Abstract

A three-dimensional ray-tracing model for the use of the uniform theory of diffraction and geometrical optics in radio channel characterizations of indoor environments is presented in this paper. Based on the environment information chosen by the proposed modeling approach, the model is effectively applied by utilizing a technique in which multiple reflections, transmissions, and diffractions are considered via the ray-path classification into four different categories. Ray paths belonging to each ray category are determined by using different methods. Our theoretical results are compared with narrowband and wideband measurements. The good agreement with these measurements indicates that our prediction model works well for such indoor communication applications.

© 2013 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. E. Athanasiadou and A. R. Nix, “A novel 3-D indoor ray-tracing propagation model: the path generator and evaluation of narrow-band and wide-band predictions,” IEEE Trans. Veh. Technol. 49, 1152–1168 (2000).
    [CrossRef]
  2. C. Yang and B. C. Wu, “A ray-tracing method for modeling indoor wave propagation and penetration,” IEEE Trans. Antennas Propag. 46, 907–919 (1998).
    [CrossRef]
  3. V. Degli-Eposti, G. Lombardi, C. Passerini, and G. Riva, “Wide-band measurement and ray-tracing simulation of the 1900 MHz indoor propagation channel: comparison criteria and results,” IEEE Trans. Antennas Propag. 49, 1101–1110 (2001).
    [CrossRef]
  4. S. Grubisic, W. P. Carpes, and J. P. A. Bastos, “Optimization model for antenna positioning in indoor environments using 2-D ray-tracing technique associated to a real-coded genetic algorithm,” IEEE Trans. Magn. 45, 1626–1629 (2009).
    [CrossRef]
  5. J. H. Jo, M. A. Ingram, and N. Jayant, “Deterministic angle clustering in rectangular buildings based on ray-tracing,” IEEE Trans. Commun. 53, 1047–1052 (2005).
  6. K. A. Remley, H. R. Anderson, and A. Weisshar, “Improving the accuracy of ray-tracing techniques for indoor propagation modeling,” IEEE Trans. Veh. Technol. 49, 2350–2358 (2000).
    [CrossRef]
  7. Z. Ji, B.-H. Li, H.-X. Wang, H.-Y. Chen, and Y.-G. Zhau, “An improved ray-tracing propagation model for predicting path loss on single floors,” Microwave Opt. Technol. Lett. 22, 39–41 (1999).
    [CrossRef]
  8. W. K. Tam and V. N. Tran, “Multi-ray propagation model for indoor wireless communications,” Electron. Lett. 32, 135–137 (1996).
    [CrossRef]
  9. K. R. Chang and H. T. Kim, “Improvement of the computation efficiency for a ray-launching model,” IEE Proc. Microw. Antennas Propag. 145, 303–308 (1998).
    [CrossRef]
  10. Z. Ji, B. Li, H. Wang, H. Chen, and T. K. Sarkar, “Efficient ray-tracing methods for propagation prediction for indoor wireless communications,” IEEE Antennas Propag. Mag. 43, 41–49 (2001).
    [CrossRef]
  11. K. Rizk, J. F. Wagen, and F. Gardiol, “Two-dimensional ray-tracing modeling for propagation in microcellular environments,” IEEE Trans. Veh. Technol. 46, 508–518 (1997).
    [CrossRef]
  12. H. M. El-Sallabi and P. Vainikainen, “Improvements to diffraction coefficient for non-perfectly conducting wedges,” IEEE Trans. Antennas Propag. 53, 3105–3109 (2005).
    [CrossRef]
  13. A. Toscano, F. Bilotti, and L. Vegni, “Fast ray-tracing technique for electromagnetic field prediction in mobile communications,” IEEE Trans. Magn. 39, 1238–1241 (2003).
    [CrossRef]
  14. T. K. Sarkar, Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, “A survey of various propagation models for mobile communication,” IEEE Antennas Propag. Mag. 45, 51–82 (2003).
    [CrossRef]
  15. M. Dottling, A. Jahn, D. Didascalou, and W. Wiesbeck, “Two- and three-dimensional ray tracing applied to the land mobile satellite (LMS) propagation channel,” IEEE Antennas Propag. Mag. 43, 27–37 (2001).
    [CrossRef]
  16. Z. Y. Liu and L. X. Guo, “A quasi three-dimensional ray tracing method based on the virtual source tree in urban microcellular environments,” Prog. Electromagn. Res. 118, 397–414 (2011).
    [CrossRef]
  17. F. A. Agelet, A. Formella, J. M. Hernando Rabanos, F. I. de Vicente, and F. P. Fontan, “Efficient ray-tracing acceleration techniques for radio propagation modeling,” IEEE Trans. Veh. Technol. 49, 2089–2104 (2000).
    [CrossRef]
  18. F. A. Agelet, F. P. Fontan, and A. Formella, “Fast ray tracing for microcellular and indoor environments,” IEEE Trans. Magn. 33, 1484–1487 (1997).
    [CrossRef]
  19. D. N. Schettino, F. J. S. Moreira, and C. G. Rego, “Efficient ray tracing for radio channel characterization of urban scenarios,” IEEE Trans. Magn. 43, 1305–1308 (2007).
    [CrossRef]
  20. K. H. Ng, E. K. Tameh, A. Doufexi, M. Hunukumbure, and A. R. Nix, “Efficient multielement ray tracing with site-specific comparisons using measured MIMO channel data,” IEEE Trans. Veh. Technol. 56, 1019–1032 (2007).
    [CrossRef]
  21. S. Y. Seidel and T. S. Rappaport, “Site-specific propagation prediction for wireless in-building personal communication system design,” IEEE Trans. Veh. Technol. 43, 879–891 (1994).
    [CrossRef]
  22. S. Y. Tan and H. S. Tan, “A microcellular communications propagation model based on the uniform theory of diffraction and multiple image theory,” IEEE Trans. Antennas Propag. 44, 1317–1326 (1996).
    [CrossRef]
  23. G. L. Turin, F. D. Clapp, T. L. Johnston, S. B. Fine, and D. Lavry, “A statistical model of urban multipath propagation,” IEEE Trans. Veh. Technol. 21, 1–9 (1972).
    [CrossRef]
  24. F. S. de Adana, O. Gutierrez Blanco, I. G. Diego, J. Perez Arriaga, and M. F. Catedra, “Propagation model based on ray tracing for the design of personal communication systems in indoor environments,” IEEE Trans. Veh. Technol. 49, 2105–2112 (2000).
    [CrossRef]
  25. M. C. Lawton and J. P. McGeehan, “The application of a deterministic ray launching algorithm for the prediction of radio channel characteristics in small-cell environments,” IEEE Trans. Veh. Technol. 43, 955–969 (1994).
    [CrossRef]

2011

Z. Y. Liu and L. X. Guo, “A quasi three-dimensional ray tracing method based on the virtual source tree in urban microcellular environments,” Prog. Electromagn. Res. 118, 397–414 (2011).
[CrossRef]

2009

S. Grubisic, W. P. Carpes, and J. P. A. Bastos, “Optimization model for antenna positioning in indoor environments using 2-D ray-tracing technique associated to a real-coded genetic algorithm,” IEEE Trans. Magn. 45, 1626–1629 (2009).
[CrossRef]

2007

D. N. Schettino, F. J. S. Moreira, and C. G. Rego, “Efficient ray tracing for radio channel characterization of urban scenarios,” IEEE Trans. Magn. 43, 1305–1308 (2007).
[CrossRef]

K. H. Ng, E. K. Tameh, A. Doufexi, M. Hunukumbure, and A. R. Nix, “Efficient multielement ray tracing with site-specific comparisons using measured MIMO channel data,” IEEE Trans. Veh. Technol. 56, 1019–1032 (2007).
[CrossRef]

2005

J. H. Jo, M. A. Ingram, and N. Jayant, “Deterministic angle clustering in rectangular buildings based on ray-tracing,” IEEE Trans. Commun. 53, 1047–1052 (2005).

H. M. El-Sallabi and P. Vainikainen, “Improvements to diffraction coefficient for non-perfectly conducting wedges,” IEEE Trans. Antennas Propag. 53, 3105–3109 (2005).
[CrossRef]

2003

A. Toscano, F. Bilotti, and L. Vegni, “Fast ray-tracing technique for electromagnetic field prediction in mobile communications,” IEEE Trans. Magn. 39, 1238–1241 (2003).
[CrossRef]

T. K. Sarkar, Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, “A survey of various propagation models for mobile communication,” IEEE Antennas Propag. Mag. 45, 51–82 (2003).
[CrossRef]

2001

M. Dottling, A. Jahn, D. Didascalou, and W. Wiesbeck, “Two- and three-dimensional ray tracing applied to the land mobile satellite (LMS) propagation channel,” IEEE Antennas Propag. Mag. 43, 27–37 (2001).
[CrossRef]

Z. Ji, B. Li, H. Wang, H. Chen, and T. K. Sarkar, “Efficient ray-tracing methods for propagation prediction for indoor wireless communications,” IEEE Antennas Propag. Mag. 43, 41–49 (2001).
[CrossRef]

V. Degli-Eposti, G. Lombardi, C. Passerini, and G. Riva, “Wide-band measurement and ray-tracing simulation of the 1900 MHz indoor propagation channel: comparison criteria and results,” IEEE Trans. Antennas Propag. 49, 1101–1110 (2001).
[CrossRef]

2000

G. E. Athanasiadou and A. R. Nix, “A novel 3-D indoor ray-tracing propagation model: the path generator and evaluation of narrow-band and wide-band predictions,” IEEE Trans. Veh. Technol. 49, 1152–1168 (2000).
[CrossRef]

K. A. Remley, H. R. Anderson, and A. Weisshar, “Improving the accuracy of ray-tracing techniques for indoor propagation modeling,” IEEE Trans. Veh. Technol. 49, 2350–2358 (2000).
[CrossRef]

F. A. Agelet, A. Formella, J. M. Hernando Rabanos, F. I. de Vicente, and F. P. Fontan, “Efficient ray-tracing acceleration techniques for radio propagation modeling,” IEEE Trans. Veh. Technol. 49, 2089–2104 (2000).
[CrossRef]

F. S. de Adana, O. Gutierrez Blanco, I. G. Diego, J. Perez Arriaga, and M. F. Catedra, “Propagation model based on ray tracing for the design of personal communication systems in indoor environments,” IEEE Trans. Veh. Technol. 49, 2105–2112 (2000).
[CrossRef]

1999

Z. Ji, B.-H. Li, H.-X. Wang, H.-Y. Chen, and Y.-G. Zhau, “An improved ray-tracing propagation model for predicting path loss on single floors,” Microwave Opt. Technol. Lett. 22, 39–41 (1999).
[CrossRef]

1998

C. Yang and B. C. Wu, “A ray-tracing method for modeling indoor wave propagation and penetration,” IEEE Trans. Antennas Propag. 46, 907–919 (1998).
[CrossRef]

K. R. Chang and H. T. Kim, “Improvement of the computation efficiency for a ray-launching model,” IEE Proc. Microw. Antennas Propag. 145, 303–308 (1998).
[CrossRef]

1997

F. A. Agelet, F. P. Fontan, and A. Formella, “Fast ray tracing for microcellular and indoor environments,” IEEE Trans. Magn. 33, 1484–1487 (1997).
[CrossRef]

K. Rizk, J. F. Wagen, and F. Gardiol, “Two-dimensional ray-tracing modeling for propagation in microcellular environments,” IEEE Trans. Veh. Technol. 46, 508–518 (1997).
[CrossRef]

1996

W. K. Tam and V. N. Tran, “Multi-ray propagation model for indoor wireless communications,” Electron. Lett. 32, 135–137 (1996).
[CrossRef]

S. Y. Tan and H. S. Tan, “A microcellular communications propagation model based on the uniform theory of diffraction and multiple image theory,” IEEE Trans. Antennas Propag. 44, 1317–1326 (1996).
[CrossRef]

1994

S. Y. Seidel and T. S. Rappaport, “Site-specific propagation prediction for wireless in-building personal communication system design,” IEEE Trans. Veh. Technol. 43, 879–891 (1994).
[CrossRef]

M. C. Lawton and J. P. McGeehan, “The application of a deterministic ray launching algorithm for the prediction of radio channel characteristics in small-cell environments,” IEEE Trans. Veh. Technol. 43, 955–969 (1994).
[CrossRef]

1972

G. L. Turin, F. D. Clapp, T. L. Johnston, S. B. Fine, and D. Lavry, “A statistical model of urban multipath propagation,” IEEE Trans. Veh. Technol. 21, 1–9 (1972).
[CrossRef]

Agelet, F. A.

F. A. Agelet, A. Formella, J. M. Hernando Rabanos, F. I. de Vicente, and F. P. Fontan, “Efficient ray-tracing acceleration techniques for radio propagation modeling,” IEEE Trans. Veh. Technol. 49, 2089–2104 (2000).
[CrossRef]

F. A. Agelet, F. P. Fontan, and A. Formella, “Fast ray tracing for microcellular and indoor environments,” IEEE Trans. Magn. 33, 1484–1487 (1997).
[CrossRef]

Anderson, H. R.

K. A. Remley, H. R. Anderson, and A. Weisshar, “Improving the accuracy of ray-tracing techniques for indoor propagation modeling,” IEEE Trans. Veh. Technol. 49, 2350–2358 (2000).
[CrossRef]

Athanasiadou, G. E.

G. E. Athanasiadou and A. R. Nix, “A novel 3-D indoor ray-tracing propagation model: the path generator and evaluation of narrow-band and wide-band predictions,” IEEE Trans. Veh. Technol. 49, 1152–1168 (2000).
[CrossRef]

Bastos, J. P. A.

S. Grubisic, W. P. Carpes, and J. P. A. Bastos, “Optimization model for antenna positioning in indoor environments using 2-D ray-tracing technique associated to a real-coded genetic algorithm,” IEEE Trans. Magn. 45, 1626–1629 (2009).
[CrossRef]

Bilotti, F.

A. Toscano, F. Bilotti, and L. Vegni, “Fast ray-tracing technique for electromagnetic field prediction in mobile communications,” IEEE Trans. Magn. 39, 1238–1241 (2003).
[CrossRef]

Carpes, W. P.

S. Grubisic, W. P. Carpes, and J. P. A. Bastos, “Optimization model for antenna positioning in indoor environments using 2-D ray-tracing technique associated to a real-coded genetic algorithm,” IEEE Trans. Magn. 45, 1626–1629 (2009).
[CrossRef]

Catedra, M. F.

F. S. de Adana, O. Gutierrez Blanco, I. G. Diego, J. Perez Arriaga, and M. F. Catedra, “Propagation model based on ray tracing for the design of personal communication systems in indoor environments,” IEEE Trans. Veh. Technol. 49, 2105–2112 (2000).
[CrossRef]

Chang, K. R.

K. R. Chang and H. T. Kim, “Improvement of the computation efficiency for a ray-launching model,” IEE Proc. Microw. Antennas Propag. 145, 303–308 (1998).
[CrossRef]

Chen, H.

Z. Ji, B. Li, H. Wang, H. Chen, and T. K. Sarkar, “Efficient ray-tracing methods for propagation prediction for indoor wireless communications,” IEEE Antennas Propag. Mag. 43, 41–49 (2001).
[CrossRef]

Chen, H.-Y.

Z. Ji, B.-H. Li, H.-X. Wang, H.-Y. Chen, and Y.-G. Zhau, “An improved ray-tracing propagation model for predicting path loss on single floors,” Microwave Opt. Technol. Lett. 22, 39–41 (1999).
[CrossRef]

Clapp, F. D.

G. L. Turin, F. D. Clapp, T. L. Johnston, S. B. Fine, and D. Lavry, “A statistical model of urban multipath propagation,” IEEE Trans. Veh. Technol. 21, 1–9 (1972).
[CrossRef]

de Adana, F. S.

F. S. de Adana, O. Gutierrez Blanco, I. G. Diego, J. Perez Arriaga, and M. F. Catedra, “Propagation model based on ray tracing for the design of personal communication systems in indoor environments,” IEEE Trans. Veh. Technol. 49, 2105–2112 (2000).
[CrossRef]

de Vicente, F. I.

F. A. Agelet, A. Formella, J. M. Hernando Rabanos, F. I. de Vicente, and F. P. Fontan, “Efficient ray-tracing acceleration techniques for radio propagation modeling,” IEEE Trans. Veh. Technol. 49, 2089–2104 (2000).
[CrossRef]

Degli-Eposti, V.

V. Degli-Eposti, G. Lombardi, C. Passerini, and G. Riva, “Wide-band measurement and ray-tracing simulation of the 1900 MHz indoor propagation channel: comparison criteria and results,” IEEE Trans. Antennas Propag. 49, 1101–1110 (2001).
[CrossRef]

Didascalou, D.

M. Dottling, A. Jahn, D. Didascalou, and W. Wiesbeck, “Two- and three-dimensional ray tracing applied to the land mobile satellite (LMS) propagation channel,” IEEE Antennas Propag. Mag. 43, 27–37 (2001).
[CrossRef]

Diego, I. G.

F. S. de Adana, O. Gutierrez Blanco, I. G. Diego, J. Perez Arriaga, and M. F. Catedra, “Propagation model based on ray tracing for the design of personal communication systems in indoor environments,” IEEE Trans. Veh. Technol. 49, 2105–2112 (2000).
[CrossRef]

Dottling, M.

M. Dottling, A. Jahn, D. Didascalou, and W. Wiesbeck, “Two- and three-dimensional ray tracing applied to the land mobile satellite (LMS) propagation channel,” IEEE Antennas Propag. Mag. 43, 27–37 (2001).
[CrossRef]

Doufexi, A.

K. H. Ng, E. K. Tameh, A. Doufexi, M. Hunukumbure, and A. R. Nix, “Efficient multielement ray tracing with site-specific comparisons using measured MIMO channel data,” IEEE Trans. Veh. Technol. 56, 1019–1032 (2007).
[CrossRef]

El-Sallabi, H. M.

H. M. El-Sallabi and P. Vainikainen, “Improvements to diffraction coefficient for non-perfectly conducting wedges,” IEEE Trans. Antennas Propag. 53, 3105–3109 (2005).
[CrossRef]

Fine, S. B.

G. L. Turin, F. D. Clapp, T. L. Johnston, S. B. Fine, and D. Lavry, “A statistical model of urban multipath propagation,” IEEE Trans. Veh. Technol. 21, 1–9 (1972).
[CrossRef]

Fontan, F. P.

F. A. Agelet, A. Formella, J. M. Hernando Rabanos, F. I. de Vicente, and F. P. Fontan, “Efficient ray-tracing acceleration techniques for radio propagation modeling,” IEEE Trans. Veh. Technol. 49, 2089–2104 (2000).
[CrossRef]

F. A. Agelet, F. P. Fontan, and A. Formella, “Fast ray tracing for microcellular and indoor environments,” IEEE Trans. Magn. 33, 1484–1487 (1997).
[CrossRef]

Formella, A.

F. A. Agelet, A. Formella, J. M. Hernando Rabanos, F. I. de Vicente, and F. P. Fontan, “Efficient ray-tracing acceleration techniques for radio propagation modeling,” IEEE Trans. Veh. Technol. 49, 2089–2104 (2000).
[CrossRef]

F. A. Agelet, F. P. Fontan, and A. Formella, “Fast ray tracing for microcellular and indoor environments,” IEEE Trans. Magn. 33, 1484–1487 (1997).
[CrossRef]

Gardiol, F.

K. Rizk, J. F. Wagen, and F. Gardiol, “Two-dimensional ray-tracing modeling for propagation in microcellular environments,” IEEE Trans. Veh. Technol. 46, 508–518 (1997).
[CrossRef]

Grubisic, S.

S. Grubisic, W. P. Carpes, and J. P. A. Bastos, “Optimization model for antenna positioning in indoor environments using 2-D ray-tracing technique associated to a real-coded genetic algorithm,” IEEE Trans. Magn. 45, 1626–1629 (2009).
[CrossRef]

Guo, L. X.

Z. Y. Liu and L. X. Guo, “A quasi three-dimensional ray tracing method based on the virtual source tree in urban microcellular environments,” Prog. Electromagn. Res. 118, 397–414 (2011).
[CrossRef]

Gutierrez Blanco, O.

F. S. de Adana, O. Gutierrez Blanco, I. G. Diego, J. Perez Arriaga, and M. F. Catedra, “Propagation model based on ray tracing for the design of personal communication systems in indoor environments,” IEEE Trans. Veh. Technol. 49, 2105–2112 (2000).
[CrossRef]

Hernando Rabanos, J. M.

F. A. Agelet, A. Formella, J. M. Hernando Rabanos, F. I. de Vicente, and F. P. Fontan, “Efficient ray-tracing acceleration techniques for radio propagation modeling,” IEEE Trans. Veh. Technol. 49, 2089–2104 (2000).
[CrossRef]

Hunukumbure, M.

K. H. Ng, E. K. Tameh, A. Doufexi, M. Hunukumbure, and A. R. Nix, “Efficient multielement ray tracing with site-specific comparisons using measured MIMO channel data,” IEEE Trans. Veh. Technol. 56, 1019–1032 (2007).
[CrossRef]

Ingram, M. A.

J. H. Jo, M. A. Ingram, and N. Jayant, “Deterministic angle clustering in rectangular buildings based on ray-tracing,” IEEE Trans. Commun. 53, 1047–1052 (2005).

Jahn, A.

M. Dottling, A. Jahn, D. Didascalou, and W. Wiesbeck, “Two- and three-dimensional ray tracing applied to the land mobile satellite (LMS) propagation channel,” IEEE Antennas Propag. Mag. 43, 27–37 (2001).
[CrossRef]

Jayant, N.

J. H. Jo, M. A. Ingram, and N. Jayant, “Deterministic angle clustering in rectangular buildings based on ray-tracing,” IEEE Trans. Commun. 53, 1047–1052 (2005).

Ji, Z.

T. K. Sarkar, Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, “A survey of various propagation models for mobile communication,” IEEE Antennas Propag. Mag. 45, 51–82 (2003).
[CrossRef]

Z. Ji, B. Li, H. Wang, H. Chen, and T. K. Sarkar, “Efficient ray-tracing methods for propagation prediction for indoor wireless communications,” IEEE Antennas Propag. Mag. 43, 41–49 (2001).
[CrossRef]

Z. Ji, B.-H. Li, H.-X. Wang, H.-Y. Chen, and Y.-G. Zhau, “An improved ray-tracing propagation model for predicting path loss on single floors,” Microwave Opt. Technol. Lett. 22, 39–41 (1999).
[CrossRef]

Jo, J. H.

J. H. Jo, M. A. Ingram, and N. Jayant, “Deterministic angle clustering in rectangular buildings based on ray-tracing,” IEEE Trans. Commun. 53, 1047–1052 (2005).

Johnston, T. L.

G. L. Turin, F. D. Clapp, T. L. Johnston, S. B. Fine, and D. Lavry, “A statistical model of urban multipath propagation,” IEEE Trans. Veh. Technol. 21, 1–9 (1972).
[CrossRef]

Kim, H. T.

K. R. Chang and H. T. Kim, “Improvement of the computation efficiency for a ray-launching model,” IEE Proc. Microw. Antennas Propag. 145, 303–308 (1998).
[CrossRef]

Kim, K.

T. K. Sarkar, Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, “A survey of various propagation models for mobile communication,” IEEE Antennas Propag. Mag. 45, 51–82 (2003).
[CrossRef]

Lavry, D.

G. L. Turin, F. D. Clapp, T. L. Johnston, S. B. Fine, and D. Lavry, “A statistical model of urban multipath propagation,” IEEE Trans. Veh. Technol. 21, 1–9 (1972).
[CrossRef]

Lawton, M. C.

M. C. Lawton and J. P. McGeehan, “The application of a deterministic ray launching algorithm for the prediction of radio channel characteristics in small-cell environments,” IEEE Trans. Veh. Technol. 43, 955–969 (1994).
[CrossRef]

Li, B.

Z. Ji, B. Li, H. Wang, H. Chen, and T. K. Sarkar, “Efficient ray-tracing methods for propagation prediction for indoor wireless communications,” IEEE Antennas Propag. Mag. 43, 41–49 (2001).
[CrossRef]

Li, B.-H.

Z. Ji, B.-H. Li, H.-X. Wang, H.-Y. Chen, and Y.-G. Zhau, “An improved ray-tracing propagation model for predicting path loss on single floors,” Microwave Opt. Technol. Lett. 22, 39–41 (1999).
[CrossRef]

Liu, Z. Y.

Z. Y. Liu and L. X. Guo, “A quasi three-dimensional ray tracing method based on the virtual source tree in urban microcellular environments,” Prog. Electromagn. Res. 118, 397–414 (2011).
[CrossRef]

Lombardi, G.

V. Degli-Eposti, G. Lombardi, C. Passerini, and G. Riva, “Wide-band measurement and ray-tracing simulation of the 1900 MHz indoor propagation channel: comparison criteria and results,” IEEE Trans. Antennas Propag. 49, 1101–1110 (2001).
[CrossRef]

McGeehan, J. P.

M. C. Lawton and J. P. McGeehan, “The application of a deterministic ray launching algorithm for the prediction of radio channel characteristics in small-cell environments,” IEEE Trans. Veh. Technol. 43, 955–969 (1994).
[CrossRef]

Medouri, A.

T. K. Sarkar, Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, “A survey of various propagation models for mobile communication,” IEEE Antennas Propag. Mag. 45, 51–82 (2003).
[CrossRef]

Moreira, F. J. S.

D. N. Schettino, F. J. S. Moreira, and C. G. Rego, “Efficient ray tracing for radio channel characterization of urban scenarios,” IEEE Trans. Magn. 43, 1305–1308 (2007).
[CrossRef]

Ng, K. H.

K. H. Ng, E. K. Tameh, A. Doufexi, M. Hunukumbure, and A. R. Nix, “Efficient multielement ray tracing with site-specific comparisons using measured MIMO channel data,” IEEE Trans. Veh. Technol. 56, 1019–1032 (2007).
[CrossRef]

Nix, A. R.

K. H. Ng, E. K. Tameh, A. Doufexi, M. Hunukumbure, and A. R. Nix, “Efficient multielement ray tracing with site-specific comparisons using measured MIMO channel data,” IEEE Trans. Veh. Technol. 56, 1019–1032 (2007).
[CrossRef]

G. E. Athanasiadou and A. R. Nix, “A novel 3-D indoor ray-tracing propagation model: the path generator and evaluation of narrow-band and wide-band predictions,” IEEE Trans. Veh. Technol. 49, 1152–1168 (2000).
[CrossRef]

Passerini, C.

V. Degli-Eposti, G. Lombardi, C. Passerini, and G. Riva, “Wide-band measurement and ray-tracing simulation of the 1900 MHz indoor propagation channel: comparison criteria and results,” IEEE Trans. Antennas Propag. 49, 1101–1110 (2001).
[CrossRef]

Perez Arriaga, J.

F. S. de Adana, O. Gutierrez Blanco, I. G. Diego, J. Perez Arriaga, and M. F. Catedra, “Propagation model based on ray tracing for the design of personal communication systems in indoor environments,” IEEE Trans. Veh. Technol. 49, 2105–2112 (2000).
[CrossRef]

Rappaport, T. S.

S. Y. Seidel and T. S. Rappaport, “Site-specific propagation prediction for wireless in-building personal communication system design,” IEEE Trans. Veh. Technol. 43, 879–891 (1994).
[CrossRef]

Rego, C. G.

D. N. Schettino, F. J. S. Moreira, and C. G. Rego, “Efficient ray tracing for radio channel characterization of urban scenarios,” IEEE Trans. Magn. 43, 1305–1308 (2007).
[CrossRef]

Remley, K. A.

K. A. Remley, H. R. Anderson, and A. Weisshar, “Improving the accuracy of ray-tracing techniques for indoor propagation modeling,” IEEE Trans. Veh. Technol. 49, 2350–2358 (2000).
[CrossRef]

Riva, G.

V. Degli-Eposti, G. Lombardi, C. Passerini, and G. Riva, “Wide-band measurement and ray-tracing simulation of the 1900 MHz indoor propagation channel: comparison criteria and results,” IEEE Trans. Antennas Propag. 49, 1101–1110 (2001).
[CrossRef]

Rizk, K.

K. Rizk, J. F. Wagen, and F. Gardiol, “Two-dimensional ray-tracing modeling for propagation in microcellular environments,” IEEE Trans. Veh. Technol. 46, 508–518 (1997).
[CrossRef]

Salazar-Palma, M.

T. K. Sarkar, Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, “A survey of various propagation models for mobile communication,” IEEE Antennas Propag. Mag. 45, 51–82 (2003).
[CrossRef]

Sarkar, T. K.

T. K. Sarkar, Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, “A survey of various propagation models for mobile communication,” IEEE Antennas Propag. Mag. 45, 51–82 (2003).
[CrossRef]

Z. Ji, B. Li, H. Wang, H. Chen, and T. K. Sarkar, “Efficient ray-tracing methods for propagation prediction for indoor wireless communications,” IEEE Antennas Propag. Mag. 43, 41–49 (2001).
[CrossRef]

Schettino, D. N.

D. N. Schettino, F. J. S. Moreira, and C. G. Rego, “Efficient ray tracing for radio channel characterization of urban scenarios,” IEEE Trans. Magn. 43, 1305–1308 (2007).
[CrossRef]

Seidel, S. Y.

S. Y. Seidel and T. S. Rappaport, “Site-specific propagation prediction for wireless in-building personal communication system design,” IEEE Trans. Veh. Technol. 43, 879–891 (1994).
[CrossRef]

Tam, W. K.

W. K. Tam and V. N. Tran, “Multi-ray propagation model for indoor wireless communications,” Electron. Lett. 32, 135–137 (1996).
[CrossRef]

Tameh, E. K.

K. H. Ng, E. K. Tameh, A. Doufexi, M. Hunukumbure, and A. R. Nix, “Efficient multielement ray tracing with site-specific comparisons using measured MIMO channel data,” IEEE Trans. Veh. Technol. 56, 1019–1032 (2007).
[CrossRef]

Tan, H. S.

S. Y. Tan and H. S. Tan, “A microcellular communications propagation model based on the uniform theory of diffraction and multiple image theory,” IEEE Trans. Antennas Propag. 44, 1317–1326 (1996).
[CrossRef]

Tan, S. Y.

S. Y. Tan and H. S. Tan, “A microcellular communications propagation model based on the uniform theory of diffraction and multiple image theory,” IEEE Trans. Antennas Propag. 44, 1317–1326 (1996).
[CrossRef]

Toscano, A.

A. Toscano, F. Bilotti, and L. Vegni, “Fast ray-tracing technique for electromagnetic field prediction in mobile communications,” IEEE Trans. Magn. 39, 1238–1241 (2003).
[CrossRef]

Tran, V. N.

W. K. Tam and V. N. Tran, “Multi-ray propagation model for indoor wireless communications,” Electron. Lett. 32, 135–137 (1996).
[CrossRef]

Turin, G. L.

G. L. Turin, F. D. Clapp, T. L. Johnston, S. B. Fine, and D. Lavry, “A statistical model of urban multipath propagation,” IEEE Trans. Veh. Technol. 21, 1–9 (1972).
[CrossRef]

Vainikainen, P.

H. M. El-Sallabi and P. Vainikainen, “Improvements to diffraction coefficient for non-perfectly conducting wedges,” IEEE Trans. Antennas Propag. 53, 3105–3109 (2005).
[CrossRef]

Vegni, L.

A. Toscano, F. Bilotti, and L. Vegni, “Fast ray-tracing technique for electromagnetic field prediction in mobile communications,” IEEE Trans. Magn. 39, 1238–1241 (2003).
[CrossRef]

Wagen, J. F.

K. Rizk, J. F. Wagen, and F. Gardiol, “Two-dimensional ray-tracing modeling for propagation in microcellular environments,” IEEE Trans. Veh. Technol. 46, 508–518 (1997).
[CrossRef]

Wang, H.

Z. Ji, B. Li, H. Wang, H. Chen, and T. K. Sarkar, “Efficient ray-tracing methods for propagation prediction for indoor wireless communications,” IEEE Antennas Propag. Mag. 43, 41–49 (2001).
[CrossRef]

Wang, H.-X.

Z. Ji, B.-H. Li, H.-X. Wang, H.-Y. Chen, and Y.-G. Zhau, “An improved ray-tracing propagation model for predicting path loss on single floors,” Microwave Opt. Technol. Lett. 22, 39–41 (1999).
[CrossRef]

Weisshar, A.

K. A. Remley, H. R. Anderson, and A. Weisshar, “Improving the accuracy of ray-tracing techniques for indoor propagation modeling,” IEEE Trans. Veh. Technol. 49, 2350–2358 (2000).
[CrossRef]

Wiesbeck, W.

M. Dottling, A. Jahn, D. Didascalou, and W. Wiesbeck, “Two- and three-dimensional ray tracing applied to the land mobile satellite (LMS) propagation channel,” IEEE Antennas Propag. Mag. 43, 27–37 (2001).
[CrossRef]

Wu, B. C.

C. Yang and B. C. Wu, “A ray-tracing method for modeling indoor wave propagation and penetration,” IEEE Trans. Antennas Propag. 46, 907–919 (1998).
[CrossRef]

Yang, C.

C. Yang and B. C. Wu, “A ray-tracing method for modeling indoor wave propagation and penetration,” IEEE Trans. Antennas Propag. 46, 907–919 (1998).
[CrossRef]

Zhau, Y.-G.

Z. Ji, B.-H. Li, H.-X. Wang, H.-Y. Chen, and Y.-G. Zhau, “An improved ray-tracing propagation model for predicting path loss on single floors,” Microwave Opt. Technol. Lett. 22, 39–41 (1999).
[CrossRef]

Electron. Lett.

W. K. Tam and V. N. Tran, “Multi-ray propagation model for indoor wireless communications,” Electron. Lett. 32, 135–137 (1996).
[CrossRef]

IEE Proc. Microw. Antennas Propag.

K. R. Chang and H. T. Kim, “Improvement of the computation efficiency for a ray-launching model,” IEE Proc. Microw. Antennas Propag. 145, 303–308 (1998).
[CrossRef]

IEEE Antennas Propag. Mag.

Z. Ji, B. Li, H. Wang, H. Chen, and T. K. Sarkar, “Efficient ray-tracing methods for propagation prediction for indoor wireless communications,” IEEE Antennas Propag. Mag. 43, 41–49 (2001).
[CrossRef]

T. K. Sarkar, Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, “A survey of various propagation models for mobile communication,” IEEE Antennas Propag. Mag. 45, 51–82 (2003).
[CrossRef]

M. Dottling, A. Jahn, D. Didascalou, and W. Wiesbeck, “Two- and three-dimensional ray tracing applied to the land mobile satellite (LMS) propagation channel,” IEEE Antennas Propag. Mag. 43, 27–37 (2001).
[CrossRef]

IEEE Trans. Antennas Propag.

H. M. El-Sallabi and P. Vainikainen, “Improvements to diffraction coefficient for non-perfectly conducting wedges,” IEEE Trans. Antennas Propag. 53, 3105–3109 (2005).
[CrossRef]

C. Yang and B. C. Wu, “A ray-tracing method for modeling indoor wave propagation and penetration,” IEEE Trans. Antennas Propag. 46, 907–919 (1998).
[CrossRef]

V. Degli-Eposti, G. Lombardi, C. Passerini, and G. Riva, “Wide-band measurement and ray-tracing simulation of the 1900 MHz indoor propagation channel: comparison criteria and results,” IEEE Trans. Antennas Propag. 49, 1101–1110 (2001).
[CrossRef]

S. Y. Tan and H. S. Tan, “A microcellular communications propagation model based on the uniform theory of diffraction and multiple image theory,” IEEE Trans. Antennas Propag. 44, 1317–1326 (1996).
[CrossRef]

IEEE Trans. Commun.

J. H. Jo, M. A. Ingram, and N. Jayant, “Deterministic angle clustering in rectangular buildings based on ray-tracing,” IEEE Trans. Commun. 53, 1047–1052 (2005).

IEEE Trans. Magn.

S. Grubisic, W. P. Carpes, and J. P. A. Bastos, “Optimization model for antenna positioning in indoor environments using 2-D ray-tracing technique associated to a real-coded genetic algorithm,” IEEE Trans. Magn. 45, 1626–1629 (2009).
[CrossRef]

A. Toscano, F. Bilotti, and L. Vegni, “Fast ray-tracing technique for electromagnetic field prediction in mobile communications,” IEEE Trans. Magn. 39, 1238–1241 (2003).
[CrossRef]

F. A. Agelet, F. P. Fontan, and A. Formella, “Fast ray tracing for microcellular and indoor environments,” IEEE Trans. Magn. 33, 1484–1487 (1997).
[CrossRef]

D. N. Schettino, F. J. S. Moreira, and C. G. Rego, “Efficient ray tracing for radio channel characterization of urban scenarios,” IEEE Trans. Magn. 43, 1305–1308 (2007).
[CrossRef]

IEEE Trans. Veh. Technol.

K. H. Ng, E. K. Tameh, A. Doufexi, M. Hunukumbure, and A. R. Nix, “Efficient multielement ray tracing with site-specific comparisons using measured MIMO channel data,” IEEE Trans. Veh. Technol. 56, 1019–1032 (2007).
[CrossRef]

S. Y. Seidel and T. S. Rappaport, “Site-specific propagation prediction for wireless in-building personal communication system design,” IEEE Trans. Veh. Technol. 43, 879–891 (1994).
[CrossRef]

K. A. Remley, H. R. Anderson, and A. Weisshar, “Improving the accuracy of ray-tracing techniques for indoor propagation modeling,” IEEE Trans. Veh. Technol. 49, 2350–2358 (2000).
[CrossRef]

K. Rizk, J. F. Wagen, and F. Gardiol, “Two-dimensional ray-tracing modeling for propagation in microcellular environments,” IEEE Trans. Veh. Technol. 46, 508–518 (1997).
[CrossRef]

G. L. Turin, F. D. Clapp, T. L. Johnston, S. B. Fine, and D. Lavry, “A statistical model of urban multipath propagation,” IEEE Trans. Veh. Technol. 21, 1–9 (1972).
[CrossRef]

F. S. de Adana, O. Gutierrez Blanco, I. G. Diego, J. Perez Arriaga, and M. F. Catedra, “Propagation model based on ray tracing for the design of personal communication systems in indoor environments,” IEEE Trans. Veh. Technol. 49, 2105–2112 (2000).
[CrossRef]

M. C. Lawton and J. P. McGeehan, “The application of a deterministic ray launching algorithm for the prediction of radio channel characteristics in small-cell environments,” IEEE Trans. Veh. Technol. 43, 955–969 (1994).
[CrossRef]

G. E. Athanasiadou and A. R. Nix, “A novel 3-D indoor ray-tracing propagation model: the path generator and evaluation of narrow-band and wide-band predictions,” IEEE Trans. Veh. Technol. 49, 1152–1168 (2000).
[CrossRef]

F. A. Agelet, A. Formella, J. M. Hernando Rabanos, F. I. de Vicente, and F. P. Fontan, “Efficient ray-tracing acceleration techniques for radio propagation modeling,” IEEE Trans. Veh. Technol. 49, 2089–2104 (2000).
[CrossRef]

Microwave Opt. Technol. Lett.

Z. Ji, B.-H. Li, H.-X. Wang, H.-Y. Chen, and Y.-G. Zhau, “An improved ray-tracing propagation model for predicting path loss on single floors,” Microwave Opt. Technol. Lett. 22, 39–41 (1999).
[CrossRef]

Prog. Electromagn. Res.

Z. Y. Liu and L. X. Guo, “A quasi three-dimensional ray tracing method based on the virtual source tree in urban microcellular environments,” Prog. Electromagn. Res. 118, 397–414 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics