quantum wells,” Proc. SPIE 5814, 191–198 (2005).
[CrossRef]

Chan, W. K.

H. Mohseni, W. K. Chan, H. An, A. Ulmer, and D. Capewell, “Tunable surface-normal modulators operating near 1550 nm with a high-extinction ratio at high temperatures,” IEEE Photon. Technol. Lett. 18, 214–216 (2006).
[CrossRef]

H. Mohseni, W. K. Chan, H. An, A. Ulmer, and D. Capewell, “High-performance surface-normal modulators based on stepped quantum wells,” Proc. SPIE 5814, 191–198 (2005).
[CrossRef]

Donoghue, J.

M. S. Monjur, S. Tseng, R. Tripathi, J. Donoghue, and M. S. Shahriar, “Incorporation of polar Mellin transform in a hybrid optoelectronic correlator for scale & rotation invariant target recognition,” arXiv:1307.8019 (2013).

Gelfand, R. M.

O. G. Memis, J. Kohoutek, W. Wu, R. M. Gelfand, and H. Mohseni, “A short-wave infrared nano-injection imager with 2,500 A/W responsivity and low excess noise,” IEEE Photon. J. 2, 858–864 (2010).
[CrossRef]

O. G. Memis, J. Kohoutek, W. Wu, R. M. Gelfand, and H. Mohseni, “Signal-to-noise performance of a short-wave infrared nanoinjection imager,” Opt. Lett. 35, 2699–2701 (2010).
[CrossRef]

Gianino, P.

Golomb, M. C.

Gray, P.

P. Gray, P. Hurst, S. Lewis, and R. Meyer, Analysis and Design of Analog Integrated Circuits (Wiley, 2009).

Ham, B.

M. S. Shahriar, L. Wong, M. Bock, B. Ham, J. Ludman, and P. Hemmer, “Ultra-high density optical data storage,” in Symposium on Electro-Opticsl Present and Future, H. Haus, ed., Trends in Optics and Photonics (Optical Society of America, 1998), pp. 97–104.

Heifetz, A.

A. Heifetz, J. T. Shen, S. C. Tseng, G. S. Pati, J.-K. Lee, and M. S. Shahriar, “Angular directivity of diffracted wave in Bragg-mismatched readout of volume holographic gratings,” Opt. Commun. 280, 311–316 (2007).
[CrossRef]

A. Heifetz, J. T. Shen, J.-K. Lee, R. Tripathi, and M. S. Shahriar, “Translation-invariant object recognition system using an optical correlator and a super-parallel holographic RAM,” Opt. Eng. 45, 025201 (2006).
[CrossRef]

A. Heifetz, G. S. Pati, J. T. Shen, J.-K. Lee, M. S. Shahriar, C. Phan, and M. Yamomoto, “Shift-invariant real-time edge-enhanced VanderLugt correlator using video-rate compatible photorefractive polymer,” Appl. Opt. 45, 6148–6153 (2006).

Hemmer, P.

M. S. Shahriar, L. Wong, M. Bock, B. Ham, J. Ludman, and P. Hemmer, “Ultra-high density optical data storage,” in Symposium on Electro-Opticsl Present and Future, H. Haus, ed., Trends in Optics and Photonics (Optical Society of America, 1998), pp. 97–104.

Hemmer, P. R.

Huq, M.

M. S. Shahriar, R. Tripathi, M. Huq, and J. T. Shen, “Shared hardware alternating operation of a super-parallel holographic optical correlator and a super-parallel holographic RAM,” Opt. Eng. 43, 1856–1861 (2004).
[CrossRef]

Hurst, P.

P. Gray, P. Hurst, S. Lewis, and R. Meyer, Analysis and Design of Analog Integrated Circuits (Wiley, 2009).

Javidi, B.

Khoury, J.

Kleinschmit, M.

Kohoutek, J.

O. G. Memis, J. Kohoutek, W. Wu, R. M. Gelfand, and H. Mohseni, “Signal-to-noise performance of a short-wave infrared nanoinjection imager,” Opt. Lett. 35, 2699–2701 (2010).
[CrossRef]

O. G. Memis, J. Kohoutek, W. Wu, R. M. Gelfand, and H. Mohseni, “A short-wave infrared nano-injection imager with 2,500 A/W responsivity and low excess noise,” IEEE Photon. J. 2, 858–864 (2010).
[CrossRef]

Kuo, C.

Kwakernaak, M. H.

H. Mohseni, H. An, Z. A. Shellenbarger, M. H. Kwakernaak, and J. H. Abeles, “Enhanced electro-optic effect in GaInAsP/InP three-step quantum wells,” Appl. Phys. Lett. 84, 1823–1826 (2004).
[CrossRef]

Lee, J.-K.

A. Heifetz, J. T. Shen, S. C. Tseng, G. S. Pati, J.-K. Lee, and M. S. Shahriar, “Angular directivity of diffracted wave in Bragg-mismatched readout of volume holographic gratings,” Opt. Commun. 280, 311–316 (2007).
[CrossRef]

A. Heifetz, J. T. Shen, J.-K. Lee, R. Tripathi, and M. S. Shahriar, “Translation-invariant object recognition system using an optical correlator and a super-parallel holographic RAM,” Opt. Eng. 45, 025201 (2006).
[CrossRef]

A. Heifetz, G. S. Pati, J. T. Shen, J.-K. Lee, M. S. Shahriar, C. Phan, and M. Yamomoto, “Shift-invariant real-time edge-enhanced VanderLugt correlator using video-rate compatible photorefractive polymer,” Appl. Opt. 45, 6148–6153 (2006).

Lewis, S.

P. Gray, P. Hurst, S. Lewis, and R. Meyer, Analysis and Design of Analog Integrated Circuits (Wiley, 2009).

Ludman, J.

M. S. Shahriar, L. Wong, M. Bock, B. Ham, J. Ludman, and P. Hemmer, “Ultra-high density optical data storage,” in Symposium on Electro-Opticsl Present and Future, H. Haus, ed., Trends in Optics and Photonics (Optical Society of America, 1998), pp. 97–104.

Memis, O. G.

O. G. Memis, J. Kohoutek, W. Wu, R. M. Gelfand, and H. Mohseni, “A short-wave infrared nano-injection imager with 2,500 A/W responsivity and low excess noise,” IEEE Photon. J. 2, 858–864 (2010).
[CrossRef]

O. G. Memis, J. Kohoutek, W. Wu, R. M. Gelfand, and H. Mohseni, “Signal-to-noise performance of a short-wave infrared nanoinjection imager,” Opt. Lett. 35, 2699–2701 (2010).
[CrossRef]

Meyer, R.

P. Gray, P. Hurst, S. Lewis, and R. Meyer, Analysis and Design of Analog Integrated Circuits (Wiley, 2009).

Michel, E.

H. Mohseni, E. Michel, J. Sandoen, M. Razeghi, W. Mitchel, and G. Brown, “Growth and characterization of InAs/GaSb photoconductors for long wavelength infrared range,” Appl. Phys. Lett. 71, 1403–1405 (1997).
[CrossRef]

Mitchel, W.

H. Mohseni, E. Michel, J. Sandoen, M. Razeghi, W. Mitchel, and G. Brown, “Growth and characterization of InAs/GaSb photoconductors for long wavelength infrared range,” Appl. Phys. Lett. 71, 1403–1405 (1997).
[CrossRef]

Mohseni, H.

O. G. Memis, J. Kohoutek, W. Wu, R. M. Gelfand, and H. Mohseni, “A short-wave infrared nano-injection imager with 2,500 A/W responsivity and low excess noise,” IEEE Photon. J. 2, 858–864 (2010).
[CrossRef]

O. G. Memis, J. Kohoutek, W. Wu, R. M. Gelfand, and H. Mohseni, “Signal-to-noise performance of a short-wave infrared nanoinjection imager,” Opt. Lett. 35, 2699–2701 (2010).
[CrossRef]

H. Mohseni, W. K. Chan, H. An, A. Ulmer, and D. Capewell, “Tunable surface-normal modulators operating near 1550 nm with a high-extinction ratio at high temperatures,” IEEE Photon. Technol. Lett. 18, 214–216 (2006).
[CrossRef]

H. Mohseni, W. K. Chan, H. An, A. Ulmer, and D. Capewell, “High-performance surface-normal modulators based on stepped quantum wells,” Proc. SPIE 5814, 191–198 (2005).
[CrossRef]

H. Mohseni, H. An, Z. A. Shellenbarger, M. H. Kwakernaak, and J. H. Abeles, “Enhanced electro-optic effect in GaInAsP/InP three-step quantum wells,” Appl. Phys. Lett. 84, 1823–1826 (2004).
[CrossRef]

H. Mohseni, E. Michel, J. Sandoen, M. Razeghi, W. Mitchel, and G. Brown, “Growth and characterization of InAs/GaSb photoconductors for long wavelength infrared range,” Appl. Phys. Lett. 71, 1403–1405 (1997).
[CrossRef]

H. Mohseni, “InP-based phase modulators and methods for making and using for same,” U.S. patent7,064,881 (June20, 2006).

Monjur, M. S.

M. S. Monjur, S. Tseng, R. Tripathi, J. Donoghue, and M. S. Shahriar, “Incorporation of polar Mellin transform in a hybrid optoelectronic correlator for scale & rotation invariant target recognition,” arXiv:1307.8019 (2013).

Pati, G. S.

A. Heifetz, J. T. Shen, S. C. Tseng, G. S. Pati, J.-K. Lee, and M. S. Shahriar, “Angular directivity of diffracted wave in Bragg-mismatched readout of volume holographic gratings,” Opt. Commun. 280, 311–316 (2007).
[CrossRef]

A. Heifetz, G. S. Pati, J. T. Shen, J.-K. Lee, M. S. Shahriar, C. Phan, and M. Yamomoto, “Shift-invariant real-time edge-enhanced VanderLugt correlator using video-rate compatible photorefractive polymer,” Appl. Opt. 45, 6148–6153 (2006).

Phan, C.

Razeghi, M.

H. Mohseni, E. Michel, J. Sandoen, M. Razeghi, W. Mitchel, and G. Brown, “Growth and characterization of InAs/GaSb photoconductors for long wavelength infrared range,” Appl. Phys. Lett. 71, 1403–1405 (1997).
[CrossRef]

Sandoen, J.

H. Mohseni, E. Michel, J. Sandoen, M. Razeghi, W. Mitchel, and G. Brown, “Growth and characterization of InAs/GaSb photoconductors for long wavelength infrared range,” Appl. Phys. Lett. 71, 1403–1405 (1997).
[CrossRef]

Shahriar, M. S.

A. Heifetz, J. T. Shen, S. C. Tseng, G. S. Pati, J.-K. Lee, and M. S. Shahriar, “Angular directivity of diffracted wave in Bragg-mismatched readout of volume holographic gratings,” Opt. Commun. 280, 311–316 (2007).
[CrossRef]

A. Heifetz, J. T. Shen, J.-K. Lee, R. Tripathi, and M. S. Shahriar, “Translation-invariant object recognition system using an optical correlator and a super-parallel holographic RAM,” Opt. Eng. 45, 025201 (2006).
[CrossRef]

A. Heifetz, G. S. Pati, J. T. Shen, J.-K. Lee, M. S. Shahriar, C. Phan, and M. Yamomoto, “Shift-invariant real-time edge-enhanced VanderLugt correlator using video-rate compatible photorefractive polymer,” Appl. Opt. 45, 6148–6153 (2006).

M. S. Shahriar, R. Tripathi, M. Huq, and J. T. Shen, “Shared hardware alternating operation of a super-parallel holographic optical correlator and a super-parallel holographic RAM,” Opt. Eng. 43, 1856–1861 (2004).
[CrossRef]

H. N. Yum, P. R. Hemmer, R. Tripathi, J. T. Shen, and M. S. Shahriar, “Demonstration of a simple technique for determining the M/# of a holographic substrate by use of a single exposure,” Opt. Lett. 29, 1784–1786 (2004).
[CrossRef]

M. S. Shahriar, M. Kleinschmit, R. Tripathi, and J. Shen, “Super-parallel holographic correlator for ultrafast database search,” Opt. Lett. 28, 525–527 (2003).
[CrossRef]

M. S. Monjur, S. Tseng, R. Tripathi, J. Donoghue, and M. S. Shahriar, “Incorporation of polar Mellin transform in a hybrid optoelectronic correlator for scale & rotation invariant target recognition,” arXiv:1307.8019 (2013).

M. S. Shahriar, L. Wong, M. Bock, B. Ham, J. Ludman, and P. Hemmer, “Ultra-high density optical data storage,” in Symposium on Electro-Opticsl Present and Future, H. Haus, ed., Trends in Optics and Photonics (Optical Society of America, 1998), pp. 97–104.

Shellenbarger, Z. A.

H. Mohseni, H. An, Z. A. Shellenbarger, M. H. Kwakernaak, and J. H. Abeles, “Enhanced electro-optic effect in GaInAsP/InP three-step quantum wells,” Appl. Phys. Lett. 84, 1823–1826 (2004).
[CrossRef]

Shen, J.

Shen, J. T.

A. Heifetz, J. T. Shen, S. C. Tseng, G. S. Pati, J.-K. Lee, and M. S. Shahriar, “Angular directivity of diffracted wave in Bragg-mismatched readout of volume holographic gratings,” Opt. Commun. 280, 311–316 (2007).
[CrossRef]

A. Heifetz, J. T. Shen, J.-K. Lee, R. Tripathi, and M. S. Shahriar, “Translation-invariant object recognition system using an optical correlator and a super-parallel holographic RAM,” Opt. Eng. 45, 025201 (2006).
[CrossRef]

A. Heifetz, G. S. Pati, J. T. Shen, J.-K. Lee, M. S. Shahriar, C. Phan, and M. Yamomoto, “Shift-invariant real-time edge-enhanced VanderLugt correlator using video-rate compatible photorefractive polymer,” Appl. Opt. 45, 6148–6153 (2006).

M. S. Shahriar, R. Tripathi, M. Huq, and J. T. Shen, “Shared hardware alternating operation of a super-parallel holographic optical correlator and a super-parallel holographic RAM,” Opt. Eng. 43, 1856–1861 (2004).
[CrossRef]

H. N. Yum, P. R. Hemmer, R. Tripathi, J. T. Shen, and M. S. Shahriar, “Demonstration of a simple technique for determining the M/# of a holographic substrate by use of a single exposure,” Opt. Lett. 29, 1784–1786 (2004).
[CrossRef]

Tang, Q.

Tripathi, R.

A. Heifetz, J. T. Shen, J.-K. Lee, R. Tripathi, and M. S. Shahriar, “Translation-invariant object recognition system using an optical correlator and a super-parallel holographic RAM,” Opt. Eng. 45, 025201 (2006).
[CrossRef]

H. N. Yum, P. R. Hemmer, R. Tripathi, J. T. Shen, and M. S. Shahriar, “Demonstration of a simple technique for determining the M/# of a holographic substrate by use of a single exposure,” Opt. Lett. 29, 1784–1786 (2004).
[CrossRef]

M. S. Shahriar, R. Tripathi, M. Huq, and J. T. Shen, “Shared hardware alternating operation of a super-parallel holographic optical correlator and a super-parallel holographic RAM,” Opt. Eng. 43, 1856–1861 (2004).
[CrossRef]

M. S. Shahriar, M. Kleinschmit, R. Tripathi, and J. Shen, “Super-parallel holographic correlator for ultrafast database search,” Opt. Lett. 28, 525–527 (2003).
[CrossRef]

M. S. Monjur, S. Tseng, R. Tripathi, J. Donoghue, and M. S. Shahriar, “Incorporation of polar Mellin transform in a hybrid optoelectronic correlator for scale & rotation invariant target recognition,” arXiv:1307.8019 (2013).

Tseng, S.

M. S. Monjur, S. Tseng, R. Tripathi, J. Donoghue, and M. S. Shahriar, “Incorporation of polar Mellin transform in a hybrid optoelectronic correlator for scale & rotation invariant target recognition,” arXiv:1307.8019 (2013).

Tseng, S. C.

A. Heifetz, J. T. Shen, S. C. Tseng, G. S. Pati, J.-K. Lee, and M. S. Shahriar, “Angular directivity of diffracted wave in Bragg-mismatched readout of volume holographic gratings,” Opt. Commun. 280, 311–316 (2007).
[CrossRef]

Ulmer, A.

H. Mohseni, W. K. Chan, H. An, A. Ulmer, and D. Capewell, “Tunable surface-normal modulators operating near 1550 nm with a high-extinction ratio at high temperatures,” IEEE Photon. Technol. Lett. 18, 214–216 (2006).
[CrossRef]

H. Mohseni, W. K. Chan, H. An, A. Ulmer, and D. Capewell, “High-performance surface-normal modulators based on stepped quantum wells,” Proc. SPIE 5814, 191–198 (2005).
[CrossRef]

Vander Lugt, A.

A. Vander Lugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory 10, 139–145 (1964).
[CrossRef]

Wong, L.

M. S. Shahriar, L. Wong, M. Bock, B. Ham, J. Ludman, and P. Hemmer, “Ultra-high density optical data storage,” in Symposium on Electro-Opticsl Present and Future, H. Haus, ed., Trends in Optics and Photonics (Optical Society of America, 1998), pp. 97–104.

Woods, C.

Wu, W.

O. G. Memis, J. Kohoutek, W. Wu, R. M. Gelfand, and H. Mohseni, “Signal-to-noise performance of a short-wave infrared nanoinjection imager,” Opt. Lett. 35, 2699–2701 (2010).
[CrossRef]

O. G. Memis, J. Kohoutek, W. Wu, R. M. Gelfand, and H. Mohseni, “A short-wave infrared nano-injection imager with 2,500 A/W responsivity and low excess noise,” IEEE Photon. J. 2, 858–864 (2010).
[CrossRef]

Yamomoto, M.

Yum, H. N.

Appl. Opt. (3)

Appl. Phys. Lett. (2)

H. Mohseni, E. Michel, J. Sandoen, M. Razeghi, W. Mitchel, and G. Brown, “Growth and characterization of InAs/GaSb photoconductors for long wavelength infrared range,” Appl. Phys. Lett. 71, 1403–1405 (1997).
[CrossRef]

H. Mohseni, H. An, Z. A. Shellenbarger, M. H. Kwakernaak, and J. H. Abeles, “Enhanced electro-optic effect in GaInAsP/InP three-step quantum wells,” Appl. Phys. Lett. 84, 1823–1826 (2004).
[CrossRef]

IEEE Photon. J. (1)

O. G. Memis, J. Kohoutek, W. Wu, R. M. Gelfand, and H. Mohseni, “A short-wave infrared nano-injection imager with 2,500 A/W responsivity and low excess noise,” IEEE Photon. J. 2, 858–864 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. Mohseni, W. K. Chan, H. An, A. Ulmer, and D. Capewell, “Tunable surface-normal modulators operating near 1550 nm with a high-extinction ratio at high temperatures,” IEEE Photon. Technol. Lett. 18, 214–216 (2006).
[CrossRef]

IEEE Trans. Inf. Theory (1)

A. Vander Lugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory 10, 139–145 (1964).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

A. Heifetz, J. T. Shen, S. C. Tseng, G. S. Pati, J.-K. Lee, and M. S. Shahriar, “Angular directivity of diffracted wave in Bragg-mismatched readout of volume holographic gratings,” Opt. Commun. 280, 311–316 (2007).
[CrossRef]

Opt. Eng. (2)

A. Heifetz, J. T. Shen, J.-K. Lee, R. Tripathi, and M. S. Shahriar, “Translation-invariant object recognition system using an optical correlator and a super-parallel holographic RAM,” Opt. Eng. 45, 025201 (2006).
[CrossRef]

M. S. Shahriar, R. Tripathi, M. Huq, and J. T. Shen, “Shared hardware alternating operation of a super-parallel holographic optical correlator and a super-parallel holographic RAM,” Opt. Eng. 43, 1856–1861 (2004).
[CrossRef]

Opt. Lett. (3)

Proc. SPIE (1)

H. Mohseni, W. K. Chan, H. An, A. Ulmer, and D. Capewell, “High-performance surface-normal modulators based on stepped quantum wells,” Proc. SPIE 5814, 191–198 (2005).
[CrossRef]

Other (5)

P. Gray, P. Hurst, S. Lewis, and R. Meyer, Analysis and Design of Analog Integrated Circuits (Wiley, 2009).

H. Mohseni, “InP-based phase modulators and methods for making and using for same,” U.S. patent7,064,881 (June20, 2006).

M. S. Shahriar, L. Wong, M. Bock, B. Ham, J. Ludman, and P. Hemmer, “Ultra-high density optical data storage,” in Symposium on Electro-Opticsl Present and Future, H. Haus, ed., Trends in Optics and Photonics (Optical Society of America, 1998), pp. 97–104.

This, of course, would require slight modification of the optical architecture. Specifically, for the reference channel, an additional beam splitter is inserted to produce an isolated copy of the plane wave, C, to be recorded by FPA-1C, thus obviating the need for storage of |C|2 for later subtraction. The same is done for the query channel.

M. S. Monjur, S. Tseng, R. Tripathi, J. Donoghue, and M. S. Shahriar, “Incorporation of polar Mellin transform in a hybrid optoelectronic correlator for scale & rotation invariant target recognition,” arXiv:1307.8019 (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics