Abstract

Polarization gratings can be recorded in bacteriorhodopsin films by an orthogonal pair of linearly or circularly polarized beams. If a linearly polarized auxiliary violet light is added during the grating formation, the grating becomes polarization-sensitive. A theoretical model based on the two-state photochromic theory is proposed to calculate the diffraction efficiency kinetics of these polarization gratings. In both cases, the additional linearly polarized auxiliary violet irradiation improves the steady-state diffraction efficiency and leads to a cosine modulation of the steady-state diffraction efficiency by the polarization orientation of the readout beam. Experiment results demonstrate the correctness of the theoretical model.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Sanchez, R. Alcala, S. Hvilsted, and P. S. Ramanujam, “High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester,” Appl. Phys. Lett. 78, 3944–3946 (2001).
    [CrossRef]
  2. G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. C. Jones, and R. A. Pelcovits, “Liquid crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
    [CrossRef]
  3. H. Ono, M. Nakamura, and N. Kawatsuki, “Conversion of circularly polarized light into linearly polarized light in anisotropic phase gratings using photo-cross-linkable polymer liquid crystals,” Appl. Phys. Lett. 90, 231107 (2007).
    [CrossRef]
  4. R. Raschella, I. Marino, P. P. Lottici, and D. Bersani, “Polarization holographic gratings in hybrid sol gel films doped with disperse red 1,” Opt. Lett. 28, 2240–2242 (2003).
    [CrossRef]
  5. G. Cipparrone, A. Mazzulla, S. P. Palto, S. G. Yudin, and L. M. Blinov, “Permanent polarization gratings in photosensitive Langmuir-Blodgett films,” Appl. Phys. Lett. 77, 2106–2108 (2000).
    [CrossRef]
  6. B. Kilosanidze and G. Kakauridze, “Polarization-holographic gratings for analysis of light. 1. Analysis of completely polarized light,” Appl. Opt. 46, 1040–1049 (2007).
    [CrossRef]
  7. N. Hampp, “Bacteriorhodopsin as a photochromic retinal protein for optical memories,” Chem. Rev. 100, 1755–1776 (2000).
    [CrossRef]
  8. B. Yao, Y. Zheng, Y. Wang, M. Lei, G. Chen, and N. Hampp, “Kinetic spectra of light-adaptation dark-adaptation and M-intermediate of BR-D96N,” Opt. Commun. 218, 125–130 (2003).
    [CrossRef]
  9. W. D. Koek, N. Bhattacharya, J. J. M. Braat, V. S. S. Shan, and J. Westerweel, “Holographic simultaneous readout polarization multiplexing based on photoinduced anisotropy in bacteriorhodopsin,” Opt. Lett. 29, 101–103 (2004).
    [CrossRef]
  10. B. Yao, Z. Ren, N. Menke, Y. Wang, Y. Zheng, M. Lei, G. Chen, and N. Hampp, “Polarization holographic high density optical data storage in bacteriorhodopsin film,” Appl. Opt. 44, 7344–7348 (2005).
    [CrossRef]
  11. J. A. Ferrari, E. Garbusi, and E. M. Frins, “Enhancing the phase profile and contrast of an interferogram by polarization recording in bacteriorhodopsin,” Opt. Lett. 28, 1454–1456 (2003).
    [CrossRef]
  12. N. Hampp and T. Juchem, “Improvement of the diffraction efficiency and kinetics of holographic gratings in photochromedia by auxiliary light,” Opt. Lett. 29, 2911–2913 (2004).
    [CrossRef]
  13. Y. Wang, B. Yao, N. Menke, Z. Ren, M. Lei, and L. Ren, “Experimental and theoretical studies on auxiliary violet light increasing the diffraction efficiency of holographic gratings in bacteriorhodopsin,” Acta Phys. Sin. 55, 5200–5205 (2006).
  14. B. Yao, P. Gao, J. Han, L. Chen, Y. Wang, and M. Lei, “Influence of polarization orientation of violet light on the diffraction efficiency of bacteriorhodopsin,” J. Opt. Soc. Am. A 25, 1274–1278 (2008).
    [CrossRef]
  15. B. Yao, J. Han, P. Gao, L. Chen, Y. Wang, and M. Lei, “Influence of auxiliary violet light on holographic diffraction efficiency under different recording intensities in bacteriorhodopsin film,” Opt. Commun. 281, 2380–2384 (2008).
    [CrossRef]
  16. P. Gao, B. Yao, J. Han, L. Chen, Y. Wang, M. Lei, and R. Rupp, “Effect of reconstruction beam polarization on the kinetics of anisotropic gratings in bacteriorhodopsin,” J. Opt. Soc. Am. A 25, 685–691 (2008).
    [CrossRef]
  17. L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31, 579–588 (1984).
    [CrossRef]
  18. X. Pan, C. Wang, C. Wang, and X. Zhang, “Image storage based on circular-polarization holography in an azobenzene side-chain liquid-crystalline polymer,” Appl. Opt. 47, 93–98 (2008).
    [CrossRef]
  19. E. Ya. Korchemskaya, D. A. Stepanchikov, A. B. Druzhko, and T. V. Dyukova, “Mechanism of nonlinear photoinduced anisotropy in bacteriorhodopsin and its derivatives,” J. Biol. Phys. 24, 201–215 (1999).
    [CrossRef]
  20. T. Juchem, M. Sanio, and N. Hampp, “Bacteriorhodopsin modules for data processing with incoherent light,” Opt. Lett. 27, 1607–1609 (2002).
    [CrossRef]
  21. P. Gao, B. Yao, J. Han, L. Chen, Y. Wang, M. Lei, and R. Rupp, “Effect of reconstruction beam polarization on the kinetics of anisotropic gratings in bacteriorhodopsin: erratum,” J. Opt. Soc. Am. A 25, 1660 (2008).
    [CrossRef]
  22. E. Korchemskaya, D. Stepanchikov, and N. Burykin, “Potentials of dynamic holography on bacteriorhodospin films for real-time optical processing,” in Bioelectronic Applications of Photochromic Pigments, A. Der and L. Keszthelyi, eds. (IOS, 2001), pp. 74–89.
  23. N. Burykin, E. Korchemskaya, M. Soskin, V. Taranenko, T. Dyukova, and N. Vescolodov, “Photoinduced anisotropy in bio-chromic films,” Opt. Commun. 54, 68–70 (1985).
    [CrossRef]
  24. L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy,” Appl. Opt. 35, 3835–3840 (1996).
    [CrossRef]

2008

2007

B. Kilosanidze and G. Kakauridze, “Polarization-holographic gratings for analysis of light. 1. Analysis of completely polarized light,” Appl. Opt. 46, 1040–1049 (2007).
[CrossRef]

H. Ono, M. Nakamura, and N. Kawatsuki, “Conversion of circularly polarized light into linearly polarized light in anisotropic phase gratings using photo-cross-linkable polymer liquid crystals,” Appl. Phys. Lett. 90, 231107 (2007).
[CrossRef]

2006

Y. Wang, B. Yao, N. Menke, Z. Ren, M. Lei, and L. Ren, “Experimental and theoretical studies on auxiliary violet light increasing the diffraction efficiency of holographic gratings in bacteriorhodopsin,” Acta Phys. Sin. 55, 5200–5205 (2006).

2005

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. C. Jones, and R. A. Pelcovits, “Liquid crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[CrossRef]

B. Yao, Z. Ren, N. Menke, Y. Wang, Y. Zheng, M. Lei, G. Chen, and N. Hampp, “Polarization holographic high density optical data storage in bacteriorhodopsin film,” Appl. Opt. 44, 7344–7348 (2005).
[CrossRef]

2004

2003

2002

2001

C. Sanchez, R. Alcala, S. Hvilsted, and P. S. Ramanujam, “High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester,” Appl. Phys. Lett. 78, 3944–3946 (2001).
[CrossRef]

2000

N. Hampp, “Bacteriorhodopsin as a photochromic retinal protein for optical memories,” Chem. Rev. 100, 1755–1776 (2000).
[CrossRef]

G. Cipparrone, A. Mazzulla, S. P. Palto, S. G. Yudin, and L. M. Blinov, “Permanent polarization gratings in photosensitive Langmuir-Blodgett films,” Appl. Phys. Lett. 77, 2106–2108 (2000).
[CrossRef]

1999

E. Ya. Korchemskaya, D. A. Stepanchikov, A. B. Druzhko, and T. V. Dyukova, “Mechanism of nonlinear photoinduced anisotropy in bacteriorhodopsin and its derivatives,” J. Biol. Phys. 24, 201–215 (1999).
[CrossRef]

1996

1985

N. Burykin, E. Korchemskaya, M. Soskin, V. Taranenko, T. Dyukova, and N. Vescolodov, “Photoinduced anisotropy in bio-chromic films,” Opt. Commun. 54, 68–70 (1985).
[CrossRef]

1984

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31, 579–588 (1984).
[CrossRef]

Alcala, R.

C. Sanchez, R. Alcala, S. Hvilsted, and P. S. Ramanujam, “High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester,” Appl. Phys. Lett. 78, 3944–3946 (2001).
[CrossRef]

Andruzzi, F.

Bersani, D.

Bhattacharya, N.

Blinov, L. M.

G. Cipparrone, A. Mazzulla, S. P. Palto, S. G. Yudin, and L. M. Blinov, “Permanent polarization gratings in photosensitive Langmuir-Blodgett films,” Appl. Phys. Lett. 77, 2106–2108 (2000).
[CrossRef]

Braat, J. J. M.

Burykin, N.

N. Burykin, E. Korchemskaya, M. Soskin, V. Taranenko, T. Dyukova, and N. Vescolodov, “Photoinduced anisotropy in bio-chromic films,” Opt. Commun. 54, 68–70 (1985).
[CrossRef]

E. Korchemskaya, D. Stepanchikov, and N. Burykin, “Potentials of dynamic holography on bacteriorhodospin films for real-time optical processing,” in Bioelectronic Applications of Photochromic Pigments, A. Der and L. Keszthelyi, eds. (IOS, 2001), pp. 74–89.

Chen, G.

B. Yao, Z. Ren, N. Menke, Y. Wang, Y. Zheng, M. Lei, G. Chen, and N. Hampp, “Polarization holographic high density optical data storage in bacteriorhodopsin film,” Appl. Opt. 44, 7344–7348 (2005).
[CrossRef]

B. Yao, Y. Zheng, Y. Wang, M. Lei, G. Chen, and N. Hampp, “Kinetic spectra of light-adaptation dark-adaptation and M-intermediate of BR-D96N,” Opt. Commun. 218, 125–130 (2003).
[CrossRef]

Chen, L.

Cipparrone, G.

G. Cipparrone, A. Mazzulla, S. P. Palto, S. G. Yudin, and L. M. Blinov, “Permanent polarization gratings in photosensitive Langmuir-Blodgett films,” Appl. Phys. Lett. 77, 2106–2108 (2000).
[CrossRef]

Crawford, G. P.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. C. Jones, and R. A. Pelcovits, “Liquid crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[CrossRef]

Druzhko, A. B.

E. Ya. Korchemskaya, D. A. Stepanchikov, A. B. Druzhko, and T. V. Dyukova, “Mechanism of nonlinear photoinduced anisotropy in bacteriorhodopsin and its derivatives,” J. Biol. Phys. 24, 201–215 (1999).
[CrossRef]

Dyukova, T.

N. Burykin, E. Korchemskaya, M. Soskin, V. Taranenko, T. Dyukova, and N. Vescolodov, “Photoinduced anisotropy in bio-chromic films,” Opt. Commun. 54, 68–70 (1985).
[CrossRef]

Dyukova, T. V.

E. Ya. Korchemskaya, D. A. Stepanchikov, A. B. Druzhko, and T. V. Dyukova, “Mechanism of nonlinear photoinduced anisotropy in bacteriorhodopsin and its derivatives,” J. Biol. Phys. 24, 201–215 (1999).
[CrossRef]

Eakin, J. N.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. C. Jones, and R. A. Pelcovits, “Liquid crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[CrossRef]

Ferrari, J. A.

Frins, E. M.

Gao, P.

Garbusi, E.

Hampp, N.

Han, J.

Hvilsted, S.

C. Sanchez, R. Alcala, S. Hvilsted, and P. S. Ramanujam, “High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester,” Appl. Phys. Lett. 78, 3944–3946 (2001).
[CrossRef]

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy,” Appl. Opt. 35, 3835–3840 (1996).
[CrossRef]

Ivanov, M.

Jones, A. C.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. C. Jones, and R. A. Pelcovits, “Liquid crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[CrossRef]

Juchem, T.

Kakauridze, G.

Kawatsuki, N.

H. Ono, M. Nakamura, and N. Kawatsuki, “Conversion of circularly polarized light into linearly polarized light in anisotropic phase gratings using photo-cross-linkable polymer liquid crystals,” Appl. Phys. Lett. 90, 231107 (2007).
[CrossRef]

Kilosanidze, B.

Koek, W. D.

Korchemskaya, E.

N. Burykin, E. Korchemskaya, M. Soskin, V. Taranenko, T. Dyukova, and N. Vescolodov, “Photoinduced anisotropy in bio-chromic films,” Opt. Commun. 54, 68–70 (1985).
[CrossRef]

E. Korchemskaya, D. Stepanchikov, and N. Burykin, “Potentials of dynamic holography on bacteriorhodospin films for real-time optical processing,” in Bioelectronic Applications of Photochromic Pigments, A. Der and L. Keszthelyi, eds. (IOS, 2001), pp. 74–89.

Korchemskaya, E. Ya.

E. Ya. Korchemskaya, D. A. Stepanchikov, A. B. Druzhko, and T. V. Dyukova, “Mechanism of nonlinear photoinduced anisotropy in bacteriorhodopsin and its derivatives,” J. Biol. Phys. 24, 201–215 (1999).
[CrossRef]

Lei, M.

P. Gao, B. Yao, J. Han, L. Chen, Y. Wang, M. Lei, and R. Rupp, “Effect of reconstruction beam polarization on the kinetics of anisotropic gratings in bacteriorhodopsin: erratum,” J. Opt. Soc. Am. A 25, 1660 (2008).
[CrossRef]

B. Yao, J. Han, P. Gao, L. Chen, Y. Wang, and M. Lei, “Influence of auxiliary violet light on holographic diffraction efficiency under different recording intensities in bacteriorhodopsin film,” Opt. Commun. 281, 2380–2384 (2008).
[CrossRef]

B. Yao, P. Gao, J. Han, L. Chen, Y. Wang, and M. Lei, “Influence of polarization orientation of violet light on the diffraction efficiency of bacteriorhodopsin,” J. Opt. Soc. Am. A 25, 1274–1278 (2008).
[CrossRef]

P. Gao, B. Yao, J. Han, L. Chen, Y. Wang, M. Lei, and R. Rupp, “Effect of reconstruction beam polarization on the kinetics of anisotropic gratings in bacteriorhodopsin,” J. Opt. Soc. Am. A 25, 685–691 (2008).
[CrossRef]

Y. Wang, B. Yao, N. Menke, Z. Ren, M. Lei, and L. Ren, “Experimental and theoretical studies on auxiliary violet light increasing the diffraction efficiency of holographic gratings in bacteriorhodopsin,” Acta Phys. Sin. 55, 5200–5205 (2006).

B. Yao, Z. Ren, N. Menke, Y. Wang, Y. Zheng, M. Lei, G. Chen, and N. Hampp, “Polarization holographic high density optical data storage in bacteriorhodopsin film,” Appl. Opt. 44, 7344–7348 (2005).
[CrossRef]

B. Yao, Y. Zheng, Y. Wang, M. Lei, G. Chen, and N. Hampp, “Kinetic spectra of light-adaptation dark-adaptation and M-intermediate of BR-D96N,” Opt. Commun. 218, 125–130 (2003).
[CrossRef]

Lottici, P. P.

Marino, I.

Mazzulla, A.

G. Cipparrone, A. Mazzulla, S. P. Palto, S. G. Yudin, and L. M. Blinov, “Permanent polarization gratings in photosensitive Langmuir-Blodgett films,” Appl. Phys. Lett. 77, 2106–2108 (2000).
[CrossRef]

Menke, N.

Y. Wang, B. Yao, N. Menke, Z. Ren, M. Lei, and L. Ren, “Experimental and theoretical studies on auxiliary violet light increasing the diffraction efficiency of holographic gratings in bacteriorhodopsin,” Acta Phys. Sin. 55, 5200–5205 (2006).

B. Yao, Z. Ren, N. Menke, Y. Wang, Y. Zheng, M. Lei, G. Chen, and N. Hampp, “Polarization holographic high density optical data storage in bacteriorhodopsin film,” Appl. Opt. 44, 7344–7348 (2005).
[CrossRef]

Nakamura, M.

H. Ono, M. Nakamura, and N. Kawatsuki, “Conversion of circularly polarized light into linearly polarized light in anisotropic phase gratings using photo-cross-linkable polymer liquid crystals,” Appl. Phys. Lett. 90, 231107 (2007).
[CrossRef]

Nikolova, L.

Ono, H.

H. Ono, M. Nakamura, and N. Kawatsuki, “Conversion of circularly polarized light into linearly polarized light in anisotropic phase gratings using photo-cross-linkable polymer liquid crystals,” Appl. Phys. Lett. 90, 231107 (2007).
[CrossRef]

Palto, S. P.

G. Cipparrone, A. Mazzulla, S. P. Palto, S. G. Yudin, and L. M. Blinov, “Permanent polarization gratings in photosensitive Langmuir-Blodgett films,” Appl. Phys. Lett. 77, 2106–2108 (2000).
[CrossRef]

Pan, X.

Pelcovits, R. A.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. C. Jones, and R. A. Pelcovits, “Liquid crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[CrossRef]

Radcliffe, M. D.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. C. Jones, and R. A. Pelcovits, “Liquid crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[CrossRef]

Ramanujam, P. S.

C. Sanchez, R. Alcala, S. Hvilsted, and P. S. Ramanujam, “High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester,” Appl. Phys. Lett. 78, 3944–3946 (2001).
[CrossRef]

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy,” Appl. Opt. 35, 3835–3840 (1996).
[CrossRef]

Raschella, R.

Ren, L.

Y. Wang, B. Yao, N. Menke, Z. Ren, M. Lei, and L. Ren, “Experimental and theoretical studies on auxiliary violet light increasing the diffraction efficiency of holographic gratings in bacteriorhodopsin,” Acta Phys. Sin. 55, 5200–5205 (2006).

Ren, Z.

Y. Wang, B. Yao, N. Menke, Z. Ren, M. Lei, and L. Ren, “Experimental and theoretical studies on auxiliary violet light increasing the diffraction efficiency of holographic gratings in bacteriorhodopsin,” Acta Phys. Sin. 55, 5200–5205 (2006).

B. Yao, Z. Ren, N. Menke, Y. Wang, Y. Zheng, M. Lei, G. Chen, and N. Hampp, “Polarization holographic high density optical data storage in bacteriorhodopsin film,” Appl. Opt. 44, 7344–7348 (2005).
[CrossRef]

Rupp, R.

Sanchez, C.

C. Sanchez, R. Alcala, S. Hvilsted, and P. S. Ramanujam, “High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester,” Appl. Phys. Lett. 78, 3944–3946 (2001).
[CrossRef]

Sanio, M.

Shan, V. S. S.

Soskin, M.

N. Burykin, E. Korchemskaya, M. Soskin, V. Taranenko, T. Dyukova, and N. Vescolodov, “Photoinduced anisotropy in bio-chromic films,” Opt. Commun. 54, 68–70 (1985).
[CrossRef]

Stepanchikov, D.

E. Korchemskaya, D. Stepanchikov, and N. Burykin, “Potentials of dynamic holography on bacteriorhodospin films for real-time optical processing,” in Bioelectronic Applications of Photochromic Pigments, A. Der and L. Keszthelyi, eds. (IOS, 2001), pp. 74–89.

Stepanchikov, D. A.

E. Ya. Korchemskaya, D. A. Stepanchikov, A. B. Druzhko, and T. V. Dyukova, “Mechanism of nonlinear photoinduced anisotropy in bacteriorhodopsin and its derivatives,” J. Biol. Phys. 24, 201–215 (1999).
[CrossRef]

Taranenko, V.

N. Burykin, E. Korchemskaya, M. Soskin, V. Taranenko, T. Dyukova, and N. Vescolodov, “Photoinduced anisotropy in bio-chromic films,” Opt. Commun. 54, 68–70 (1985).
[CrossRef]

Todorov, T.

Vescolodov, N.

N. Burykin, E. Korchemskaya, M. Soskin, V. Taranenko, T. Dyukova, and N. Vescolodov, “Photoinduced anisotropy in bio-chromic films,” Opt. Commun. 54, 68–70 (1985).
[CrossRef]

Wang, C.

Wang, Y.

B. Yao, P. Gao, J. Han, L. Chen, Y. Wang, and M. Lei, “Influence of polarization orientation of violet light on the diffraction efficiency of bacteriorhodopsin,” J. Opt. Soc. Am. A 25, 1274–1278 (2008).
[CrossRef]

B. Yao, J. Han, P. Gao, L. Chen, Y. Wang, and M. Lei, “Influence of auxiliary violet light on holographic diffraction efficiency under different recording intensities in bacteriorhodopsin film,” Opt. Commun. 281, 2380–2384 (2008).
[CrossRef]

P. Gao, B. Yao, J. Han, L. Chen, Y. Wang, M. Lei, and R. Rupp, “Effect of reconstruction beam polarization on the kinetics of anisotropic gratings in bacteriorhodopsin: erratum,” J. Opt. Soc. Am. A 25, 1660 (2008).
[CrossRef]

P. Gao, B. Yao, J. Han, L. Chen, Y. Wang, M. Lei, and R. Rupp, “Effect of reconstruction beam polarization on the kinetics of anisotropic gratings in bacteriorhodopsin,” J. Opt. Soc. Am. A 25, 685–691 (2008).
[CrossRef]

Y. Wang, B. Yao, N. Menke, Z. Ren, M. Lei, and L. Ren, “Experimental and theoretical studies on auxiliary violet light increasing the diffraction efficiency of holographic gratings in bacteriorhodopsin,” Acta Phys. Sin. 55, 5200–5205 (2006).

B. Yao, Z. Ren, N. Menke, Y. Wang, Y. Zheng, M. Lei, G. Chen, and N. Hampp, “Polarization holographic high density optical data storage in bacteriorhodopsin film,” Appl. Opt. 44, 7344–7348 (2005).
[CrossRef]

B. Yao, Y. Zheng, Y. Wang, M. Lei, G. Chen, and N. Hampp, “Kinetic spectra of light-adaptation dark-adaptation and M-intermediate of BR-D96N,” Opt. Commun. 218, 125–130 (2003).
[CrossRef]

Westerweel, J.

Yao, B.

P. Gao, B. Yao, J. Han, L. Chen, Y. Wang, M. Lei, and R. Rupp, “Effect of reconstruction beam polarization on the kinetics of anisotropic gratings in bacteriorhodopsin,” J. Opt. Soc. Am. A 25, 685–691 (2008).
[CrossRef]

B. Yao, J. Han, P. Gao, L. Chen, Y. Wang, and M. Lei, “Influence of auxiliary violet light on holographic diffraction efficiency under different recording intensities in bacteriorhodopsin film,” Opt. Commun. 281, 2380–2384 (2008).
[CrossRef]

P. Gao, B. Yao, J. Han, L. Chen, Y. Wang, M. Lei, and R. Rupp, “Effect of reconstruction beam polarization on the kinetics of anisotropic gratings in bacteriorhodopsin: erratum,” J. Opt. Soc. Am. A 25, 1660 (2008).
[CrossRef]

B. Yao, P. Gao, J. Han, L. Chen, Y. Wang, and M. Lei, “Influence of polarization orientation of violet light on the diffraction efficiency of bacteriorhodopsin,” J. Opt. Soc. Am. A 25, 1274–1278 (2008).
[CrossRef]

Y. Wang, B. Yao, N. Menke, Z. Ren, M. Lei, and L. Ren, “Experimental and theoretical studies on auxiliary violet light increasing the diffraction efficiency of holographic gratings in bacteriorhodopsin,” Acta Phys. Sin. 55, 5200–5205 (2006).

B. Yao, Z. Ren, N. Menke, Y. Wang, Y. Zheng, M. Lei, G. Chen, and N. Hampp, “Polarization holographic high density optical data storage in bacteriorhodopsin film,” Appl. Opt. 44, 7344–7348 (2005).
[CrossRef]

B. Yao, Y. Zheng, Y. Wang, M. Lei, G. Chen, and N. Hampp, “Kinetic spectra of light-adaptation dark-adaptation and M-intermediate of BR-D96N,” Opt. Commun. 218, 125–130 (2003).
[CrossRef]

Yudin, S. G.

G. Cipparrone, A. Mazzulla, S. P. Palto, S. G. Yudin, and L. M. Blinov, “Permanent polarization gratings in photosensitive Langmuir-Blodgett films,” Appl. Phys. Lett. 77, 2106–2108 (2000).
[CrossRef]

Zhang, X.

Zheng, Y.

B. Yao, Z. Ren, N. Menke, Y. Wang, Y. Zheng, M. Lei, G. Chen, and N. Hampp, “Polarization holographic high density optical data storage in bacteriorhodopsin film,” Appl. Opt. 44, 7344–7348 (2005).
[CrossRef]

B. Yao, Y. Zheng, Y. Wang, M. Lei, G. Chen, and N. Hampp, “Kinetic spectra of light-adaptation dark-adaptation and M-intermediate of BR-D96N,” Opt. Commun. 218, 125–130 (2003).
[CrossRef]

Acta Phys. Sin.

Y. Wang, B. Yao, N. Menke, Z. Ren, M. Lei, and L. Ren, “Experimental and theoretical studies on auxiliary violet light increasing the diffraction efficiency of holographic gratings in bacteriorhodopsin,” Acta Phys. Sin. 55, 5200–5205 (2006).

Appl. Opt.

Appl. Phys. Lett.

G. Cipparrone, A. Mazzulla, S. P. Palto, S. G. Yudin, and L. M. Blinov, “Permanent polarization gratings in photosensitive Langmuir-Blodgett films,” Appl. Phys. Lett. 77, 2106–2108 (2000).
[CrossRef]

C. Sanchez, R. Alcala, S. Hvilsted, and P. S. Ramanujam, “High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester,” Appl. Phys. Lett. 78, 3944–3946 (2001).
[CrossRef]

H. Ono, M. Nakamura, and N. Kawatsuki, “Conversion of circularly polarized light into linearly polarized light in anisotropic phase gratings using photo-cross-linkable polymer liquid crystals,” Appl. Phys. Lett. 90, 231107 (2007).
[CrossRef]

Chem. Rev.

N. Hampp, “Bacteriorhodopsin as a photochromic retinal protein for optical memories,” Chem. Rev. 100, 1755–1776 (2000).
[CrossRef]

J. Appl. Phys.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. C. Jones, and R. A. Pelcovits, “Liquid crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[CrossRef]

J. Biol. Phys.

E. Ya. Korchemskaya, D. A. Stepanchikov, A. B. Druzhko, and T. V. Dyukova, “Mechanism of nonlinear photoinduced anisotropy in bacteriorhodopsin and its derivatives,” J. Biol. Phys. 24, 201–215 (1999).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Acta

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31, 579–588 (1984).
[CrossRef]

Opt. Commun.

B. Yao, J. Han, P. Gao, L. Chen, Y. Wang, and M. Lei, “Influence of auxiliary violet light on holographic diffraction efficiency under different recording intensities in bacteriorhodopsin film,” Opt. Commun. 281, 2380–2384 (2008).
[CrossRef]

B. Yao, Y. Zheng, Y. Wang, M. Lei, G. Chen, and N. Hampp, “Kinetic spectra of light-adaptation dark-adaptation and M-intermediate of BR-D96N,” Opt. Commun. 218, 125–130 (2003).
[CrossRef]

N. Burykin, E. Korchemskaya, M. Soskin, V. Taranenko, T. Dyukova, and N. Vescolodov, “Photoinduced anisotropy in bio-chromic films,” Opt. Commun. 54, 68–70 (1985).
[CrossRef]

Opt. Lett.

Other

E. Korchemskaya, D. Stepanchikov, and N. Burykin, “Potentials of dynamic holography on bacteriorhodospin films for real-time optical processing,” in Bioelectronic Applications of Photochromic Pigments, A. Der and L. Keszthelyi, eds. (IOS, 2001), pp. 74–89.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Stationary (t) relative distribution NM/N0 of M-State molecules as a function of ψ at a position x where the linearly polarized writing field is polarized horizontally (Kx=0). (a) IE=0; (b) IE=2.5mW/cm2 and with polarization orientation azimuth γ=π/4 with respect to the horizontal direction. Total writing intensity: Iw=40mW/cm2. Intensity of the readout beam ID=0.4mW/cm2. Here, ψe denotes the angle of the principal axis of the anisotropy with respect to the horizontal direction.

Fig. 2.
Fig. 2.

Electric dipoles induced on B- and M-state molecules.

Fig. 3.
Fig. 3.

Change of the principal axis direction as a function of Kx. Curve 1, IE=0; Curve 2, IE0 and polarization orientation of the violet light being parallel to the x axis.

Fig. 4.
Fig. 4.

Diffraction efficiency kinetics of OC gratings for different polarization orientations of the readout beam. Iw=40mW/cm2, ID=0.4mW/cm2. θΔ=θγ denotes the angle between the polarization orientations of the readout beam and the violet light. (a) IE=0; (b) IE=2.5mW/cm2, polarization orientation of the violet light is along the x axis (γ=0).

Fig. 5.
Fig. 5.

Modulation of the steady-state diffraction efficiency with polarization orientations of the readout beam for the OC gratings under different intensities of the violet light. Other parameters are the same as in Fig. 4.

Fig. 6.
Fig. 6.

M-state molecule distribution formed by the orthogonal linearly polarized recording beams and the additional violet light. O, R, and E denote object, reference, and violet lights, respectively.

Fig. 7.
Fig. 7.

Diffraction efficiency kinetics of different polarization of readout beams for the OL grating. (a) IE=0; (b) IE0, polarization azimuth γ=π/4. Iw=40mW/cm2, ID=0.4mW/cm2, IE=2.5mW/cm2.

Fig. 8.
Fig. 8.

Modulation of the steady-state diffraction efficiency by polarization orientation of the readout beam for the OL gratings under different intensities of the violet light. Other parameters are the same as in Fig. 7.

Fig. 9.
Fig. 9.

Experimental measurement of modulation of the steady-state diffraction efficiency as a function of the polarization orientation of the readout beam. Iw=40mW/cm2, ID=0.4mW/cm2. θΔ denotes the angle between the polarization orientations of the readout beam and the violet beam.

Fig. 10.
Fig. 10.

Experimental measurement of diffraction efficiency kinetics for different polarizations of the readout beam. (a) IE=0; (b) IE=2.5mW/cm2. Iw=40mW/cm2, ID=0.4mW/cm2.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

NB=N0NM,
NM=N0kW+kDk[1exp(kt)],
EOC=IW[cos(Kx/2)sin(Kx/2)].
Pi(ϑ)=2π/2π/2(NBPB+NMPM)|cos(ψϑ)|dψ=4N0PB+2(PMPB)π/2π/2NM|cos(ψϑ)|dψ.
lnτj(t,x,γ)=ln102d02πεjBNBdψ,j=e,o.
Δnj=CBMπ/2π/2NM(ψ)|cos(ψψj)|dψ.
T˜(t,x,γ)=eik0Δn0d[τeeik0Δnedcos2ψe+τoeik0Δnodsin2ψe(τeeik0Δnedτoeik0Δnod)sinψecosψe(τeeik0Δnedτoeik0Δnod)sinψecosψeτeeik0Δnedsin2ψe+τoeik0Δnodcos2ψe].
T˜1(t)=[T11T12T12T22].
η(t,θ)=|T˜1·C⃗|/|C|2=a+bcos(2θΛ).
EOL=IW[cos(Kx/2)isin(Kx/2)].
k1(x,ψ)=C0ϕB(λ1)2[|Ex|2εB(ψπ4)+|Ey|2εB(ψ+π4)].
η(t,θ)=|T11|2+|T12|2+(T11*T12+T11T12*)·cos(2θΔ).

Metrics