Abstract

Most of the optical axes in modern systems are bent for optomechanical considerations. Antireflection (AR) coatings for polarized light at oblique incidence are widely used in optical surfaces like prisms or multiform lenses to suppress undesirable reflections. The optimal design and fabrication method for AR coatings with large-angle range (68°–74°) for a P-polarized 193 nm laser beam is discussed in detail. Experimental results showed that after coating, the reflection loss of a P-polarized laser beam at large angles of incidence on the optical surfaces is reduced dramatically, which could greatly improve the output efficiency of the optical components in the deep ultraviolet vacuum range.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Basting, G. Marowsky, and U. Brinkmann, Excimer Laser Technology (Springer, 2005).
  2. R. Kuschnereit and H. Paul, “Antireflection coating for ultraviolet light at large angles of incidence,” U.S. patent6,697,194B2 (February24, 2004).
  3. R. M. A. Azzam, “Dividing a light beam into two beams of orthogonal polarizations by refection and refraction at a dielectric surface,” Opt. Lett. 31, 1525–1527 (2006).
    [CrossRef]
  4. K. Yang, X. Long, Y. Huang, and S. Wu, “Design and fabrication of ultra-high precision thin-film polarizing beam splitter,” Opt. Commun. 284, 4650–4653 (2011).
    [CrossRef]
  5. S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-oxide broadband antireflection coatings by plasma ion assisted deposition: design, simulation, manufacturing and re-optimization,” Opt. Express 18, 19732–19742 (2010).
    [CrossRef]
  6. C. Görling, U. Leinhos, and K. Mann, “Comparative studies of absorptance behaviour of alkaline-earth fluorides at 193 nm and 157 nm,” Appl. Phys. B 74, 339–346 (2002).
    [CrossRef]
  7. E. Eva and K. Mann, “Calorimetric measurement of two-photon absorption and color-center formation in ultraviolet-window materials,” Appl. Phys. A 62, 143–149 (1996).
  8. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1987).
  9. R. M. A. Azzam, “Tilted parallel dielectric slab as a multilevel attenuator for incident P- or S-polarized light,” Appl. Opt. 48, 425–428 (2009).
    [CrossRef]
  10. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Optical coating design approaches based on the needle optimization technique,” Appl. Opt. 46, 704–710 (2007).
    [CrossRef]
  11. M. C. Liu, C. C. Lee, M. Kaneko, K. Nakahira, and Y. Takano, “Microstructure-related properties of lanthanum fluoride films deposited by molybdenum boat evaporation at 193 nm,” Thin Solid Films 492, 45–51 (2005).
    [CrossRef]
  12. M. Bischoff, D. Gäbler, N. Kaiser, A. Chuvilin, U. Kaiser, and A. Tünnermann, “Optical and structural properties of LaF3 thin films,” Appl. Opt. 47, C157–C161 (2008).
    [CrossRef]
  13. J. H. Apfel, “Electric fields in multilayers at oblique incidence,” Appl. Opt. 15, 2339–2343 (1976).
    [CrossRef]
  14. S. A. Furman and A. V. Tikhonravov, Basics of Optics of Multilayer Systems (Editions Frontieres, 1992), p. 64.
  15. P. Kadkhoda, H. Blaschke, J. Kohlhaas, and D. Ristau, “DUV/VUV spectrophotometry for high-precision spectral characterization,” Proc. SPIE 4099, 311–318 (2000).
    [CrossRef]

2011 (1)

K. Yang, X. Long, Y. Huang, and S. Wu, “Design and fabrication of ultra-high precision thin-film polarizing beam splitter,” Opt. Commun. 284, 4650–4653 (2011).
[CrossRef]

2010 (1)

2009 (1)

2008 (1)

2007 (1)

2006 (1)

2005 (1)

M. C. Liu, C. C. Lee, M. Kaneko, K. Nakahira, and Y. Takano, “Microstructure-related properties of lanthanum fluoride films deposited by molybdenum boat evaporation at 193 nm,” Thin Solid Films 492, 45–51 (2005).
[CrossRef]

2002 (1)

C. Görling, U. Leinhos, and K. Mann, “Comparative studies of absorptance behaviour of alkaline-earth fluorides at 193 nm and 157 nm,” Appl. Phys. B 74, 339–346 (2002).
[CrossRef]

2000 (1)

P. Kadkhoda, H. Blaschke, J. Kohlhaas, and D. Ristau, “DUV/VUV spectrophotometry for high-precision spectral characterization,” Proc. SPIE 4099, 311–318 (2000).
[CrossRef]

1996 (1)

E. Eva and K. Mann, “Calorimetric measurement of two-photon absorption and color-center formation in ultraviolet-window materials,” Appl. Phys. A 62, 143–149 (1996).

1976 (1)

Apfel, J. H.

Azzam, R. M. A.

Bashara, N. M.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1987).

Basting, D.

D. Basting, G. Marowsky, and U. Brinkmann, Excimer Laser Technology (Springer, 2005).

Bischoff, M.

Blaschke, H.

P. Kadkhoda, H. Blaschke, J. Kohlhaas, and D. Ristau, “DUV/VUV spectrophotometry for high-precision spectral characterization,” Proc. SPIE 4099, 311–318 (2000).
[CrossRef]

Brinkmann, U.

D. Basting, G. Marowsky, and U. Brinkmann, Excimer Laser Technology (Springer, 2005).

Chuvilin, A.

DeBell, G. W.

Eva, E.

E. Eva and K. Mann, “Calorimetric measurement of two-photon absorption and color-center formation in ultraviolet-window materials,” Appl. Phys. A 62, 143–149 (1996).

Furman, S. A.

S. A. Furman and A. V. Tikhonravov, Basics of Optics of Multilayer Systems (Editions Frontieres, 1992), p. 64.

Gäbler, D.

Görling, C.

C. Görling, U. Leinhos, and K. Mann, “Comparative studies of absorptance behaviour of alkaline-earth fluorides at 193 nm and 157 nm,” Appl. Phys. B 74, 339–346 (2002).
[CrossRef]

Huang, Y.

K. Yang, X. Long, Y. Huang, and S. Wu, “Design and fabrication of ultra-high precision thin-film polarizing beam splitter,” Opt. Commun. 284, 4650–4653 (2011).
[CrossRef]

Kadkhoda, P.

P. Kadkhoda, H. Blaschke, J. Kohlhaas, and D. Ristau, “DUV/VUV spectrophotometry for high-precision spectral characterization,” Proc. SPIE 4099, 311–318 (2000).
[CrossRef]

Kaiser, N.

Kaiser, U.

Kaneko, M.

M. C. Liu, C. C. Lee, M. Kaneko, K. Nakahira, and Y. Takano, “Microstructure-related properties of lanthanum fluoride films deposited by molybdenum boat evaporation at 193 nm,” Thin Solid Films 492, 45–51 (2005).
[CrossRef]

Kohlhaas, J.

P. Kadkhoda, H. Blaschke, J. Kohlhaas, and D. Ristau, “DUV/VUV spectrophotometry for high-precision spectral characterization,” Proc. SPIE 4099, 311–318 (2000).
[CrossRef]

Kuschnereit, R.

R. Kuschnereit and H. Paul, “Antireflection coating for ultraviolet light at large angles of incidence,” U.S. patent6,697,194B2 (February24, 2004).

Lee, C. C.

M. C. Liu, C. C. Lee, M. Kaneko, K. Nakahira, and Y. Takano, “Microstructure-related properties of lanthanum fluoride films deposited by molybdenum boat evaporation at 193 nm,” Thin Solid Films 492, 45–51 (2005).
[CrossRef]

Leinhos, U.

C. Görling, U. Leinhos, and K. Mann, “Comparative studies of absorptance behaviour of alkaline-earth fluorides at 193 nm and 157 nm,” Appl. Phys. B 74, 339–346 (2002).
[CrossRef]

Liu, M. C.

M. C. Liu, C. C. Lee, M. Kaneko, K. Nakahira, and Y. Takano, “Microstructure-related properties of lanthanum fluoride films deposited by molybdenum boat evaporation at 193 nm,” Thin Solid Films 492, 45–51 (2005).
[CrossRef]

Long, X.

K. Yang, X. Long, Y. Huang, and S. Wu, “Design and fabrication of ultra-high precision thin-film polarizing beam splitter,” Opt. Commun. 284, 4650–4653 (2011).
[CrossRef]

Mann, K.

C. Görling, U. Leinhos, and K. Mann, “Comparative studies of absorptance behaviour of alkaline-earth fluorides at 193 nm and 157 nm,” Appl. Phys. B 74, 339–346 (2002).
[CrossRef]

E. Eva and K. Mann, “Calorimetric measurement of two-photon absorption and color-center formation in ultraviolet-window materials,” Appl. Phys. A 62, 143–149 (1996).

Marowsky, G.

D. Basting, G. Marowsky, and U. Brinkmann, Excimer Laser Technology (Springer, 2005).

Nakahira, K.

M. C. Liu, C. C. Lee, M. Kaneko, K. Nakahira, and Y. Takano, “Microstructure-related properties of lanthanum fluoride films deposited by molybdenum boat evaporation at 193 nm,” Thin Solid Films 492, 45–51 (2005).
[CrossRef]

Paul, H.

R. Kuschnereit and H. Paul, “Antireflection coating for ultraviolet light at large angles of incidence,” U.S. patent6,697,194B2 (February24, 2004).

Ristau, D.

P. Kadkhoda, H. Blaschke, J. Kohlhaas, and D. Ristau, “DUV/VUV spectrophotometry for high-precision spectral characterization,” Proc. SPIE 4099, 311–318 (2000).
[CrossRef]

Stenzel, O.

Takano, Y.

M. C. Liu, C. C. Lee, M. Kaneko, K. Nakahira, and Y. Takano, “Microstructure-related properties of lanthanum fluoride films deposited by molybdenum boat evaporation at 193 nm,” Thin Solid Films 492, 45–51 (2005).
[CrossRef]

Tikhonravov, A. V.

Trubetskov, M. K.

Tünnermann, A.

Wilbrandt, S.

Wu, S.

K. Yang, X. Long, Y. Huang, and S. Wu, “Design and fabrication of ultra-high precision thin-film polarizing beam splitter,” Opt. Commun. 284, 4650–4653 (2011).
[CrossRef]

Yang, K.

K. Yang, X. Long, Y. Huang, and S. Wu, “Design and fabrication of ultra-high precision thin-film polarizing beam splitter,” Opt. Commun. 284, 4650–4653 (2011).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. A (1)

E. Eva and K. Mann, “Calorimetric measurement of two-photon absorption and color-center formation in ultraviolet-window materials,” Appl. Phys. A 62, 143–149 (1996).

Appl. Phys. B (1)

C. Görling, U. Leinhos, and K. Mann, “Comparative studies of absorptance behaviour of alkaline-earth fluorides at 193 nm and 157 nm,” Appl. Phys. B 74, 339–346 (2002).
[CrossRef]

Opt. Commun. (1)

K. Yang, X. Long, Y. Huang, and S. Wu, “Design and fabrication of ultra-high precision thin-film polarizing beam splitter,” Opt. Commun. 284, 4650–4653 (2011).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (1)

P. Kadkhoda, H. Blaschke, J. Kohlhaas, and D. Ristau, “DUV/VUV spectrophotometry for high-precision spectral characterization,” Proc. SPIE 4099, 311–318 (2000).
[CrossRef]

Thin Solid Films (1)

M. C. Liu, C. C. Lee, M. Kaneko, K. Nakahira, and Y. Takano, “Microstructure-related properties of lanthanum fluoride films deposited by molybdenum boat evaporation at 193 nm,” Thin Solid Films 492, 45–51 (2005).
[CrossRef]

Other (4)

S. A. Furman and A. V. Tikhonravov, Basics of Optics of Multilayer Systems (Editions Frontieres, 1992), p. 64.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1987).

D. Basting, G. Marowsky, and U. Brinkmann, Excimer Laser Technology (Springer, 2005).

R. Kuschnereit and H. Paul, “Antireflection coating for ultraviolet light at large angles of incidence,” U.S. patent6,697,194B2 (February24, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Reflectance fitting curves of LaF3 thin films on CaF2 and (b) refractive index variation with the thickness of LaF3 single layer at 193 nm.

Fig. 2.
Fig. 2.

Absorption of the P-polarized AR coatings for each layer (AOI=74°)

Fig. 3.
Fig. 3.

(a) Electric field distribution in the P-polarized AR coatings and (b) electric field distribution comparison between “standard quarter-wave design” and “modified design” (zoom in) (AOI=74°).

Fig. 4.
Fig. 4.

Layer sensitivity with respect to thickness of the designed seven-layer AR coating.

Fig. 5.
Fig. 5.

Theoretical reflection Rp, mathematical expectation of reflection “Exp” and its corridor “Exp±D” in the P-polarization case of the AR coatings at 74° AOI with the given 1% layer thicknesses and relative error levels of the refractive indices.

Fig. 6.
Fig. 6.

(a) ARR and (b) residual reflection spectra of the AR coatings.

Fig. 7.
Fig. 7.

Long term stability of P-polarized AR coatings for large AOI.

Tables (1)

Tables Icon

Table 1 Optical Constants of LaF3 and MgF2

Metrics