Abstract

In practical thermal light ghost imaging, the nonuniform intensity distribution of the thermal light applied causes distortion of the retrieved image. We propose uniformly weighted arithmetics, including uniformly weighted ghost imaging and uniformly weighted differential ghost imaging (UWDGI), to improve the imaging quality of ghost imaging with nonuniform thermal light fields. Two kinds of nonuniform thermal light fields are discussed, including planar Gaussian distributed thermal light and near-field three-dimensional thermal light. The retrieved image using a uniformly weighted arithmetic has a lower distortion than that using the corresponding traditional ghost imaging arithmetic. In addition, the best imaging quality is achieved with the UWDGI arithmetic.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Bennink, S. J. Bentley, and R. W. Boyd, “‘Two-photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
    [CrossRef]
  2. J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
    [CrossRef]
  3. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
    [CrossRef]
  4. R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
    [CrossRef]
  5. A. Valencia, G. Scarcelli, M. DAngelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
    [CrossRef]
  6. L. Basano and P. Ottonelloa, “Experiment in lensless ghost imaging with thermal light,” Appl. Phys. Lett. 89, 091109 (2006).
    [CrossRef]
  7. M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, and S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803 (2007).
    [CrossRef]
  8. X.-H. Chen, Q. Liu, K.-H. Luo, and L.-A. Wu, “Lensless ghost imaging with true thermal light,” Opt. Lett. 34, 695–697 (2009).
    [CrossRef]
  9. J. H. Shapiro, “Computational ghost imaging,” Phys. Lett. A 78, 061802 (2008).
  10. Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
    [CrossRef]
  11. O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
    [CrossRef]
  12. V. Katkovnik and J. Astola, “Compressive sensing computational ghost imaging,” J. Opt. Soc. Am. A 29, 1556–1567 (2012).
  13. G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227–230 (2010).
    [CrossRef]
  14. G. Brida, M. Genovese, A. Meda, and I. R. Berchera, “Experimental quantum imaging exploiting multimode spatial correlation of twin beams,” Phys. Rev. A 83, 033811 (2011).
    [CrossRef]
  15. W. Gong and S. Han, “A method to improve the visibility of ghost images obtained by thermal light,” Phys. Lett. A 374, 1005–1008 (2010).
    [CrossRef]
  16. F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
    [CrossRef]
  17. Y. Bai and S. Han, “Ghost imaging with thermal light by third-order correlation,” Phys. Rev. A 76, 043828 (2007).
    [CrossRef]
  18. D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. G. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008).
    [CrossRef]
  19. K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34, 3343–3345 (2009).
    [CrossRef]
  20. Y. Zhou, J. Simon, J. B. Liu, and Y. H. Shih, “Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime,” Phys. Rev. A 81, 043831 (2010).
    [CrossRef]
  21. X. H. Chen, I. N. Agafonov, K. H. Luo, Q. Liu, R. Xian, M. V. Chekhova, and L. A. Wu, “High-visibility, high-order lensless ghost imaging with thermal light,” Opt. Lett. 35, 1166–1168 (2010).
    [CrossRef]
  22. K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “Optimization of thermal ghost imaging: high-order correlations vs. background subtraction,” Opt. Express 18, 5562–5573 (2010).
    [CrossRef]
  23. H. Li, J. Shi, Z. Chen, and G. Zeng, “Detailed quality analysis of ideal high-order thermal ghost imaging,” J. Opt. Soc. Am. A 29, 2256–2262 (2012).
    [CrossRef]
  24. H. Liu and S. Han, “Spatial longitudinal coherence length of a thermal source and its influence on lensless ghost imaging,” Opt. Lett. 33, 824–826 (2008).
    [CrossRef]
  25. A. Gatti, D. Magatti, and F. Ferri, “Three-dimensional coherence of light speckles: theory,” Phys. Rev. A 78, 063806 (2008).
    [CrossRef]
  26. D. Magatti, A. Gatti, and F. Ferri, “Three-dimensional coherence of light speckles: experiment,” Phys. Rev. A 79, 053831 (2009).
    [CrossRef]
  27. D. Li, D. P. Kelly, and J. T. Sheridan, “Three-dimensional static speckle fields. Part I. Theory and numerical investigation,” J. Opt. Soc. Am. A 28, 1896–1903 (2011).
    [CrossRef]
  28. D. Li, D. P. Kelly, and J. T. Sheridan, “Three-dimensional static speckle fields. Part II. Experimental investigation,” J. Opt. Soc. Am. A 28, 1904–1908 (2011).
    [CrossRef]
  29. W. Gong, C. Zhao, J. Jiao, E. Li, M. Chen, H. Wang, W. Xu, and S. Han, “Three-dimensional ghost imaging ladar,” arXiv:1301.5767 [quant-ph] (2013).

2012 (2)

2011 (3)

2010 (6)

W. Gong and S. Han, “A method to improve the visibility of ghost images obtained by thermal light,” Phys. Lett. A 374, 1005–1008 (2010).
[CrossRef]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[CrossRef]

G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227–230 (2010).
[CrossRef]

Y. Zhou, J. Simon, J. B. Liu, and Y. H. Shih, “Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime,” Phys. Rev. A 81, 043831 (2010).
[CrossRef]

X. H. Chen, I. N. Agafonov, K. H. Luo, Q. Liu, R. Xian, M. V. Chekhova, and L. A. Wu, “High-visibility, high-order lensless ghost imaging with thermal light,” Opt. Lett. 35, 1166–1168 (2010).
[CrossRef]

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “Optimization of thermal ghost imaging: high-order correlations vs. background subtraction,” Opt. Express 18, 5562–5573 (2010).
[CrossRef]

2009 (5)

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34, 3343–3345 (2009).
[CrossRef]

D. Magatti, A. Gatti, and F. Ferri, “Three-dimensional coherence of light speckles: experiment,” Phys. Rev. A 79, 053831 (2009).
[CrossRef]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[CrossRef]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[CrossRef]

X.-H. Chen, Q. Liu, K.-H. Luo, and L.-A. Wu, “Lensless ghost imaging with true thermal light,” Opt. Lett. 34, 695–697 (2009).
[CrossRef]

2008 (4)

J. H. Shapiro, “Computational ghost imaging,” Phys. Lett. A 78, 061802 (2008).

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. G. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008).
[CrossRef]

H. Liu and S. Han, “Spatial longitudinal coherence length of a thermal source and its influence on lensless ghost imaging,” Opt. Lett. 33, 824–826 (2008).
[CrossRef]

A. Gatti, D. Magatti, and F. Ferri, “Three-dimensional coherence of light speckles: theory,” Phys. Rev. A 78, 063806 (2008).
[CrossRef]

2007 (2)

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, and S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803 (2007).
[CrossRef]

Y. Bai and S. Han, “Ghost imaging with thermal light by third-order correlation,” Phys. Rev. A 76, 043828 (2007).
[CrossRef]

2006 (1)

L. Basano and P. Ottonelloa, “Experiment in lensless ghost imaging with thermal light,” Appl. Phys. Lett. 89, 091109 (2006).
[CrossRef]

2005 (1)

A. Valencia, G. Scarcelli, M. DAngelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef]

2004 (3)

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[CrossRef]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[CrossRef]

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[CrossRef]

2002 (1)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “‘Two-photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[CrossRef]

Agafonov, I. N.

Astola, J.

Bache, M.

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[CrossRef]

Bai, Y.

Y. Bai and S. Han, “Ghost imaging with thermal light by third-order correlation,” Phys. Rev. A 76, 043828 (2007).
[CrossRef]

Basano, L.

L. Basano and P. Ottonelloa, “Experiment in lensless ghost imaging with thermal light,” Appl. Phys. Lett. 89, 091109 (2006).
[CrossRef]

Bennink, R. S.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[CrossRef]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “‘Two-photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[CrossRef]

Bentley, S. J.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[CrossRef]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “‘Two-photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[CrossRef]

Berchera, I. R.

G. Brida, M. Genovese, A. Meda, and I. R. Berchera, “Experimental quantum imaging exploiting multimode spatial correlation of twin beams,” Phys. Rev. A 83, 033811 (2011).
[CrossRef]

G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227–230 (2010).
[CrossRef]

Boyd, R. W.

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “Optimization of thermal ghost imaging: high-order correlations vs. background subtraction,” Opt. Express 18, 5562–5573 (2010).
[CrossRef]

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34, 3343–3345 (2009).
[CrossRef]

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[CrossRef]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “‘Two-photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[CrossRef]

Brambilla, E.

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[CrossRef]

Brida, G.

G. Brida, M. Genovese, A. Meda, and I. R. Berchera, “Experimental quantum imaging exploiting multimode spatial correlation of twin beams,” Phys. Rev. A 83, 033811 (2011).
[CrossRef]

G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227–230 (2010).
[CrossRef]

Bromberg, Y.

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[CrossRef]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[CrossRef]

Cao, D. Z.

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. G. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008).
[CrossRef]

Chan, K. W. C.

Chekhova, M. V.

Chen, M.

W. Gong, C. Zhao, J. Jiao, E. Li, M. Chen, H. Wang, W. Xu, and S. Han, “Three-dimensional ghost imaging ladar,” arXiv:1301.5767 [quant-ph] (2013).

Chen, X. H.

Chen, X.-H.

Chen, Z.

Cheng, J.

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, and S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803 (2007).
[CrossRef]

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[CrossRef]

DAngelo, M.

A. Valencia, G. Scarcelli, M. DAngelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef]

Ferri, F.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[CrossRef]

D. Magatti, A. Gatti, and F. Ferri, “Three-dimensional coherence of light speckles: experiment,” Phys. Rev. A 79, 053831 (2009).
[CrossRef]

A. Gatti, D. Magatti, and F. Ferri, “Three-dimensional coherence of light speckles: theory,” Phys. Rev. A 78, 063806 (2008).
[CrossRef]

Gao, L.

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. G. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008).
[CrossRef]

Gatti, A.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[CrossRef]

D. Magatti, A. Gatti, and F. Ferri, “Three-dimensional coherence of light speckles: experiment,” Phys. Rev. A 79, 053831 (2009).
[CrossRef]

A. Gatti, D. Magatti, and F. Ferri, “Three-dimensional coherence of light speckles: theory,” Phys. Rev. A 78, 063806 (2008).
[CrossRef]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[CrossRef]

Genovese, M.

G. Brida, M. Genovese, A. Meda, and I. R. Berchera, “Experimental quantum imaging exploiting multimode spatial correlation of twin beams,” Phys. Rev. A 83, 033811 (2011).
[CrossRef]

G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227–230 (2010).
[CrossRef]

Gong, W.

W. Gong and S. Han, “A method to improve the visibility of ghost images obtained by thermal light,” Phys. Lett. A 374, 1005–1008 (2010).
[CrossRef]

W. Gong, C. Zhao, J. Jiao, E. Li, M. Chen, H. Wang, W. Xu, and S. Han, “Three-dimensional ghost imaging ladar,” arXiv:1301.5767 [quant-ph] (2013).

Han, S.

W. Gong and S. Han, “A method to improve the visibility of ghost images obtained by thermal light,” Phys. Lett. A 374, 1005–1008 (2010).
[CrossRef]

H. Liu and S. Han, “Spatial longitudinal coherence length of a thermal source and its influence on lensless ghost imaging,” Opt. Lett. 33, 824–826 (2008).
[CrossRef]

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, and S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803 (2007).
[CrossRef]

Y. Bai and S. Han, “Ghost imaging with thermal light by third-order correlation,” Phys. Rev. A 76, 043828 (2007).
[CrossRef]

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[CrossRef]

W. Gong, C. Zhao, J. Jiao, E. Li, M. Chen, H. Wang, W. Xu, and S. Han, “Three-dimensional ghost imaging ladar,” arXiv:1301.5767 [quant-ph] (2013).

Howell, J. C.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[CrossRef]

Jiao, J.

W. Gong, C. Zhao, J. Jiao, E. Li, M. Chen, H. Wang, W. Xu, and S. Han, “Three-dimensional ghost imaging ladar,” arXiv:1301.5767 [quant-ph] (2013).

Katkovnik, V.

Katz, O.

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[CrossRef]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[CrossRef]

Kelly, D. P.

Li, D.

Li, E.

W. Gong, C. Zhao, J. Jiao, E. Li, M. Chen, H. Wang, W. Xu, and S. Han, “Three-dimensional ghost imaging ladar,” arXiv:1301.5767 [quant-ph] (2013).

Li, H.

Lin, L. F.

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. G. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008).
[CrossRef]

Liu, H.

H. Liu and S. Han, “Spatial longitudinal coherence length of a thermal source and its influence on lensless ghost imaging,” Opt. Lett. 33, 824–826 (2008).
[CrossRef]

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, and S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803 (2007).
[CrossRef]

Liu, J. B.

Y. Zhou, J. Simon, J. B. Liu, and Y. H. Shih, “Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime,” Phys. Rev. A 81, 043831 (2010).
[CrossRef]

Liu, Q.

Liu, Y.

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, and S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803 (2007).
[CrossRef]

Lugiato, L. A.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[CrossRef]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[CrossRef]

Luo, K. H.

Luo, K.-H.

Magatti, D.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[CrossRef]

D. Magatti, A. Gatti, and F. Ferri, “Three-dimensional coherence of light speckles: experiment,” Phys. Rev. A 79, 053831 (2009).
[CrossRef]

A. Gatti, D. Magatti, and F. Ferri, “Three-dimensional coherence of light speckles: theory,” Phys. Rev. A 78, 063806 (2008).
[CrossRef]

Meda, A.

G. Brida, M. Genovese, A. Meda, and I. R. Berchera, “Experimental quantum imaging exploiting multimode spatial correlation of twin beams,” Phys. Rev. A 83, 033811 (2011).
[CrossRef]

O’Sullivan, M. N.

Ottonelloa, P.

L. Basano and P. Ottonelloa, “Experiment in lensless ghost imaging with thermal light,” Appl. Phys. Lett. 89, 091109 (2006).
[CrossRef]

Scarcelli, G.

A. Valencia, G. Scarcelli, M. DAngelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef]

Shapiro, J. H.

J. H. Shapiro, “Computational ghost imaging,” Phys. Lett. A 78, 061802 (2008).

Shen, X.

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, and S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803 (2007).
[CrossRef]

Sheridan, J. T.

Shi, J.

Shih, Y. H.

Y. Zhou, J. Simon, J. B. Liu, and Y. H. Shih, “Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime,” Phys. Rev. A 81, 043831 (2010).
[CrossRef]

A. Valencia, G. Scarcelli, M. DAngelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef]

Silberberg, Y.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[CrossRef]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[CrossRef]

Simon, J.

Y. Zhou, J. Simon, J. B. Liu, and Y. H. Shih, “Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime,” Phys. Rev. A 81, 043831 (2010).
[CrossRef]

Valencia, A.

A. Valencia, G. Scarcelli, M. DAngelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef]

Wang, H.

W. Gong, C. Zhao, J. Jiao, E. Li, M. Chen, H. Wang, W. Xu, and S. Han, “Three-dimensional ghost imaging ladar,” arXiv:1301.5767 [quant-ph] (2013).

Wang, K. G.

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. G. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008).
[CrossRef]

Wei, Q.

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, and S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803 (2007).
[CrossRef]

Wu, L. A.

Wu, L.-A.

Xian, R.

Xiong, J.

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. G. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008).
[CrossRef]

Xu, W.

W. Gong, C. Zhao, J. Jiao, E. Li, M. Chen, H. Wang, W. Xu, and S. Han, “Three-dimensional ghost imaging ladar,” arXiv:1301.5767 [quant-ph] (2013).

Zeng, G.

Zhang, M.

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, and S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803 (2007).
[CrossRef]

Zhang, S. H.

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. G. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008).
[CrossRef]

Zhao, C.

W. Gong, C. Zhao, J. Jiao, E. Li, M. Chen, H. Wang, W. Xu, and S. Han, “Three-dimensional ghost imaging ladar,” arXiv:1301.5767 [quant-ph] (2013).

Zhou, Y.

Y. Zhou, J. Simon, J. B. Liu, and Y. H. Shih, “Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime,” Phys. Rev. A 81, 043831 (2010).
[CrossRef]

Appl. Phys. Lett. (3)

L. Basano and P. Ottonelloa, “Experiment in lensless ghost imaging with thermal light,” Appl. Phys. Lett. 89, 091109 (2006).
[CrossRef]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[CrossRef]

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. G. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008).
[CrossRef]

J. Opt. Soc. Am. A (4)

Nat. Photonics (1)

G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227–230 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Phys. Lett. A (2)

J. H. Shapiro, “Computational ghost imaging,” Phys. Lett. A 78, 061802 (2008).

W. Gong and S. Han, “A method to improve the visibility of ghost images obtained by thermal light,” Phys. Lett. A 374, 1005–1008 (2010).
[CrossRef]

Phys. Rev. A (7)

Y. Zhou, J. Simon, J. B. Liu, and Y. H. Shih, “Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime,” Phys. Rev. A 81, 043831 (2010).
[CrossRef]

G. Brida, M. Genovese, A. Meda, and I. R. Berchera, “Experimental quantum imaging exploiting multimode spatial correlation of twin beams,” Phys. Rev. A 83, 033811 (2011).
[CrossRef]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[CrossRef]

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, and S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803 (2007).
[CrossRef]

A. Gatti, D. Magatti, and F. Ferri, “Three-dimensional coherence of light speckles: theory,” Phys. Rev. A 78, 063806 (2008).
[CrossRef]

D. Magatti, A. Gatti, and F. Ferri, “Three-dimensional coherence of light speckles: experiment,” Phys. Rev. A 79, 053831 (2009).
[CrossRef]

Y. Bai and S. Han, “Ghost imaging with thermal light by third-order correlation,” Phys. Rev. A 76, 043828 (2007).
[CrossRef]

Phys. Rev. Lett. (6)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “‘Two-photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[CrossRef]

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[CrossRef]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[CrossRef]

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[CrossRef]

A. Valencia, G. Scarcelli, M. DAngelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[CrossRef]

Other (1)

W. Gong, C. Zhao, J. Jiao, E. Li, M. Chen, H. Wang, W. Xu, and S. Han, “Three-dimensional ghost imaging ladar,” arXiv:1301.5767 [quant-ph] (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Lensless thermal light ghost imaging system. BS, beam splitter; PD, photoelectric detector.

Fig. 2.
Fig. 2.

Simulation results with a two-dimensional Gaussian thermal light field whose total light intensity remains unchanged.

Fig. 3.
Fig. 3.

Simulation results with a two-dimensional Gaussian thermal light field whose total light intensity has a ±5% fluctuation over its average value.

Fig. 4.
Fig. 4.

Three-dimensional coherence zones obtained with the four arithmetics.

Fig. 5.
Fig. 5.

Three-dimensional object. The colors are used to distinguish the heights of different columns.

Fig. 6.
Fig. 6.

cc-distortion curves of the four arithmetics. Red-solid curve, TGI; blue-dashed curve, DGI; cyan-solid curve with circles, UWGI; green-dashed curve with rectangles, UWDGI.

Fig. 7.
Fig. 7.

Ghost images achieved by TGI, DGI, UWGI, and UWDGI with different values of cc.

Fig. 8.
Fig. 8.

Iterations versus minimum distortion curves of the four arithmetics.

Fig. 9.
Fig. 9.

Final images obtained by the four arithmetics.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

S(i)=Is(ρ⃗,i)O(ρ⃗)dρ⃗,
R(i)=Ir(ρ⃗,i)dρ⃗,
TGI(ρ⃗)=(Ir(ρ⃗)Ir(ρ⃗))(SS),
DGI(ρ⃗)=(Ir(ρ⃗)Ir(ρ⃗))(SSRR).
UWGI(ρ⃗)=(Ir(ρ⃗)Ir(ρ⃗)1)(SS).
UWDGI(ρ⃗)=(Ir(ρ⃗)Ir(ρ⃗)1)(SSRR).
f(I(ρ⃗))={eI(ρ⃗)/μ(ρ⃗)μ(ρ⃗),I(ρ⃗)0,0,I(ρ⃗)<0.
SNR(ρ⃗i)=TGI(ρ⃗i)D[TGI(ρ⃗i)],
D[TGI(ρ⃗i)]=E[TGI2(ρ⃗i)]E2[TGI(ρ⃗i)]=1N[8μi4Oi2+4μi3OimiμmOm+μi2miμm2Om2+2μi2mniμmμnOmOn],
SNR(ρ⃗i)=μiOiN8μi2Oi2+4μiOimiμmOm+miμm2Om2+2mniμmμnOmOnμiOiN2mniμmμnOmOn.
SNR(ρ⃗i)=N2P2P+7,
E(x,y,z)=E(x0,y0,z=0)eikriλrdx0dy0,
distortion=ρ|Γ(ρ⃗,cc)O(ρ⃗)|ρ|O(ρ⃗)|,

Metrics