A. Anter and S. Dolev, “Optical solution for hard on average #P-complete instances,” Natural Comput. 9, 891–902 (2010).

[CrossRef]

S. Arora and B. Barak, Complexity Theory: A Modern Approach (Cambridge University, 2009).

S. Arora and B. Barak, Complexity Theory: A Modern Approach (Cambridge University, 2009).

W. Xiajun, X. Zhao, A. Bermak, and F. Boussaid, “An AER based CMOS polarization image sensor with photo-aligned micropolarizer array,” in Proceedings of 1st Asia Symposium on Quality Electronic Design (IEEE, 2009), pp. 126–130.

W. Xiajun, X. Zhao, A. Bermak, and F. Boussaid, “An AER based CMOS polarization image sensor with photo-aligned micropolarizer array,” in Proceedings of 1st Asia Symposium on Quality Electronic Design (IEEE, 2009), pp. 126–130.

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4, 261263 (2010).

[CrossRef]

E. Cohen, S. Dolev, S. Frenkel, R. Puzis, and M. Rosenblit, “Nanotechnology based optical solution for NP-hard problems,” in Proceedings of Optical Super Computing (2010), pp. 86–99.

S. Dolev and H. Fitoussi, “Masking traveling beams: optical solutions for NP-complete problems, trading space for time,” Theor. Comput. Sci. 411, 837–853 (2010).

[CrossRef]

A. Anter and S. Dolev, “Optical solution for hard on average #P-complete instances,” Natural Comput. 9, 891–902 (2010).

[CrossRef]

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4, 261263 (2010).

[CrossRef]

N. T. Shaked, S. Messika, S. Dolev, and J. Rosen, “Optical solution for bounded NP-complete problems,” Appl. Opt. 46, 711–724 (2007).

[CrossRef]

S. Dolev and N. Yuval, “Optical implementation of bounded non-deterministic Turing machines,” U.S. patent7,130,093 B2 (October31, 2006).

D. E. Tamir, N. T. Shaked, P. J. Wilson, and S. Dolev, “Electro-optical DSP of tera operation per second and beyond,” in Proceedings of the First International Workshop on Optical Super Computing, Vol. 5172 of Lecture Notes in Computer Science (Springer-Verlag, 2008), pp. 56–59.

S. Dolev, E. Korach, and G. Uzan, “A method for encryption and decryption of messages,” Patent applicationPCT/IL2005/000669 (December7, 2006).

E. Cohen, S. Dolev, S. Frenkel, R. Puzis, and M. Rosenblit, “Nanotechnology based optical solution for NP-hard problems,” in Proceedings of Optical Super Computing (2010), pp. 86–99.

S. Dolev and H. Fitoussi, “Primitive operations for graph-optical processor,” presented at 6th Haifa Workshop on Interdisciplinary Applications of Graph Theory, Combinatorics, and Algorithms, May2006.

S. Dolev and H. Fitoussi, “The traveling beams: optical solutions for bounded NP-complete problems,” (Ben Gurion University of the Negev, 2007).

G. Feitelson, Optical Computing: A Survey for Computer Scientists (MIT, 1988).

S. Dolev and H. Fitoussi, “Masking traveling beams: optical solutions for NP-complete problems, trading space for time,” Theor. Comput. Sci. 411, 837–853 (2010).

[CrossRef]

S. Dolev and H. Fitoussi, “The traveling beams: optical solutions for bounded NP-complete problems,” (Ben Gurion University of the Negev, 2007).

S. Dolev and H. Fitoussi, “Primitive operations for graph-optical processor,” presented at 6th Haifa Workshop on Interdisciplinary Applications of Graph Theory, Combinatorics, and Algorithms, May2006.

S. Goliaei and M.-H. Foroughmand-Araabi, “Lower bounds on the complexity of the wavelength-based machine,” in Unconventional Computation and Natural Computation, Vol. 7445 of Lecture Notes in Computer Science (2012), pp. 94–105.

E. Cohen, S. Dolev, S. Frenkel, R. Puzis, and M. Rosenblit, “Nanotechnology based optical solution for NP-hard problems,” in Proceedings of Optical Super Computing (2010), pp. 86–99.

S. Goliaei and M.-H. Foroughmand-Araabi, “Lower bounds on the complexity of the wavelength-based machine,” in Unconventional Computation and Natural Computation, Vol. 7445 of Lecture Notes in Computer Science (2012), pp. 94–105.

D. Gutfreund, R. Shaltiel, and A. Ta-Shma, “If NP languages are hard on the worst-case, then it is easy to find their hard instances,” Comput. Complex. 16, 412–441 (2007).

[CrossRef]

A. Hyman, Charles Babbage: Pioneer of the Computer (Princeton University, 1982).

W. Zhou, J. Lee, J. Nanda, S. T. Pantelides, S. J. Pennycook, and J. C. Idrobo, “Atomically localized plasmon enhancement in monolayer graphene,” Nat. Nanotechnol. 7, 161–165 (2012).

[CrossRef]

S. Dolev, E. Korach, and G. Uzan, “A method for encryption and decryption of messages,” Patent applicationPCT/IL2005/000669 (December7, 2006).

B. V. Kryzhanovsky, A. N. Palagushkin, S. A. Prokopenko, A. P. Sergeev, and A. O. Melikyan, “Controlling reflectivity of silver-corundum-silver nanostructure by DC voltage,.” Opt. Mem. Neural Netw. 22, 1–7 (2013).

[CrossRef]

W. Zhou, J. Lee, J. Nanda, S. T. Pantelides, S. J. Pennycook, and J. C. Idrobo, “Atomically localized plasmon enhancement in monolayer graphene,” Nat. Nanotechnol. 7, 161–165 (2012).

[CrossRef]

H. J. Mann, W. Ulrich, and G. Seitz, “8-mirror microlithography projection objective,” U.S. patent7,177,076 B2 (February13, 2007).

A. D. McAulay, Optical Computer Architectures (Wiley, 1991).

B. V. Kryzhanovsky, A. N. Palagushkin, S. A. Prokopenko, A. P. Sergeev, and A. O. Melikyan, “Controlling reflectivity of silver-corundum-silver nanostructure by DC voltage,.” Opt. Mem. Neural Netw. 22, 1–7 (2013).

[CrossRef]

W. Zhou, J. Lee, J. Nanda, S. T. Pantelides, S. J. Pennycook, and J. C. Idrobo, “Atomically localized plasmon enhancement in monolayer graphene,” Nat. Nanotechnol. 7, 161–165 (2012).

[CrossRef]

M. Oltean, “A light-based device for solving the Hamiltonian path problem,” in Proceedings of Unconventional Computing, C. Calude, M. J. Dinneen, G. Păun, G. Rozenberg, and S. Stepney, eds., Vol. 4135 of Lecture Notes in Computer Science (Springer-Verlag, 2006), pp. 217–227.

B. V. Kryzhanovsky, A. N. Palagushkin, S. A. Prokopenko, A. P. Sergeev, and A. O. Melikyan, “Controlling reflectivity of silver-corundum-silver nanostructure by DC voltage,.” Opt. Mem. Neural Netw. 22, 1–7 (2013).

[CrossRef]

W. Zhou, J. Lee, J. Nanda, S. T. Pantelides, S. J. Pennycook, and J. C. Idrobo, “Atomically localized plasmon enhancement in monolayer graphene,” Nat. Nanotechnol. 7, 161–165 (2012).

[CrossRef]

W. Zhou, J. Lee, J. Nanda, S. T. Pantelides, S. J. Pennycook, and J. C. Idrobo, “Atomically localized plasmon enhancement in monolayer graphene,” Nat. Nanotechnol. 7, 161–165 (2012).

[CrossRef]

B. V. Kryzhanovsky, A. N. Palagushkin, S. A. Prokopenko, A. P. Sergeev, and A. O. Melikyan, “Controlling reflectivity of silver-corundum-silver nanostructure by DC voltage,.” Opt. Mem. Neural Netw. 22, 1–7 (2013).

[CrossRef]

E. Cohen, S. Dolev, S. Frenkel, R. Puzis, and M. Rosenblit, “Nanotechnology based optical solution for NP-hard problems,” in Proceedings of Optical Super Computing (2010), pp. 86–99.

J. H. Reif, D. Tygar, and A. Yoshida, “The computability and complexity of ray tracing,” Discrete Comput. Geom., 11, 265–288 (1994).

[CrossRef]

J. H. Reif, D. Tygar, and A. Yoshida, “The computability and complexity of optical beam tracing,” in 31st Annual IEEE Symposium on Foundations of Computer Science (1990), pp. 106–114.

E. Cohen, S. Dolev, S. Frenkel, R. Puzis, and M. Rosenblit, “Nanotechnology based optical solution for NP-hard problems,” in Proceedings of Optical Super Computing (2010), pp. 86–99.

H. J. Mann, W. Ulrich, and G. Seitz, “8-mirror microlithography projection objective,” U.S. patent7,177,076 B2 (February13, 2007).

B. V. Kryzhanovsky, A. N. Palagushkin, S. A. Prokopenko, A. P. Sergeev, and A. O. Melikyan, “Controlling reflectivity of silver-corundum-silver nanostructure by DC voltage,.” Opt. Mem. Neural Netw. 22, 1–7 (2013).

[CrossRef]

N. T. Shaked, S. Messika, S. Dolev, and J. Rosen, “Optical solution for bounded NP-complete problems,” Appl. Opt. 46, 711–724 (2007).

[CrossRef]

D. E. Tamir, N. T. Shaked, P. J. Wilson, and S. Dolev, “Electro-optical DSP of tera operation per second and beyond,” in Proceedings of the First International Workshop on Optical Super Computing, Vol. 5172 of Lecture Notes in Computer Science (Springer-Verlag, 2008), pp. 56–59.

D. Gutfreund, R. Shaltiel, and A. Ta-Shma, “If NP languages are hard on the worst-case, then it is easy to find their hard instances,” Comput. Complex. 16, 412–441 (2007).

[CrossRef]

D. E. Tamir, N. T. Shaked, P. J. Wilson, and S. Dolev, “Electro-optical DSP of tera operation per second and beyond,” in Proceedings of the First International Workshop on Optical Super Computing, Vol. 5172 of Lecture Notes in Computer Science (Springer-Verlag, 2008), pp. 56–59.

D. Gutfreund, R. Shaltiel, and A. Ta-Shma, “If NP languages are hard on the worst-case, then it is easy to find their hard instances,” Comput. Complex. 16, 412–441 (2007).

[CrossRef]

J. H. Reif, D. Tygar, and A. Yoshida, “The computability and complexity of ray tracing,” Discrete Comput. Geom., 11, 265–288 (1994).

[CrossRef]

J. H. Reif, D. Tygar, and A. Yoshida, “The computability and complexity of optical beam tracing,” in 31st Annual IEEE Symposium on Foundations of Computer Science (1990), pp. 106–114.

H. J. Mann, W. Ulrich, and G. Seitz, “8-mirror microlithography projection objective,” U.S. patent7,177,076 B2 (February13, 2007).

S. Dolev, E. Korach, and G. Uzan, “A method for encryption and decryption of messages,” Patent applicationPCT/IL2005/000669 (December7, 2006).

P. van Emde Boas, “Machine models and simulation,” in Handbook of Theoretical Computer Science, Vol. A of Algorithms and Complexity (Elsevier, 1990), pp. 1–66.

D. E. Tamir, N. T. Shaked, P. J. Wilson, and S. Dolev, “Electro-optical DSP of tera operation per second and beyond,” in Proceedings of the First International Workshop on Optical Super Computing, Vol. 5172 of Lecture Notes in Computer Science (Springer-Verlag, 2008), pp. 56–59.

W. Xiajun, X. Zhao, A. Bermak, and F. Boussaid, “An AER based CMOS polarization image sensor with photo-aligned micropolarizer array,” in Proceedings of 1st Asia Symposium on Quality Electronic Design (IEEE, 2009), pp. 126–130.

J. H. Reif, D. Tygar, and A. Yoshida, “The computability and complexity of ray tracing,” Discrete Comput. Geom., 11, 265–288 (1994).

[CrossRef]

J. H. Reif, D. Tygar, and A. Yoshida, “The computability and complexity of optical beam tracing,” in 31st Annual IEEE Symposium on Foundations of Computer Science (1990), pp. 106–114.

S. Dolev and N. Yuval, “Optical implementation of bounded non-deterministic Turing machines,” U.S. patent7,130,093 B2 (October31, 2006).

W. Xiajun, X. Zhao, A. Bermak, and F. Boussaid, “An AER based CMOS polarization image sensor with photo-aligned micropolarizer array,” in Proceedings of 1st Asia Symposium on Quality Electronic Design (IEEE, 2009), pp. 126–130.

W. Zhou, J. Lee, J. Nanda, S. T. Pantelides, S. J. Pennycook, and J. C. Idrobo, “Atomically localized plasmon enhancement in monolayer graphene,” Nat. Nanotechnol. 7, 161–165 (2012).

[CrossRef]

D. Gutfreund, R. Shaltiel, and A. Ta-Shma, “If NP languages are hard on the worst-case, then it is easy to find their hard instances,” Comput. Complex. 16, 412–441 (2007).

[CrossRef]

J. H. Reif, D. Tygar, and A. Yoshida, “The computability and complexity of ray tracing,” Discrete Comput. Geom., 11, 265–288 (1994).

[CrossRef]

W. Zhou, J. Lee, J. Nanda, S. T. Pantelides, S. J. Pennycook, and J. C. Idrobo, “Atomically localized plasmon enhancement in monolayer graphene,” Nat. Nanotechnol. 7, 161–165 (2012).

[CrossRef]

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4, 261263 (2010).

[CrossRef]

A. Anter and S. Dolev, “Optical solution for hard on average #P-complete instances,” Natural Comput. 9, 891–902 (2010).

[CrossRef]

B. V. Kryzhanovsky, A. N. Palagushkin, S. A. Prokopenko, A. P. Sergeev, and A. O. Melikyan, “Controlling reflectivity of silver-corundum-silver nanostructure by DC voltage,.” Opt. Mem. Neural Netw. 22, 1–7 (2013).

[CrossRef]

S. Dolev and H. Fitoussi, “Masking traveling beams: optical solutions for NP-complete problems, trading space for time,” Theor. Comput. Sci. 411, 837–853 (2010).

[CrossRef]

E. Cohen, S. Dolev, S. Frenkel, R. Puzis, and M. Rosenblit, “Nanotechnology based optical solution for NP-hard problems,” in Proceedings of Optical Super Computing (2010), pp. 86–99.

S. Dolev and H. Fitoussi, “Primitive operations for graph-optical processor,” presented at 6th Haifa Workshop on Interdisciplinary Applications of Graph Theory, Combinatorics, and Algorithms, May2006.

S. Dolev and H. Fitoussi, “The traveling beams: optical solutions for bounded NP-complete problems,” (Ben Gurion University of the Negev, 2007).

J. H. Reif, D. Tygar, and A. Yoshida, “The computability and complexity of optical beam tracing,” in 31st Annual IEEE Symposium on Foundations of Computer Science (1990), pp. 106–114.

S. Dolev and N. Yuval, “Optical implementation of bounded non-deterministic Turing machines,” U.S. patent7,130,093 B2 (October31, 2006).

M. Oltean, “A light-based device for solving the Hamiltonian path problem,” in Proceedings of Unconventional Computing, C. Calude, M. J. Dinneen, G. Păun, G. Rozenberg, and S. Stepney, eds., Vol. 4135 of Lecture Notes in Computer Science (Springer-Verlag, 2006), pp. 217–227.

G. Feitelson, Optical Computing: A Survey for Computer Scientists (MIT, 1988).

A. D. McAulay, Optical Computer Architectures (Wiley, 1991).

A. Hyman, Charles Babbage: Pioneer of the Computer (Princeton University, 1982).

S. Arora and B. Barak, Complexity Theory: A Modern Approach (Cambridge University, 2009).

Lenslet LTD, “Lenslet Demonstrates First Commercial Optical Processor,” http://www.taborcommunications.com/hpcwire/hpcwireWWW/03/1017/106185.html .

D. E. Tamir, N. T. Shaked, P. J. Wilson, and S. Dolev, “Electro-optical DSP of tera operation per second and beyond,” in Proceedings of the First International Workshop on Optical Super Computing, Vol. 5172 of Lecture Notes in Computer Science (Springer-Verlag, 2008), pp. 56–59.

P. van Emde Boas, “Machine models and simulation,” in Handbook of Theoretical Computer Science, Vol. A of Algorithms and Complexity (Elsevier, 1990), pp. 1–66.

S. Dolev, E. Korach, and G. Uzan, “A method for encryption and decryption of messages,” Patent applicationPCT/IL2005/000669 (December7, 2006).

H. J. Mann, W. Ulrich, and G. Seitz, “8-mirror microlithography projection objective,” U.S. patent7,177,076 B2 (February13, 2007).

W. Xiajun, X. Zhao, A. Bermak, and F. Boussaid, “An AER based CMOS polarization image sensor with photo-aligned micropolarizer array,” in Proceedings of 1st Asia Symposium on Quality Electronic Design (IEEE, 2009), pp. 126–130.

S. Goliaei and M.-H. Foroughmand-Araabi, “Lower bounds on the complexity of the wavelength-based machine,” in Unconventional Computation and Natural Computation, Vol. 7445 of Lecture Notes in Computer Science (2012), pp. 94–105.