Abstract

Effective methods for speckle reduction are essential in improving the image quality of laser imaging applications. Accordingly, the present study proposes a novel technique for reducing the speckle contrast in laser imaging applications by means of the magneto-optic Kerr effect induced by a rotating magneto-optical (MO) disk. The performance of the proposed method is evaluated experimentally using a laboratory-built prototype model. The experimental results show that the rotating MO disk can reduce the speckle contrast of the captured image by 60% of the previous value. As a result, the proposed method yields an effective improvement in image quality. Overall, the proposed method provides a promising solution for improving the performance of a wide range of laser imaging applications.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Kuratomi, K. Sekiya, H. Satoh, T. Tomiyama, T. Kawakami, B. Katagiri, Y. Suzuki, and T. Uchida, “Speckle reduction mechanism in laser rear projection displays using a small moving diffuser,” J. Opt. Soc. Am. A 27, 1812–1817 (2010).
    [CrossRef]
  2. J. W. Goodman, Speckle Phenomena in Optics, Theory and Applications (Roberts and Company, 2007).
  3. S. V. Egge, M. N. Akram, V. Kartashov, K. Welde, Z. Tong, U. Osterberg, and A. Aksnes, “Sinusoidal rotating grating for speckle reduction in laser projectors: feasibility study,” Opt. Eng. 50, 083202 (2011).
    [CrossRef]
  4. N.-A. Chang, N. George, and W. Chi, “Wavelength decorrelation of speckle in propagation through a thick diffuser,” J. Opt. Soc. Am. A 28, 245–254 (2011).
    [CrossRef]
  5. L. Wang, T. Tschudi, M. Boeddinghaus, A. Elbert, T. Halldorsson, and P. Petursson, “Speckle reduction in laser projections with ultrasonic waves,” Opt. Eng. 39, 1659–1664 (2000).
    [CrossRef]
  6. L. B. Zuev, V. V. Gorbatenko, and K. V. Pavlichev, “Elaboration of speckle photography techniques for plastic flow analyses,” Meas. Sci. Technol. 21, 054014 (2010).
    [CrossRef]
  7. S. Sfarra, C. Ibarra-Castanedo, F. Lambiase, D. Paoletti, A. Di Ilio, and X. Maldague, “From the experimental simulation to integrated non-destructive analysis by means of optical and infrared techniques: results compared,” Meas. Sci. Technol. 23, 115601 (2012).
    [CrossRef]
  8. J. I. Trisnadi, “Speckle contrast reduction in laser projection displays,” Proc. SPIE 4657, 131–137 (2002).
    [CrossRef]
  9. J. I. Trisnadi, “Hadamard speckle contrast reduction,” Opt. Lett. 29, 11–13 (2004).
    [CrossRef]
  10. C. S. Liu, C. H. Lin, Y. N. Sun, C. L. Ho, and C. C. Hsu, “True color blood flow imaging using a high-speed laser photography system,” Opt. Eng. 51, 103201 (2012).
    [CrossRef]
  11. J.-H. Hou, X.-M. Liu, C.-Y. Xiong, and X. He, “Speckle reduction algorithm for synthetic aperture radar images based on Bayesian maximum a posteriori estimation in wavelet domain,” Opt. Eng. 47, 057004 (2008).
    [CrossRef]
  12. K. B. Eom, “Anisotropic adaptive filtering for speckle reduction in synthetic aperture radar images,” Opt. Eng. 50, 057206 (2011).
    [CrossRef]
  13. A. Malz, I. Eix, W. Stork, and K.-D. Müller-Glaser, “Moiré pattern movement compensation and quadrature averaging phase retrieval from time series of speckled arbitrary phase shift interferograms for automatic computation of fundus pulsation curve of the human eye,” J. Opt. Soc. Am. A 28, 934–939 (2011).
    [CrossRef]
  14. T. Pfister, A. Fischer, and J. Czarske, “Cramér–Rao lower bound of laser Doppler measurements at moving rough surfaces,” Meas. Sci. Technol. 22, 055301 (2011).
    [CrossRef]
  15. Z. Liao, T. Xing, G. Cheng, and W. Lin, “Speckle reduction in laser projection display by modulating illumination light,” Proc. SPIE 6622, 662229 (2008).
    [CrossRef]
  16. W. Ha, S. Lee, Y. Jung, J. Kim, and K. Oh, “Speckle reduction in multimode fiber with a piezoelectric transducer in radial vibration for fiber laser marking and display applications,” Proc. SPIE 6873, 68731 (2008).
    [CrossRef]
  17. A. Furukawa, N. Ohse, and Y. Sato, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).
    [CrossRef]
  18. V. Kartashov and M. N. Akram, “Speckle suppression in projection displays, by using a motionless changing diffuser,” J. Opt. Soc. Am. A 27, 2593–2601 (2010).
    [CrossRef]
  19. J. M. D. Coey, Magnetism and Magnetic Materials (Cambridge University, 2010).
  20. Z. Q. Qiu and S. D. Bader, “Surface magneto-optic Kerr effect,” Rev. Sci. Instrum. 71, 1243–1255 (2000).
    [CrossRef]
  21. Information on http://en.wikipedia.org/wiki/Magneto-optic_Kerr_effect .
  22. M. Sakami and A. Dogariu, “Polarized light-pulse transport through scattering media,” J. Opt. Soc. Am. A 23, 664–670 (2006).
    [CrossRef]

2012 (2)

S. Sfarra, C. Ibarra-Castanedo, F. Lambiase, D. Paoletti, A. Di Ilio, and X. Maldague, “From the experimental simulation to integrated non-destructive analysis by means of optical and infrared techniques: results compared,” Meas. Sci. Technol. 23, 115601 (2012).
[CrossRef]

C. S. Liu, C. H. Lin, Y. N. Sun, C. L. Ho, and C. C. Hsu, “True color blood flow imaging using a high-speed laser photography system,” Opt. Eng. 51, 103201 (2012).
[CrossRef]

2011 (5)

S. V. Egge, M. N. Akram, V. Kartashov, K. Welde, Z. Tong, U. Osterberg, and A. Aksnes, “Sinusoidal rotating grating for speckle reduction in laser projectors: feasibility study,” Opt. Eng. 50, 083202 (2011).
[CrossRef]

N.-A. Chang, N. George, and W. Chi, “Wavelength decorrelation of speckle in propagation through a thick diffuser,” J. Opt. Soc. Am. A 28, 245–254 (2011).
[CrossRef]

K. B. Eom, “Anisotropic adaptive filtering for speckle reduction in synthetic aperture radar images,” Opt. Eng. 50, 057206 (2011).
[CrossRef]

A. Malz, I. Eix, W. Stork, and K.-D. Müller-Glaser, “Moiré pattern movement compensation and quadrature averaging phase retrieval from time series of speckled arbitrary phase shift interferograms for automatic computation of fundus pulsation curve of the human eye,” J. Opt. Soc. Am. A 28, 934–939 (2011).
[CrossRef]

T. Pfister, A. Fischer, and J. Czarske, “Cramér–Rao lower bound of laser Doppler measurements at moving rough surfaces,” Meas. Sci. Technol. 22, 055301 (2011).
[CrossRef]

2010 (3)

2008 (4)

J.-H. Hou, X.-M. Liu, C.-Y. Xiong, and X. He, “Speckle reduction algorithm for synthetic aperture radar images based on Bayesian maximum a posteriori estimation in wavelet domain,” Opt. Eng. 47, 057004 (2008).
[CrossRef]

Z. Liao, T. Xing, G. Cheng, and W. Lin, “Speckle reduction in laser projection display by modulating illumination light,” Proc. SPIE 6622, 662229 (2008).
[CrossRef]

W. Ha, S. Lee, Y. Jung, J. Kim, and K. Oh, “Speckle reduction in multimode fiber with a piezoelectric transducer in radial vibration for fiber laser marking and display applications,” Proc. SPIE 6873, 68731 (2008).
[CrossRef]

A. Furukawa, N. Ohse, and Y. Sato, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).
[CrossRef]

2006 (1)

2004 (1)

2002 (1)

J. I. Trisnadi, “Speckle contrast reduction in laser projection displays,” Proc. SPIE 4657, 131–137 (2002).
[CrossRef]

2000 (2)

L. Wang, T. Tschudi, M. Boeddinghaus, A. Elbert, T. Halldorsson, and P. Petursson, “Speckle reduction in laser projections with ultrasonic waves,” Opt. Eng. 39, 1659–1664 (2000).
[CrossRef]

Z. Q. Qiu and S. D. Bader, “Surface magneto-optic Kerr effect,” Rev. Sci. Instrum. 71, 1243–1255 (2000).
[CrossRef]

Akram, M. N.

S. V. Egge, M. N. Akram, V. Kartashov, K. Welde, Z. Tong, U. Osterberg, and A. Aksnes, “Sinusoidal rotating grating for speckle reduction in laser projectors: feasibility study,” Opt. Eng. 50, 083202 (2011).
[CrossRef]

V. Kartashov and M. N. Akram, “Speckle suppression in projection displays, by using a motionless changing diffuser,” J. Opt. Soc. Am. A 27, 2593–2601 (2010).
[CrossRef]

Aksnes, A.

S. V. Egge, M. N. Akram, V. Kartashov, K. Welde, Z. Tong, U. Osterberg, and A. Aksnes, “Sinusoidal rotating grating for speckle reduction in laser projectors: feasibility study,” Opt. Eng. 50, 083202 (2011).
[CrossRef]

Bader, S. D.

Z. Q. Qiu and S. D. Bader, “Surface magneto-optic Kerr effect,” Rev. Sci. Instrum. 71, 1243–1255 (2000).
[CrossRef]

Boeddinghaus, M.

L. Wang, T. Tschudi, M. Boeddinghaus, A. Elbert, T. Halldorsson, and P. Petursson, “Speckle reduction in laser projections with ultrasonic waves,” Opt. Eng. 39, 1659–1664 (2000).
[CrossRef]

Chang, N.-A.

Cheng, G.

Z. Liao, T. Xing, G. Cheng, and W. Lin, “Speckle reduction in laser projection display by modulating illumination light,” Proc. SPIE 6622, 662229 (2008).
[CrossRef]

Chi, W.

Coey, J. M. D.

J. M. D. Coey, Magnetism and Magnetic Materials (Cambridge University, 2010).

Czarske, J.

T. Pfister, A. Fischer, and J. Czarske, “Cramér–Rao lower bound of laser Doppler measurements at moving rough surfaces,” Meas. Sci. Technol. 22, 055301 (2011).
[CrossRef]

Di Ilio, A.

S. Sfarra, C. Ibarra-Castanedo, F. Lambiase, D. Paoletti, A. Di Ilio, and X. Maldague, “From the experimental simulation to integrated non-destructive analysis by means of optical and infrared techniques: results compared,” Meas. Sci. Technol. 23, 115601 (2012).
[CrossRef]

Dogariu, A.

Egge, S. V.

S. V. Egge, M. N. Akram, V. Kartashov, K. Welde, Z. Tong, U. Osterberg, and A. Aksnes, “Sinusoidal rotating grating for speckle reduction in laser projectors: feasibility study,” Opt. Eng. 50, 083202 (2011).
[CrossRef]

Eix, I.

Elbert, A.

L. Wang, T. Tschudi, M. Boeddinghaus, A. Elbert, T. Halldorsson, and P. Petursson, “Speckle reduction in laser projections with ultrasonic waves,” Opt. Eng. 39, 1659–1664 (2000).
[CrossRef]

Eom, K. B.

K. B. Eom, “Anisotropic adaptive filtering for speckle reduction in synthetic aperture radar images,” Opt. Eng. 50, 057206 (2011).
[CrossRef]

Fischer, A.

T. Pfister, A. Fischer, and J. Czarske, “Cramér–Rao lower bound of laser Doppler measurements at moving rough surfaces,” Meas. Sci. Technol. 22, 055301 (2011).
[CrossRef]

Furukawa, A.

A. Furukawa, N. Ohse, and Y. Sato, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).
[CrossRef]

George, N.

Goodman, J. W.

J. W. Goodman, Speckle Phenomena in Optics, Theory and Applications (Roberts and Company, 2007).

Gorbatenko, V. V.

L. B. Zuev, V. V. Gorbatenko, and K. V. Pavlichev, “Elaboration of speckle photography techniques for plastic flow analyses,” Meas. Sci. Technol. 21, 054014 (2010).
[CrossRef]

Ha, W.

W. Ha, S. Lee, Y. Jung, J. Kim, and K. Oh, “Speckle reduction in multimode fiber with a piezoelectric transducer in radial vibration for fiber laser marking and display applications,” Proc. SPIE 6873, 68731 (2008).
[CrossRef]

Halldorsson, T.

L. Wang, T. Tschudi, M. Boeddinghaus, A. Elbert, T. Halldorsson, and P. Petursson, “Speckle reduction in laser projections with ultrasonic waves,” Opt. Eng. 39, 1659–1664 (2000).
[CrossRef]

He, X.

J.-H. Hou, X.-M. Liu, C.-Y. Xiong, and X. He, “Speckle reduction algorithm for synthetic aperture radar images based on Bayesian maximum a posteriori estimation in wavelet domain,” Opt. Eng. 47, 057004 (2008).
[CrossRef]

Ho, C. L.

C. S. Liu, C. H. Lin, Y. N. Sun, C. L. Ho, and C. C. Hsu, “True color blood flow imaging using a high-speed laser photography system,” Opt. Eng. 51, 103201 (2012).
[CrossRef]

Hou, J.-H.

J.-H. Hou, X.-M. Liu, C.-Y. Xiong, and X. He, “Speckle reduction algorithm for synthetic aperture radar images based on Bayesian maximum a posteriori estimation in wavelet domain,” Opt. Eng. 47, 057004 (2008).
[CrossRef]

Hsu, C. C.

C. S. Liu, C. H. Lin, Y. N. Sun, C. L. Ho, and C. C. Hsu, “True color blood flow imaging using a high-speed laser photography system,” Opt. Eng. 51, 103201 (2012).
[CrossRef]

Ibarra-Castanedo, C.

S. Sfarra, C. Ibarra-Castanedo, F. Lambiase, D. Paoletti, A. Di Ilio, and X. Maldague, “From the experimental simulation to integrated non-destructive analysis by means of optical and infrared techniques: results compared,” Meas. Sci. Technol. 23, 115601 (2012).
[CrossRef]

Jung, Y.

W. Ha, S. Lee, Y. Jung, J. Kim, and K. Oh, “Speckle reduction in multimode fiber with a piezoelectric transducer in radial vibration for fiber laser marking and display applications,” Proc. SPIE 6873, 68731 (2008).
[CrossRef]

Kartashov, V.

S. V. Egge, M. N. Akram, V. Kartashov, K. Welde, Z. Tong, U. Osterberg, and A. Aksnes, “Sinusoidal rotating grating for speckle reduction in laser projectors: feasibility study,” Opt. Eng. 50, 083202 (2011).
[CrossRef]

V. Kartashov and M. N. Akram, “Speckle suppression in projection displays, by using a motionless changing diffuser,” J. Opt. Soc. Am. A 27, 2593–2601 (2010).
[CrossRef]

Katagiri, B.

Kawakami, T.

Kim, J.

W. Ha, S. Lee, Y. Jung, J. Kim, and K. Oh, “Speckle reduction in multimode fiber with a piezoelectric transducer in radial vibration for fiber laser marking and display applications,” Proc. SPIE 6873, 68731 (2008).
[CrossRef]

Kuratomi, Y.

Lambiase, F.

S. Sfarra, C. Ibarra-Castanedo, F. Lambiase, D. Paoletti, A. Di Ilio, and X. Maldague, “From the experimental simulation to integrated non-destructive analysis by means of optical and infrared techniques: results compared,” Meas. Sci. Technol. 23, 115601 (2012).
[CrossRef]

Lee, S.

W. Ha, S. Lee, Y. Jung, J. Kim, and K. Oh, “Speckle reduction in multimode fiber with a piezoelectric transducer in radial vibration for fiber laser marking and display applications,” Proc. SPIE 6873, 68731 (2008).
[CrossRef]

Liao, Z.

Z. Liao, T. Xing, G. Cheng, and W. Lin, “Speckle reduction in laser projection display by modulating illumination light,” Proc. SPIE 6622, 662229 (2008).
[CrossRef]

Lin, C. H.

C. S. Liu, C. H. Lin, Y. N. Sun, C. L. Ho, and C. C. Hsu, “True color blood flow imaging using a high-speed laser photography system,” Opt. Eng. 51, 103201 (2012).
[CrossRef]

Lin, W.

Z. Liao, T. Xing, G. Cheng, and W. Lin, “Speckle reduction in laser projection display by modulating illumination light,” Proc. SPIE 6622, 662229 (2008).
[CrossRef]

Liu, C. S.

C. S. Liu, C. H. Lin, Y. N. Sun, C. L. Ho, and C. C. Hsu, “True color blood flow imaging using a high-speed laser photography system,” Opt. Eng. 51, 103201 (2012).
[CrossRef]

Liu, X.-M.

J.-H. Hou, X.-M. Liu, C.-Y. Xiong, and X. He, “Speckle reduction algorithm for synthetic aperture radar images based on Bayesian maximum a posteriori estimation in wavelet domain,” Opt. Eng. 47, 057004 (2008).
[CrossRef]

Maldague, X.

S. Sfarra, C. Ibarra-Castanedo, F. Lambiase, D. Paoletti, A. Di Ilio, and X. Maldague, “From the experimental simulation to integrated non-destructive analysis by means of optical and infrared techniques: results compared,” Meas. Sci. Technol. 23, 115601 (2012).
[CrossRef]

Malz, A.

Müller-Glaser, K.-D.

Oh, K.

W. Ha, S. Lee, Y. Jung, J. Kim, and K. Oh, “Speckle reduction in multimode fiber with a piezoelectric transducer in radial vibration for fiber laser marking and display applications,” Proc. SPIE 6873, 68731 (2008).
[CrossRef]

Ohse, N.

A. Furukawa, N. Ohse, and Y. Sato, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).
[CrossRef]

Osterberg, U.

S. V. Egge, M. N. Akram, V. Kartashov, K. Welde, Z. Tong, U. Osterberg, and A. Aksnes, “Sinusoidal rotating grating for speckle reduction in laser projectors: feasibility study,” Opt. Eng. 50, 083202 (2011).
[CrossRef]

Paoletti, D.

S. Sfarra, C. Ibarra-Castanedo, F. Lambiase, D. Paoletti, A. Di Ilio, and X. Maldague, “From the experimental simulation to integrated non-destructive analysis by means of optical and infrared techniques: results compared,” Meas. Sci. Technol. 23, 115601 (2012).
[CrossRef]

Pavlichev, K. V.

L. B. Zuev, V. V. Gorbatenko, and K. V. Pavlichev, “Elaboration of speckle photography techniques for plastic flow analyses,” Meas. Sci. Technol. 21, 054014 (2010).
[CrossRef]

Petursson, P.

L. Wang, T. Tschudi, M. Boeddinghaus, A. Elbert, T. Halldorsson, and P. Petursson, “Speckle reduction in laser projections with ultrasonic waves,” Opt. Eng. 39, 1659–1664 (2000).
[CrossRef]

Pfister, T.

T. Pfister, A. Fischer, and J. Czarske, “Cramér–Rao lower bound of laser Doppler measurements at moving rough surfaces,” Meas. Sci. Technol. 22, 055301 (2011).
[CrossRef]

Qiu, Z. Q.

Z. Q. Qiu and S. D. Bader, “Surface magneto-optic Kerr effect,” Rev. Sci. Instrum. 71, 1243–1255 (2000).
[CrossRef]

Sakami, M.

Sato, Y.

A. Furukawa, N. Ohse, and Y. Sato, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).
[CrossRef]

Satoh, H.

Sekiya, K.

Sfarra, S.

S. Sfarra, C. Ibarra-Castanedo, F. Lambiase, D. Paoletti, A. Di Ilio, and X. Maldague, “From the experimental simulation to integrated non-destructive analysis by means of optical and infrared techniques: results compared,” Meas. Sci. Technol. 23, 115601 (2012).
[CrossRef]

Stork, W.

Sun, Y. N.

C. S. Liu, C. H. Lin, Y. N. Sun, C. L. Ho, and C. C. Hsu, “True color blood flow imaging using a high-speed laser photography system,” Opt. Eng. 51, 103201 (2012).
[CrossRef]

Suzuki, Y.

Tomiyama, T.

Tong, Z.

S. V. Egge, M. N. Akram, V. Kartashov, K. Welde, Z. Tong, U. Osterberg, and A. Aksnes, “Sinusoidal rotating grating for speckle reduction in laser projectors: feasibility study,” Opt. Eng. 50, 083202 (2011).
[CrossRef]

Trisnadi, J. I.

J. I. Trisnadi, “Hadamard speckle contrast reduction,” Opt. Lett. 29, 11–13 (2004).
[CrossRef]

J. I. Trisnadi, “Speckle contrast reduction in laser projection displays,” Proc. SPIE 4657, 131–137 (2002).
[CrossRef]

Tschudi, T.

L. Wang, T. Tschudi, M. Boeddinghaus, A. Elbert, T. Halldorsson, and P. Petursson, “Speckle reduction in laser projections with ultrasonic waves,” Opt. Eng. 39, 1659–1664 (2000).
[CrossRef]

Uchida, T.

Wang, L.

L. Wang, T. Tschudi, M. Boeddinghaus, A. Elbert, T. Halldorsson, and P. Petursson, “Speckle reduction in laser projections with ultrasonic waves,” Opt. Eng. 39, 1659–1664 (2000).
[CrossRef]

Welde, K.

S. V. Egge, M. N. Akram, V. Kartashov, K. Welde, Z. Tong, U. Osterberg, and A. Aksnes, “Sinusoidal rotating grating for speckle reduction in laser projectors: feasibility study,” Opt. Eng. 50, 083202 (2011).
[CrossRef]

Xing, T.

Z. Liao, T. Xing, G. Cheng, and W. Lin, “Speckle reduction in laser projection display by modulating illumination light,” Proc. SPIE 6622, 662229 (2008).
[CrossRef]

Xiong, C.-Y.

J.-H. Hou, X.-M. Liu, C.-Y. Xiong, and X. He, “Speckle reduction algorithm for synthetic aperture radar images based on Bayesian maximum a posteriori estimation in wavelet domain,” Opt. Eng. 47, 057004 (2008).
[CrossRef]

Zuev, L. B.

L. B. Zuev, V. V. Gorbatenko, and K. V. Pavlichev, “Elaboration of speckle photography techniques for plastic flow analyses,” Meas. Sci. Technol. 21, 054014 (2010).
[CrossRef]

J. Opt. Soc. Am. A (5)

Meas. Sci. Technol. (3)

T. Pfister, A. Fischer, and J. Czarske, “Cramér–Rao lower bound of laser Doppler measurements at moving rough surfaces,” Meas. Sci. Technol. 22, 055301 (2011).
[CrossRef]

L. B. Zuev, V. V. Gorbatenko, and K. V. Pavlichev, “Elaboration of speckle photography techniques for plastic flow analyses,” Meas. Sci. Technol. 21, 054014 (2010).
[CrossRef]

S. Sfarra, C. Ibarra-Castanedo, F. Lambiase, D. Paoletti, A. Di Ilio, and X. Maldague, “From the experimental simulation to integrated non-destructive analysis by means of optical and infrared techniques: results compared,” Meas. Sci. Technol. 23, 115601 (2012).
[CrossRef]

Opt. Eng. (5)

S. V. Egge, M. N. Akram, V. Kartashov, K. Welde, Z. Tong, U. Osterberg, and A. Aksnes, “Sinusoidal rotating grating for speckle reduction in laser projectors: feasibility study,” Opt. Eng. 50, 083202 (2011).
[CrossRef]

L. Wang, T. Tschudi, M. Boeddinghaus, A. Elbert, T. Halldorsson, and P. Petursson, “Speckle reduction in laser projections with ultrasonic waves,” Opt. Eng. 39, 1659–1664 (2000).
[CrossRef]

C. S. Liu, C. H. Lin, Y. N. Sun, C. L. Ho, and C. C. Hsu, “True color blood flow imaging using a high-speed laser photography system,” Opt. Eng. 51, 103201 (2012).
[CrossRef]

J.-H. Hou, X.-M. Liu, C.-Y. Xiong, and X. He, “Speckle reduction algorithm for synthetic aperture radar images based on Bayesian maximum a posteriori estimation in wavelet domain,” Opt. Eng. 47, 057004 (2008).
[CrossRef]

K. B. Eom, “Anisotropic adaptive filtering for speckle reduction in synthetic aperture radar images,” Opt. Eng. 50, 057206 (2011).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (4)

J. I. Trisnadi, “Speckle contrast reduction in laser projection displays,” Proc. SPIE 4657, 131–137 (2002).
[CrossRef]

Z. Liao, T. Xing, G. Cheng, and W. Lin, “Speckle reduction in laser projection display by modulating illumination light,” Proc. SPIE 6622, 662229 (2008).
[CrossRef]

W. Ha, S. Lee, Y. Jung, J. Kim, and K. Oh, “Speckle reduction in multimode fiber with a piezoelectric transducer in radial vibration for fiber laser marking and display applications,” Proc. SPIE 6873, 68731 (2008).
[CrossRef]

A. Furukawa, N. Ohse, and Y. Sato, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).
[CrossRef]

Rev. Sci. Instrum. (1)

Z. Q. Qiu and S. D. Bader, “Surface magneto-optic Kerr effect,” Rev. Sci. Instrum. 71, 1243–1255 (2000).
[CrossRef]

Other (3)

Information on http://en.wikipedia.org/wiki/Magneto-optic_Kerr_effect .

J. M. D. Coey, Magnetism and Magnetic Materials (Cambridge University, 2010).

J. W. Goodman, Speckle Phenomena in Optics, Theory and Applications (Roberts and Company, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Schematic illustration of proposed speckle contrast reduction method.

Fig. 2.
Fig. 2.

Schematic illustration of magnetic zone on MO disk.

Fig. 3.
Fig. 3.

Schematic illustration showing random scattering from rough screen as result of MOKE effect.

Fig. 4.
Fig. 4.

Schematic illustration of MO disk.

Fig. 5.
Fig. 5.

Polarizing microscope image of magnetic zone on MO disk.

Fig. 6.
Fig. 6.

Experimental setup used to characterize proposed speckle reduction method.

Fig. 7.
Fig. 7.

CCD image of laser spot shape when using stationary MO disk.

Fig. 8.
Fig. 8.

CCD image of laser spot shape when using rotating MO disk.

Fig. 9.
Fig. 9.

Variation of pixel intensity along central cross sections of CCD images in Figs. 7 and 8, respectively.

Fig. 10.
Fig. 10.

Variation of pixel intensity along central longitudinal sections of CCD images in Figs. 7 and 8, respectively.

Fig. 11.
Fig. 11.

Variation of difference of pixel intensity between experimental result and trend line along central cross sections of CCD images in Figs. 7 and 8, respectively.

Fig. 12.
Fig. 12.

Variation of difference of pixel intensity between experimental result and trend line along central longitudinal sections of CCD images in Figs. 7 and 8, respectively.

Fig. 13.
Fig. 13.

CCD image of microspheres when using stationary MO disk.

Fig. 14.
Fig. 14.

CCD image of microspheres when using rotating MO disk.

Metrics