Abstract

Light sources with three spectral bands in specific spectral positions are known to have high-color-discrimination capability. W. A. Thornton hypothesized that they may also enhance color discrimination for color-deficient observers. This hypothesis was tested here by comparing the Rösch–MacAdam color volume for color-deficient observers rendered by three of these singular spectra, two reported previously and one derived in this paper by maximization of the Rösch–MacAdam color solid. It was found that all illuminants tested enhance discriminability for deuteranomalous observers, but their impact on other congenital deficiencies was variable. The best illuminant was the one derived here, as it was clearly advantageous for the two red–green anomalies and for tritanopes and almost neutral for red–green dichromats. We conclude that three-band spectra with high-color-discrimination capability for normal observers do not necessarily produce comparable enhancements for color-deficient observers, but suitable spectral optimization clearly enhances the vision of the color deficient.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. H. Foster, “Color constancy,” Vis. Res. 51, 674–700 (2011).
    [CrossRef]
  2. E. Mahler, J. J. Ezrati, and F. Vienot, “Testing LED lighting for colour discrimination and colour rendering,” Color Res. Appl. 34, 8–17 (2009).
    [CrossRef]
  3. M. P. Royer, K. W. Houser, and A. M. Wilkerson, “Color discrimination capability under highly structured spectra,” Color Res. Appl. 37, 441–449 (2012).
    [CrossRef]
  4. X. Guo and K. W. Houser, “A review of colour rendering indices and their application to commercial light sources,” Lighting Res. Technol. 36, 183–199 (2004).
    [CrossRef]
  5. W. A. Thornton, “Color-rendering capability of commercial lamps,” Appl. Opt. 11, 1078–1086 (1972).
    [CrossRef]
  6. W. A. Thornton, “Fluorescent lamps with high color-discrimination capability,” J. Illum. Eng. Soc. 3, 61–64 (1973).
  7. W. A. Thornton, “Colour discrimination enhancement by the illuminant,” in Second Symposium of the International Research Group on Colour Vision Deficiencies (Karger, 1974), pp. 312–313.
  8. W. A. Thornton, “Color-discrimination index,” J. Opt. Soc. Am. 62, 191–194 (1972).
    [CrossRef]
  9. J. M. M. Linhares and S. M. C. Nascimento, “A chromatic diversity index based on complex scenes,” J. Opt. Soc. Am. A 29, A174–A181 (2012).
    [CrossRef]
  10. M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: a tale of two metrics,” Color Res. Appl. 33, 192–202 (2008).
    [CrossRef]
  11. H. Xu, “Color-rendering capacity of light,” Color Res. Appl. 18, 267–269 (1993).
    [CrossRef]
  12. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).
  13. R. Luther, “Aus dem Gebiet der Farbreizmetrik,” Z. Tech. Phys. 8, 540–558 (1927).
  14. N. D. Nyberg, “Zum Aufbau des Farbenkörpers im Raume aller Lichtempfindungen,” Z. Phys. A 52, 406–419 (1929).
  15. D. L. Macadam, “Theory of the maximum visual efficiency of colored materials,” J. Opt. Soc. Am. 25, 249–252 (1935).
    [CrossRef]
  16. D. L. Macadam, “Maximum visual efficiency of colored materials,” J. Opt. Soc. Am. 25, 316–367 (1935).
  17. F. Martínez-Verdú, E. Perales, E. Chorro, D. D. de Fez, V. Viqueir, and E. Gilabert, “Computation and visualization of the MacAdam limits for any lightness, hue angle, and light source,” J. Opt. Soc. Am. A 24, 1501–1515 (2007).
    [CrossRef]
  18. K. Masaoka, “Fast and accurate model for optimal color computation,” Opt. Lett. 35, 2031–2033 (2010).
    [CrossRef]
  19. C. Li, M. R. Luo, M.-S. Cho, and J.-S. Kim, “Linear programming method for computing the gamut of object color solid,” J. Opt. Soc. Am. A 27, 985–991 (2010).
    [CrossRef]
  20. E. Perales, F. Martínez-Verdú, J. M. Linhares, and S. M. C. Nascimento, “Number of discernible colors for color-deficient observers estimated from the MacAdam limits,” J. Opt. Soc. Am. A 27, 2106–2114 (2010).
    [CrossRef]
  21. J. M. Linhares, P. D. Pinto, and S. M. Nascimento, “The number of discernible colors in natural scenes,” J. Opt. Soc. Am. A 25, 2918–2924 (2008).
    [CrossRef]
  22. M. R. Pointer and G. G. Attridge, “The number of discernible colours,” Color Res. Appl. 23, 52–54 (1998).
    [CrossRef]
  23. W. A. Thornton, “The prime colors of human vision: their prescription for illumination, color printing, color photography, color television, and visual clarity,” in The First European Conference on Color in Graphics, Imaging and Vision (CGIV), Poitiers, France, 2002, pp. 56–60.
  24. J. M. Linhares, P. D. Pinto, and S. M. Nascimento, “Color rendering of art paintings under CIE illuminants for normal and color deficient observers,” J. Opt. Soc. Am. A 26, 1668–1677 (2009).
    [CrossRef]
  25. J. M. M. Linhares, P. E. R. Felgueiras, P. D. Pinto, and S. M. C. Nascimento, “Colour rendering of indoor lighting with CIE illuminants and white LEDs for normal and colour deficient observers,” Ophthalmic Physiolog. Opt. 30, 618–625 (2010).
  26. J. M. M. Linhares, P. D. Pinto, and S. M. C. Nascimento, “The number of discernible colors perceived by dichromats in natural scenes and the effects of colored lenses,” Vis. Neurosci. 25, 493–499 (2008).
    [CrossRef]
  27. O. Masuda and S. M. C. Nascimento, “Lighting spectrum to maximize colorfulness,” Opt. Lett. 37, 407–409 (2012).
    [CrossRef]
  28. CIE, Colorimetry, CIE Publ 15:2004 (CIE, 2004).
  29. D. B. Judd, D. L. MacAdam, G. Wyszecki, H. W. Budde, H. R. Condit, S. T. Henderson, and J. L. Simonds, “Spectral distribution of typical daylight as a function of correlated color temperature,” J. Opt. Soc. Am. 54, 1031–1040 (1964).
    [CrossRef]
  30. C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The Quickhull algorithm for convex hulls,” ACM Trans. Math. Softw. 22, 469–483 (1996).
    [CrossRef]
  31. H. Brettel, F. Vienot, and J. D. Mollon, “Computerized simulation of color appearance for dichromats,” J. Opt. Soc. Am. A 14, 2647–2655 (1997).
  32. V. C. Smith and J. Pokorny, “Spectral sensitivity of color-blind observers and the cone photopigments,” Vis. Res. 12, 2059–2071 (1972).
    [CrossRef]
  33. P. DeMarco, J. Pokorny, and V. C. Smith, “Full-spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromates,” J. Opt. Soc. Am. A 9, 1465–1476 (1992).
    [CrossRef]
  34. J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder-Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147 (1998).
    [CrossRef]
  35. A. L. Nagy and R. M. Boynton, “Large-field color naming of dichromates with rods bleached,” J. Opt. Soc. Am. 69, 1259–1265 (1979).
    [CrossRef]
  36. V. C. Smith and J. Pokorny, “Large-field trichromacy in protanopes and deuteranopes.,” J. Opt. Soc. Am. 67, 213–220 (1977).
    [CrossRef]

2012 (3)

2011 (1)

D. H. Foster, “Color constancy,” Vis. Res. 51, 674–700 (2011).
[CrossRef]

2010 (4)

2009 (2)

J. M. Linhares, P. D. Pinto, and S. M. Nascimento, “Color rendering of art paintings under CIE illuminants for normal and color deficient observers,” J. Opt. Soc. Am. A 26, 1668–1677 (2009).
[CrossRef]

E. Mahler, J. J. Ezrati, and F. Vienot, “Testing LED lighting for colour discrimination and colour rendering,” Color Res. Appl. 34, 8–17 (2009).
[CrossRef]

2008 (3)

M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: a tale of two metrics,” Color Res. Appl. 33, 192–202 (2008).
[CrossRef]

J. M. M. Linhares, P. D. Pinto, and S. M. C. Nascimento, “The number of discernible colors perceived by dichromats in natural scenes and the effects of colored lenses,” Vis. Neurosci. 25, 493–499 (2008).
[CrossRef]

J. M. Linhares, P. D. Pinto, and S. M. Nascimento, “The number of discernible colors in natural scenes,” J. Opt. Soc. Am. A 25, 2918–2924 (2008).
[CrossRef]

2007 (1)

2004 (1)

X. Guo and K. W. Houser, “A review of colour rendering indices and their application to commercial light sources,” Lighting Res. Technol. 36, 183–199 (2004).
[CrossRef]

1998 (2)

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder-Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147 (1998).
[CrossRef]

M. R. Pointer and G. G. Attridge, “The number of discernible colours,” Color Res. Appl. 23, 52–54 (1998).
[CrossRef]

1997 (1)

1996 (1)

C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The Quickhull algorithm for convex hulls,” ACM Trans. Math. Softw. 22, 469–483 (1996).
[CrossRef]

1993 (1)

H. Xu, “Color-rendering capacity of light,” Color Res. Appl. 18, 267–269 (1993).
[CrossRef]

1992 (1)

1979 (1)

1977 (1)

1973 (1)

W. A. Thornton, “Fluorescent lamps with high color-discrimination capability,” J. Illum. Eng. Soc. 3, 61–64 (1973).

1972 (3)

1964 (1)

1935 (2)

D. L. Macadam, “Theory of the maximum visual efficiency of colored materials,” J. Opt. Soc. Am. 25, 249–252 (1935).
[CrossRef]

D. L. Macadam, “Maximum visual efficiency of colored materials,” J. Opt. Soc. Am. 25, 316–367 (1935).

1929 (1)

N. D. Nyberg, “Zum Aufbau des Farbenkörpers im Raume aller Lichtempfindungen,” Z. Phys. A 52, 406–419 (1929).

1927 (1)

R. Luther, “Aus dem Gebiet der Farbreizmetrik,” Z. Tech. Phys. 8, 540–558 (1927).

Attridge, G. G.

M. R. Pointer and G. G. Attridge, “The number of discernible colours,” Color Res. Appl. 23, 52–54 (1998).
[CrossRef]

Barber, C. B.

C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The Quickhull algorithm for convex hulls,” ACM Trans. Math. Softw. 22, 469–483 (1996).
[CrossRef]

Boynton, R. M.

Brettel, H.

Budde, H. W.

Cho, M.-S.

Chorro, E.

Condit, H. R.

de Fez, D. D.

DeMarco, P.

Dobkin, D. P.

C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The Quickhull algorithm for convex hulls,” ACM Trans. Math. Softw. 22, 469–483 (1996).
[CrossRef]

Ezrati, J. J.

E. Mahler, J. J. Ezrati, and F. Vienot, “Testing LED lighting for colour discrimination and colour rendering,” Color Res. Appl. 34, 8–17 (2009).
[CrossRef]

Felgueiras, P. E. R.

J. M. M. Linhares, P. E. R. Felgueiras, P. D. Pinto, and S. M. C. Nascimento, “Colour rendering of indoor lighting with CIE illuminants and white LEDs for normal and colour deficient observers,” Ophthalmic Physiolog. Opt. 30, 618–625 (2010).

Foster, D. H.

D. H. Foster, “Color constancy,” Vis. Res. 51, 674–700 (2011).
[CrossRef]

Freyssinier-Nova, J. P.

M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: a tale of two metrics,” Color Res. Appl. 33, 192–202 (2008).
[CrossRef]

Gilabert, E.

Guo, X.

X. Guo and K. W. Houser, “A review of colour rendering indices and their application to commercial light sources,” Lighting Res. Technol. 36, 183–199 (2004).
[CrossRef]

Henderson, S. T.

Houser, K. W.

M. P. Royer, K. W. Houser, and A. M. Wilkerson, “Color discrimination capability under highly structured spectra,” Color Res. Appl. 37, 441–449 (2012).
[CrossRef]

X. Guo and K. W. Houser, “A review of colour rendering indices and their application to commercial light sources,” Lighting Res. Technol. 36, 183–199 (2004).
[CrossRef]

Huhdanpaa, H.

C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The Quickhull algorithm for convex hulls,” ACM Trans. Math. Softw. 22, 469–483 (1996).
[CrossRef]

Judd, D. B.

Kim, J.-S.

Lagarias, J. C.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder-Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147 (1998).
[CrossRef]

Li, C.

Linhares, J. M.

Linhares, J. M. M.

J. M. M. Linhares and S. M. C. Nascimento, “A chromatic diversity index based on complex scenes,” J. Opt. Soc. Am. A 29, A174–A181 (2012).
[CrossRef]

J. M. M. Linhares, P. E. R. Felgueiras, P. D. Pinto, and S. M. C. Nascimento, “Colour rendering of indoor lighting with CIE illuminants and white LEDs for normal and colour deficient observers,” Ophthalmic Physiolog. Opt. 30, 618–625 (2010).

J. M. M. Linhares, P. D. Pinto, and S. M. C. Nascimento, “The number of discernible colors perceived by dichromats in natural scenes and the effects of colored lenses,” Vis. Neurosci. 25, 493–499 (2008).
[CrossRef]

Luo, M. R.

Luther, R.

R. Luther, “Aus dem Gebiet der Farbreizmetrik,” Z. Tech. Phys. 8, 540–558 (1927).

MacAdam, D. L.

Mahler, E.

E. Mahler, J. J. Ezrati, and F. Vienot, “Testing LED lighting for colour discrimination and colour rendering,” Color Res. Appl. 34, 8–17 (2009).
[CrossRef]

Martínez-Verdú, F.

Masaoka, K.

Masuda, O.

Mollon, J. D.

Nagy, A. L.

Nascimento, S. M.

Nascimento, S. M. C.

O. Masuda and S. M. C. Nascimento, “Lighting spectrum to maximize colorfulness,” Opt. Lett. 37, 407–409 (2012).
[CrossRef]

J. M. M. Linhares and S. M. C. Nascimento, “A chromatic diversity index based on complex scenes,” J. Opt. Soc. Am. A 29, A174–A181 (2012).
[CrossRef]

E. Perales, F. Martínez-Verdú, J. M. Linhares, and S. M. C. Nascimento, “Number of discernible colors for color-deficient observers estimated from the MacAdam limits,” J. Opt. Soc. Am. A 27, 2106–2114 (2010).
[CrossRef]

J. M. M. Linhares, P. E. R. Felgueiras, P. D. Pinto, and S. M. C. Nascimento, “Colour rendering of indoor lighting with CIE illuminants and white LEDs for normal and colour deficient observers,” Ophthalmic Physiolog. Opt. 30, 618–625 (2010).

J. M. M. Linhares, P. D. Pinto, and S. M. C. Nascimento, “The number of discernible colors perceived by dichromats in natural scenes and the effects of colored lenses,” Vis. Neurosci. 25, 493–499 (2008).
[CrossRef]

Nyberg, N. D.

N. D. Nyberg, “Zum Aufbau des Farbenkörpers im Raume aller Lichtempfindungen,” Z. Phys. A 52, 406–419 (1929).

Perales, E.

Pinto, P. D.

J. M. M. Linhares, P. E. R. Felgueiras, P. D. Pinto, and S. M. C. Nascimento, “Colour rendering of indoor lighting with CIE illuminants and white LEDs for normal and colour deficient observers,” Ophthalmic Physiolog. Opt. 30, 618–625 (2010).

J. M. Linhares, P. D. Pinto, and S. M. Nascimento, “Color rendering of art paintings under CIE illuminants for normal and color deficient observers,” J. Opt. Soc. Am. A 26, 1668–1677 (2009).
[CrossRef]

J. M. Linhares, P. D. Pinto, and S. M. Nascimento, “The number of discernible colors in natural scenes,” J. Opt. Soc. Am. A 25, 2918–2924 (2008).
[CrossRef]

J. M. M. Linhares, P. D. Pinto, and S. M. C. Nascimento, “The number of discernible colors perceived by dichromats in natural scenes and the effects of colored lenses,” Vis. Neurosci. 25, 493–499 (2008).
[CrossRef]

Pointer, M. R.

M. R. Pointer and G. G. Attridge, “The number of discernible colours,” Color Res. Appl. 23, 52–54 (1998).
[CrossRef]

Pokorny, J.

Rea, M. S.

M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: a tale of two metrics,” Color Res. Appl. 33, 192–202 (2008).
[CrossRef]

Reeds, J. A.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder-Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147 (1998).
[CrossRef]

Royer, M. P.

M. P. Royer, K. W. Houser, and A. M. Wilkerson, “Color discrimination capability under highly structured spectra,” Color Res. Appl. 37, 441–449 (2012).
[CrossRef]

Simonds, J. L.

Smith, V. C.

Stiles, W. S.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).

Thornton, W. A.

W. A. Thornton, “Fluorescent lamps with high color-discrimination capability,” J. Illum. Eng. Soc. 3, 61–64 (1973).

W. A. Thornton, “Color-discrimination index,” J. Opt. Soc. Am. 62, 191–194 (1972).
[CrossRef]

W. A. Thornton, “Color-rendering capability of commercial lamps,” Appl. Opt. 11, 1078–1086 (1972).
[CrossRef]

W. A. Thornton, “Colour discrimination enhancement by the illuminant,” in Second Symposium of the International Research Group on Colour Vision Deficiencies (Karger, 1974), pp. 312–313.

W. A. Thornton, “The prime colors of human vision: their prescription for illumination, color printing, color photography, color television, and visual clarity,” in The First European Conference on Color in Graphics, Imaging and Vision (CGIV), Poitiers, France, 2002, pp. 56–60.

Vienot, F.

E. Mahler, J. J. Ezrati, and F. Vienot, “Testing LED lighting for colour discrimination and colour rendering,” Color Res. Appl. 34, 8–17 (2009).
[CrossRef]

H. Brettel, F. Vienot, and J. D. Mollon, “Computerized simulation of color appearance for dichromats,” J. Opt. Soc. Am. A 14, 2647–2655 (1997).

Viqueir, V.

Wilkerson, A. M.

M. P. Royer, K. W. Houser, and A. M. Wilkerson, “Color discrimination capability under highly structured spectra,” Color Res. Appl. 37, 441–449 (2012).
[CrossRef]

Wright, M. H.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder-Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147 (1998).
[CrossRef]

Wright, P. E.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder-Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147 (1998).
[CrossRef]

Wyszecki, G.

Xu, H.

H. Xu, “Color-rendering capacity of light,” Color Res. Appl. 18, 267–269 (1993).
[CrossRef]

ACM Trans. Math. Softw. (1)

C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The Quickhull algorithm for convex hulls,” ACM Trans. Math. Softw. 22, 469–483 (1996).
[CrossRef]

Appl. Opt. (1)

Color Res. Appl. (5)

M. R. Pointer and G. G. Attridge, “The number of discernible colours,” Color Res. Appl. 23, 52–54 (1998).
[CrossRef]

E. Mahler, J. J. Ezrati, and F. Vienot, “Testing LED lighting for colour discrimination and colour rendering,” Color Res. Appl. 34, 8–17 (2009).
[CrossRef]

M. P. Royer, K. W. Houser, and A. M. Wilkerson, “Color discrimination capability under highly structured spectra,” Color Res. Appl. 37, 441–449 (2012).
[CrossRef]

M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: a tale of two metrics,” Color Res. Appl. 33, 192–202 (2008).
[CrossRef]

H. Xu, “Color-rendering capacity of light,” Color Res. Appl. 18, 267–269 (1993).
[CrossRef]

J. Illum. Eng. Soc. (1)

W. A. Thornton, “Fluorescent lamps with high color-discrimination capability,” J. Illum. Eng. Soc. 3, 61–64 (1973).

J. Opt. Soc. Am. (6)

J. Opt. Soc. Am. A (8)

F. Martínez-Verdú, E. Perales, E. Chorro, D. D. de Fez, V. Viqueir, and E. Gilabert, “Computation and visualization of the MacAdam limits for any lightness, hue angle, and light source,” J. Opt. Soc. Am. A 24, 1501–1515 (2007).
[CrossRef]

J. M. Linhares, P. D. Pinto, and S. M. Nascimento, “The number of discernible colors in natural scenes,” J. Opt. Soc. Am. A 25, 2918–2924 (2008).
[CrossRef]

J. M. Linhares, P. D. Pinto, and S. M. Nascimento, “Color rendering of art paintings under CIE illuminants for normal and color deficient observers,” J. Opt. Soc. Am. A 26, 1668–1677 (2009).
[CrossRef]

C. Li, M. R. Luo, M.-S. Cho, and J.-S. Kim, “Linear programming method for computing the gamut of object color solid,” J. Opt. Soc. Am. A 27, 985–991 (2010).
[CrossRef]

P. DeMarco, J. Pokorny, and V. C. Smith, “Full-spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromates,” J. Opt. Soc. Am. A 9, 1465–1476 (1992).
[CrossRef]

H. Brettel, F. Vienot, and J. D. Mollon, “Computerized simulation of color appearance for dichromats,” J. Opt. Soc. Am. A 14, 2647–2655 (1997).

E. Perales, F. Martínez-Verdú, J. M. Linhares, and S. M. C. Nascimento, “Number of discernible colors for color-deficient observers estimated from the MacAdam limits,” J. Opt. Soc. Am. A 27, 2106–2114 (2010).
[CrossRef]

J. M. M. Linhares and S. M. C. Nascimento, “A chromatic diversity index based on complex scenes,” J. Opt. Soc. Am. A 29, A174–A181 (2012).
[CrossRef]

Lighting Res. Technol. (1)

X. Guo and K. W. Houser, “A review of colour rendering indices and their application to commercial light sources,” Lighting Res. Technol. 36, 183–199 (2004).
[CrossRef]

Ophthalmic Physiolog. Opt. (1)

J. M. M. Linhares, P. E. R. Felgueiras, P. D. Pinto, and S. M. C. Nascimento, “Colour rendering of indoor lighting with CIE illuminants and white LEDs for normal and colour deficient observers,” Ophthalmic Physiolog. Opt. 30, 618–625 (2010).

Opt. Lett. (2)

SIAM J. Optim. (1)

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder-Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147 (1998).
[CrossRef]

Vis. Neurosci. (1)

J. M. M. Linhares, P. D. Pinto, and S. M. C. Nascimento, “The number of discernible colors perceived by dichromats in natural scenes and the effects of colored lenses,” Vis. Neurosci. 25, 493–499 (2008).
[CrossRef]

Vis. Res. (2)

V. C. Smith and J. Pokorny, “Spectral sensitivity of color-blind observers and the cone photopigments,” Vis. Res. 12, 2059–2071 (1972).
[CrossRef]

D. H. Foster, “Color constancy,” Vis. Res. 51, 674–700 (2011).
[CrossRef]

Z. Phys. A (1)

N. D. Nyberg, “Zum Aufbau des Farbenkörpers im Raume aller Lichtempfindungen,” Z. Phys. A 52, 406–419 (1929).

Z. Tech. Phys. (1)

R. Luther, “Aus dem Gebiet der Farbreizmetrik,” Z. Tech. Phys. 8, 540–558 (1927).

Other (4)

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).

W. A. Thornton, “Colour discrimination enhancement by the illuminant,” in Second Symposium of the International Research Group on Colour Vision Deficiencies (Karger, 1974), pp. 312–313.

W. A. Thornton, “The prime colors of human vision: their prescription for illumination, color printing, color photography, color television, and visual clarity,” in The First European Conference on Color in Graphics, Imaging and Vision (CGIV), Poitiers, France, 2002, pp. 56–60.

CIE, Colorimetry, CIE Publ 15:2004 (CIE, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Relative radiant power distribution of the prime-color illuminant, (b) that derived by systematic probing with metamers at and around the Planckian locus, and (c) illuminant obtained here by spectral optimization. (All the spectra were normalized to the maximum value.)

Fig. 2.
Fig. 2.

Rösch–MacAdam volumes for daylight illuminants obtained for CCT in the range of 4000–25,000 K. Volumes are expressed in CIELAB space.

Fig. 3.
Fig. 3.

Upper row shows (a) relative radiant power distribution of the illuminant D65, (b) that of the optimized illuminant obtained with D65 as the initial illuminant in the computational procedure, and (c) illuminant obtained by averaging from different initial illuminants in the computational procedure. The bottom row shows (d) Rösch–MacAdam color solids represented in the CIELAB color space under illuminant D65, (e) optimized illuminant, and (f) average optimized illuminant. These volumes are 2.375×106, 2.992×106, and 2.791×106, respectively.

Fig. 4.
Fig. 4.

Upper row shows (a) relative radiant power distribution of the prime-color illuminant, (b) Masuda and Nascimento’s illuminant, and (c) spectrally optimized illuminant. The bottom row shows the Rösch–MacAdam color solids represented in the CIELAB color space under (d) prime-color illuminant, (e) Masuda and Nascimento’s illuminant, and (f) spectrally optimized illuminant. These volumes are 1.99×106, 3.02×106, and 2.79×106, respectively.

Fig. 5.
Fig. 5.

Visual effects of the high-color-discrimination illuminants on artistic paintings and indoor scenes. Also represented is the corresponding color solid volume (V) for each tested illuminant.

Fig. 6.
Fig. 6.

Rösch–MacAdam color solids represented in the CIELAB color space under (a) illuminant E and (b) optimized illuminant.

Tables (2)

Tables Icon

Table 1. Rösch–MacAdam Volumes Obtained with Several Standard Illuminants and Three-Spectral-Bands Illuminants for the Normal Observera

Tables Icon

Table 2. Rösch–MacAdam Volumes for Color-Deficient Observers for Each of the High-Color-Discrimination Illuminants and for Illuminant E for Comparisona

Metrics