Abstract

Stimulated emission depletion (STED) can achieve optical superresolution, with the optical diffraction limit broken by the suppression on the periphery of the fluorescent focal spot. Previously, it is generally experimentally accepted that there exists an inverse square root relationship with the STED power and the resolution, but with arbitrary coefficients in expression. In this paper, we have removed the arbitrary coefficients by exploring the relationship between the STED power and the achievable resolution from vector optical theory for the widely used 0–2π vortex phase modulation. Electromagnetic fields of the focal region of a high numerical aperture objective are calculated and approximated into polynomials of radius in the focal plane, and analytical expression of resolution as a function of the STED intensity has been derived. As a result, the resolution can be estimated directly from the measurement of the saturation power of the dye and the STED power applied in the region of high STED power.

© 2013 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Archiv für Mikroskopische Anatomie 9, 413–418 (1873).
    [CrossRef]
  2. Y. Ding, P. Xi, and Q. Ren, “Hacking the optical diffraction limit: review on recent developments of fluorescence nanoscopy,” Chin. Sci. Bull. 56, 1857–1876 (2011).
    [CrossRef]
  3. J. Keller, A. Schönle, and S. Hell, “Efficient fluorescence inhibition patterns for RESOLFT microscopy,” Opt. Express 15, 3361–3371 (2007).
    [CrossRef]
  4. E. Rittweger, K. Han, S. Irvine, C. Eggeling, and S. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3, 144–147 (2009).
    [CrossRef]
  5. S. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
    [CrossRef]
  6. J. Fölling, M. Bossi, H. Bock, R. Medda, C. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5, 943–945 (2008).
    [CrossRef]
  7. S. Irvine, T. Staudt, E. Rittweger, J. Engelhardt, and S. Hell, “Direct light-driven modulation of luminescence from mn-doped znse quantum dots,” Angew. Chem. 120, 2725–2728 (2008).
    [CrossRef]
  8. S. Galiani, B. Harke, G. Vicidomini, G. Lignani, F. Benfenati, A. Diaspro, and P. Bianchini, “Strategies to maximize the performance of a STED microscope,” Opt. Express 20, 7362–7374 (2012).
    [CrossRef]
  9. Y. Liu, Y. Ding, E. Alonas, W. Zhao, P. Santangelo, D. Jin, J. Piper, J. Teng, Q. Ren, and P. Xi, “Achieving λ/10 resolution CW STED nanoscopy with a Ti:sapphire oscillator,” PLoS ONE 7, e40003 (2012).
    [CrossRef]
  10. Y. Tzeng, O. Faklaris, B. Chang, Y. Kuo, J. Hsu, and H. Chang, “Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion,” Angew. Chem. Int. Ed. 50, 2262–2265 (2011).
    [CrossRef]
  11. G. Vicidomini, A. Schönle, H. Ta, K. Y. Han, G. Moneron, C. Eggeling, and S. W. Hell, “STED nanoscopy with time-gated detection: theoretical and experimental aspects,” PLoS ONE 8, e54421 (2013).
    [CrossRef]
  12. V. Westphal and S. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94, 143903 (2005).
    [CrossRef]
  13. B. Harke, J. Keller, C. Ullal, V. Westphal, A. Schönle, and S. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16, 4154–4162 (2008).
    [CrossRef]
  14. K. Y. Han, K. I. Willig, E. Rittweger, F. Jelezko, C. Eggeling, and S. W. Hell, “Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light,” Nano Lett. 9, 3323–3329 (2009).
    [CrossRef]
  15. T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, “Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator,” Opt. Eng. 43, 1136 (2004).
    [CrossRef]
  16. S. Deng, L. Liu, Y. Cheng, R. Li, and Z. Xu, “Effects of primary aberrations on the fluorescence depletion patterns of sted microscopy,” Opt. Express 18, 1657–1666 (2010).
    [CrossRef]
  17. X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12, 115707 (2010).
    [CrossRef]
  18. E. Wolf, “Electromagnetic diffraction in optical systems. I. an integral representation of the image field,” Proc. R. Soc. Edinburgh, Sect. A 253, 349–357 (1959).
    [CrossRef]
  19. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358–379 (1959).
    [CrossRef]
  20. “STED3D: PSF simulation and resolution estimation for STED,” http://code.google.com/p/sted3d/ .
  21. M. Nasse and J. Woehl, “Realistic modeling of the illumination point spread function in confocal scanning optical microscopy,” J. Opt. Soc. Am. A 27, 295–302 (2010).
    [CrossRef]
  22. H. Voort and G. Brakenhoff, “3-D image formation in high-aperture fluorescence confocal microscopy: a numerical analysis,” J. Microsc. 158, 43–54 (1990).
    [CrossRef]
  23. M. Leutenegger, C. Eggeling, and S. Hell, “Analytical description of STED microscopy performance,” Opt. Express 18, 26417–26429 (2010).
    [CrossRef]
  24. K. Chu and J. Mertz, “Single-exposure complementary aperture phase microscopy with polarization encoding,” Opt. Lett. 37, 3798–3800 (2012).
    [CrossRef]
  25. G. Donnert, J. Keller, R. Medda, M. Andrei, S. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
    [CrossRef]
  26. K. Willig, B. Harke, R. Medda, and S. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4, 915–918 (2007).
    [CrossRef]
  27. S. Hell and E. Stelzer, “Properties of a 4pi confocal fluorescence microscope,” J. Opt. Soc. Am. A 9, 2159–2166 (1992).
    [CrossRef]
  28. M. Born, E. Wolf, and A. Bhatia, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).
  29. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).
  30. “Fluorescent dyes used in STED microscopy,” February 2013, http://nanobiophotonics.mpibpc.mpg.de/old/dyes/ .

2013 (1)

G. Vicidomini, A. Schönle, H. Ta, K. Y. Han, G. Moneron, C. Eggeling, and S. W. Hell, “STED nanoscopy with time-gated detection: theoretical and experimental aspects,” PLoS ONE 8, e54421 (2013).
[CrossRef]

2012 (3)

2011 (2)

Y. Tzeng, O. Faklaris, B. Chang, Y. Kuo, J. Hsu, and H. Chang, “Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion,” Angew. Chem. Int. Ed. 50, 2262–2265 (2011).
[CrossRef]

Y. Ding, P. Xi, and Q. Ren, “Hacking the optical diffraction limit: review on recent developments of fluorescence nanoscopy,” Chin. Sci. Bull. 56, 1857–1876 (2011).
[CrossRef]

2010 (4)

2009 (2)

K. Y. Han, K. I. Willig, E. Rittweger, F. Jelezko, C. Eggeling, and S. W. Hell, “Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light,” Nano Lett. 9, 3323–3329 (2009).
[CrossRef]

E. Rittweger, K. Han, S. Irvine, C. Eggeling, and S. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3, 144–147 (2009).
[CrossRef]

2008 (3)

J. Fölling, M. Bossi, H. Bock, R. Medda, C. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5, 943–945 (2008).
[CrossRef]

S. Irvine, T. Staudt, E. Rittweger, J. Engelhardt, and S. Hell, “Direct light-driven modulation of luminescence from mn-doped znse quantum dots,” Angew. Chem. 120, 2725–2728 (2008).
[CrossRef]

B. Harke, J. Keller, C. Ullal, V. Westphal, A. Schönle, and S. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16, 4154–4162 (2008).
[CrossRef]

2007 (2)

J. Keller, A. Schönle, and S. Hell, “Efficient fluorescence inhibition patterns for RESOLFT microscopy,” Opt. Express 15, 3361–3371 (2007).
[CrossRef]

K. Willig, B. Harke, R. Medda, and S. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4, 915–918 (2007).
[CrossRef]

2006 (1)

G. Donnert, J. Keller, R. Medda, M. Andrei, S. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[CrossRef]

2005 (1)

V. Westphal and S. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94, 143903 (2005).
[CrossRef]

2004 (1)

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, “Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator,” Opt. Eng. 43, 1136 (2004).
[CrossRef]

1994 (1)

1992 (1)

1990 (1)

H. Voort and G. Brakenhoff, “3-D image formation in high-aperture fluorescence confocal microscopy: a numerical analysis,” J. Microsc. 158, 43–54 (1990).
[CrossRef]

1959 (2)

E. Wolf, “Electromagnetic diffraction in optical systems. I. an integral representation of the image field,” Proc. R. Soc. Edinburgh, Sect. A 253, 349–357 (1959).
[CrossRef]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358–379 (1959).
[CrossRef]

1873 (1)

E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Archiv für Mikroskopische Anatomie 9, 413–418 (1873).
[CrossRef]

Abbe, E.

E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Archiv für Mikroskopische Anatomie 9, 413–418 (1873).
[CrossRef]

Alonas, E.

Y. Liu, Y. Ding, E. Alonas, W. Zhao, P. Santangelo, D. Jin, J. Piper, J. Teng, Q. Ren, and P. Xi, “Achieving λ/10 resolution CW STED nanoscopy with a Ti:sapphire oscillator,” PLoS ONE 7, e40003 (2012).
[CrossRef]

Andrei, M.

G. Donnert, J. Keller, R. Medda, M. Andrei, S. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[CrossRef]

Benfenati, F.

Bhatia, A.

M. Born, E. Wolf, and A. Bhatia, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).

Bianchini, P.

Bock, H.

J. Fölling, M. Bossi, H. Bock, R. Medda, C. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5, 943–945 (2008).
[CrossRef]

Born, M.

M. Born, E. Wolf, and A. Bhatia, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).

Bossi, M.

J. Fölling, M. Bossi, H. Bock, R. Medda, C. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5, 943–945 (2008).
[CrossRef]

Brakenhoff, G.

H. Voort and G. Brakenhoff, “3-D image formation in high-aperture fluorescence confocal microscopy: a numerical analysis,” J. Microsc. 158, 43–54 (1990).
[CrossRef]

Chang, B.

Y. Tzeng, O. Faklaris, B. Chang, Y. Kuo, J. Hsu, and H. Chang, “Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion,” Angew. Chem. Int. Ed. 50, 2262–2265 (2011).
[CrossRef]

Chang, H.

Y. Tzeng, O. Faklaris, B. Chang, Y. Kuo, J. Hsu, and H. Chang, “Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion,” Angew. Chem. Int. Ed. 50, 2262–2265 (2011).
[CrossRef]

Cheng, Y.

Chu, K.

Deng, S.

Diaspro, A.

Ding, Y.

Y. Liu, Y. Ding, E. Alonas, W. Zhao, P. Santangelo, D. Jin, J. Piper, J. Teng, Q. Ren, and P. Xi, “Achieving λ/10 resolution CW STED nanoscopy with a Ti:sapphire oscillator,” PLoS ONE 7, e40003 (2012).
[CrossRef]

Y. Ding, P. Xi, and Q. Ren, “Hacking the optical diffraction limit: review on recent developments of fluorescence nanoscopy,” Chin. Sci. Bull. 56, 1857–1876 (2011).
[CrossRef]

Donnert, G.

G. Donnert, J. Keller, R. Medda, M. Andrei, S. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[CrossRef]

Eggeling, C.

G. Vicidomini, A. Schönle, H. Ta, K. Y. Han, G. Moneron, C. Eggeling, and S. W. Hell, “STED nanoscopy with time-gated detection: theoretical and experimental aspects,” PLoS ONE 8, e54421 (2013).
[CrossRef]

M. Leutenegger, C. Eggeling, and S. Hell, “Analytical description of STED microscopy performance,” Opt. Express 18, 26417–26429 (2010).
[CrossRef]

E. Rittweger, K. Han, S. Irvine, C. Eggeling, and S. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3, 144–147 (2009).
[CrossRef]

K. Y. Han, K. I. Willig, E. Rittweger, F. Jelezko, C. Eggeling, and S. W. Hell, “Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light,” Nano Lett. 9, 3323–3329 (2009).
[CrossRef]

J. Fölling, M. Bossi, H. Bock, R. Medda, C. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5, 943–945 (2008).
[CrossRef]

G. Donnert, J. Keller, R. Medda, M. Andrei, S. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[CrossRef]

Engelhardt, J.

S. Irvine, T. Staudt, E. Rittweger, J. Engelhardt, and S. Hell, “Direct light-driven modulation of luminescence from mn-doped znse quantum dots,” Angew. Chem. 120, 2725–2728 (2008).
[CrossRef]

Faklaris, O.

Y. Tzeng, O. Faklaris, B. Chang, Y. Kuo, J. Hsu, and H. Chang, “Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion,” Angew. Chem. Int. Ed. 50, 2262–2265 (2011).
[CrossRef]

Fölling, J.

J. Fölling, M. Bossi, H. Bock, R. Medda, C. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5, 943–945 (2008).
[CrossRef]

Fujii, M.

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, “Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator,” Opt. Eng. 43, 1136 (2004).
[CrossRef]

Fukuchi, N.

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, “Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator,” Opt. Eng. 43, 1136 (2004).
[CrossRef]

Galiani, S.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).

Han, K.

E. Rittweger, K. Han, S. Irvine, C. Eggeling, and S. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3, 144–147 (2009).
[CrossRef]

Han, K. Y.

G. Vicidomini, A. Schönle, H. Ta, K. Y. Han, G. Moneron, C. Eggeling, and S. W. Hell, “STED nanoscopy with time-gated detection: theoretical and experimental aspects,” PLoS ONE 8, e54421 (2013).
[CrossRef]

K. Y. Han, K. I. Willig, E. Rittweger, F. Jelezko, C. Eggeling, and S. W. Hell, “Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light,” Nano Lett. 9, 3323–3329 (2009).
[CrossRef]

Hao, X.

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12, 115707 (2010).
[CrossRef]

Harke, B.

Hein, B.

J. Fölling, M. Bossi, H. Bock, R. Medda, C. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5, 943–945 (2008).
[CrossRef]

Hell, S.

M. Leutenegger, C. Eggeling, and S. Hell, “Analytical description of STED microscopy performance,” Opt. Express 18, 26417–26429 (2010).
[CrossRef]

E. Rittweger, K. Han, S. Irvine, C. Eggeling, and S. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3, 144–147 (2009).
[CrossRef]

S. Irvine, T. Staudt, E. Rittweger, J. Engelhardt, and S. Hell, “Direct light-driven modulation of luminescence from mn-doped znse quantum dots,” Angew. Chem. 120, 2725–2728 (2008).
[CrossRef]

J. Fölling, M. Bossi, H. Bock, R. Medda, C. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5, 943–945 (2008).
[CrossRef]

B. Harke, J. Keller, C. Ullal, V. Westphal, A. Schönle, and S. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16, 4154–4162 (2008).
[CrossRef]

K. Willig, B. Harke, R. Medda, and S. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4, 915–918 (2007).
[CrossRef]

J. Keller, A. Schönle, and S. Hell, “Efficient fluorescence inhibition patterns for RESOLFT microscopy,” Opt. Express 15, 3361–3371 (2007).
[CrossRef]

G. Donnert, J. Keller, R. Medda, M. Andrei, S. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[CrossRef]

V. Westphal and S. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94, 143903 (2005).
[CrossRef]

S. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
[CrossRef]

S. Hell and E. Stelzer, “Properties of a 4pi confocal fluorescence microscope,” J. Opt. Soc. Am. A 9, 2159–2166 (1992).
[CrossRef]

Hell, S. W.

G. Vicidomini, A. Schönle, H. Ta, K. Y. Han, G. Moneron, C. Eggeling, and S. W. Hell, “STED nanoscopy with time-gated detection: theoretical and experimental aspects,” PLoS ONE 8, e54421 (2013).
[CrossRef]

K. Y. Han, K. I. Willig, E. Rittweger, F. Jelezko, C. Eggeling, and S. W. Hell, “Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light,” Nano Lett. 9, 3323–3329 (2009).
[CrossRef]

Hsu, J.

Y. Tzeng, O. Faklaris, B. Chang, Y. Kuo, J. Hsu, and H. Chang, “Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion,” Angew. Chem. Int. Ed. 50, 2262–2265 (2011).
[CrossRef]

Igasaki, Y.

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, “Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator,” Opt. Eng. 43, 1136 (2004).
[CrossRef]

Iketaki, Y.

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, “Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator,” Opt. Eng. 43, 1136 (2004).
[CrossRef]

Irvine, S.

E. Rittweger, K. Han, S. Irvine, C. Eggeling, and S. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3, 144–147 (2009).
[CrossRef]

S. Irvine, T. Staudt, E. Rittweger, J. Engelhardt, and S. Hell, “Direct light-driven modulation of luminescence from mn-doped znse quantum dots,” Angew. Chem. 120, 2725–2728 (2008).
[CrossRef]

Ishiuchi, S.

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, “Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator,” Opt. Eng. 43, 1136 (2004).
[CrossRef]

Jahn, R.

G. Donnert, J. Keller, R. Medda, M. Andrei, S. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[CrossRef]

Jakobs, S.

J. Fölling, M. Bossi, H. Bock, R. Medda, C. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5, 943–945 (2008).
[CrossRef]

Jelezko, F.

K. Y. Han, K. I. Willig, E. Rittweger, F. Jelezko, C. Eggeling, and S. W. Hell, “Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light,” Nano Lett. 9, 3323–3329 (2009).
[CrossRef]

Jin, D.

Y. Liu, Y. Ding, E. Alonas, W. Zhao, P. Santangelo, D. Jin, J. Piper, J. Teng, Q. Ren, and P. Xi, “Achieving λ/10 resolution CW STED nanoscopy with a Ti:sapphire oscillator,” PLoS ONE 7, e40003 (2012).
[CrossRef]

Keller, J.

B. Harke, J. Keller, C. Ullal, V. Westphal, A. Schönle, and S. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16, 4154–4162 (2008).
[CrossRef]

J. Keller, A. Schönle, and S. Hell, “Efficient fluorescence inhibition patterns for RESOLFT microscopy,” Opt. Express 15, 3361–3371 (2007).
[CrossRef]

G. Donnert, J. Keller, R. Medda, M. Andrei, S. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[CrossRef]

Kuang, C.

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12, 115707 (2010).
[CrossRef]

Kuo, Y.

Y. Tzeng, O. Faklaris, B. Chang, Y. Kuo, J. Hsu, and H. Chang, “Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion,” Angew. Chem. Int. Ed. 50, 2262–2265 (2011).
[CrossRef]

Leutenegger, M.

Li, R.

Lignani, G.

Liu, L.

Liu, X.

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12, 115707 (2010).
[CrossRef]

Liu, Y.

Y. Liu, Y. Ding, E. Alonas, W. Zhao, P. Santangelo, D. Jin, J. Piper, J. Teng, Q. Ren, and P. Xi, “Achieving λ/10 resolution CW STED nanoscopy with a Ti:sapphire oscillator,” PLoS ONE 7, e40003 (2012).
[CrossRef]

Lührmann, R.

G. Donnert, J. Keller, R. Medda, M. Andrei, S. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[CrossRef]

Medda, R.

J. Fölling, M. Bossi, H. Bock, R. Medda, C. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5, 943–945 (2008).
[CrossRef]

K. Willig, B. Harke, R. Medda, and S. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4, 915–918 (2007).
[CrossRef]

G. Donnert, J. Keller, R. Medda, M. Andrei, S. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[CrossRef]

Mertz, J.

Moneron, G.

G. Vicidomini, A. Schönle, H. Ta, K. Y. Han, G. Moneron, C. Eggeling, and S. W. Hell, “STED nanoscopy with time-gated detection: theoretical and experimental aspects,” PLoS ONE 8, e54421 (2013).
[CrossRef]

Nasse, M.

Omatsu, T.

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, “Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator,” Opt. Eng. 43, 1136 (2004).
[CrossRef]

Piper, J.

Y. Liu, Y. Ding, E. Alonas, W. Zhao, P. Santangelo, D. Jin, J. Piper, J. Teng, Q. Ren, and P. Xi, “Achieving λ/10 resolution CW STED nanoscopy with a Ti:sapphire oscillator,” PLoS ONE 7, e40003 (2012).
[CrossRef]

Ren, Q.

Y. Liu, Y. Ding, E. Alonas, W. Zhao, P. Santangelo, D. Jin, J. Piper, J. Teng, Q. Ren, and P. Xi, “Achieving λ/10 resolution CW STED nanoscopy with a Ti:sapphire oscillator,” PLoS ONE 7, e40003 (2012).
[CrossRef]

Y. Ding, P. Xi, and Q. Ren, “Hacking the optical diffraction limit: review on recent developments of fluorescence nanoscopy,” Chin. Sci. Bull. 56, 1857–1876 (2011).
[CrossRef]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358–379 (1959).
[CrossRef]

Rittweger, E.

E. Rittweger, K. Han, S. Irvine, C. Eggeling, and S. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3, 144–147 (2009).
[CrossRef]

K. Y. Han, K. I. Willig, E. Rittweger, F. Jelezko, C. Eggeling, and S. W. Hell, “Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light,” Nano Lett. 9, 3323–3329 (2009).
[CrossRef]

S. Irvine, T. Staudt, E. Rittweger, J. Engelhardt, and S. Hell, “Direct light-driven modulation of luminescence from mn-doped znse quantum dots,” Angew. Chem. 120, 2725–2728 (2008).
[CrossRef]

Rizzoli, S.

G. Donnert, J. Keller, R. Medda, M. Andrei, S. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[CrossRef]

Sakai, M.

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, “Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator,” Opt. Eng. 43, 1136 (2004).
[CrossRef]

Santangelo, P.

Y. Liu, Y. Ding, E. Alonas, W. Zhao, P. Santangelo, D. Jin, J. Piper, J. Teng, Q. Ren, and P. Xi, “Achieving λ/10 resolution CW STED nanoscopy with a Ti:sapphire oscillator,” PLoS ONE 7, e40003 (2012).
[CrossRef]

Schönle, A.

Staudt, T.

S. Irvine, T. Staudt, E. Rittweger, J. Engelhardt, and S. Hell, “Direct light-driven modulation of luminescence from mn-doped znse quantum dots,” Angew. Chem. 120, 2725–2728 (2008).
[CrossRef]

Stelzer, E.

Ta, H.

G. Vicidomini, A. Schönle, H. Ta, K. Y. Han, G. Moneron, C. Eggeling, and S. W. Hell, “STED nanoscopy with time-gated detection: theoretical and experimental aspects,” PLoS ONE 8, e54421 (2013).
[CrossRef]

Teng, J.

Y. Liu, Y. Ding, E. Alonas, W. Zhao, P. Santangelo, D. Jin, J. Piper, J. Teng, Q. Ren, and P. Xi, “Achieving λ/10 resolution CW STED nanoscopy with a Ti:sapphire oscillator,” PLoS ONE 7, e40003 (2012).
[CrossRef]

Tzeng, Y.

Y. Tzeng, O. Faklaris, B. Chang, Y. Kuo, J. Hsu, and H. Chang, “Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion,” Angew. Chem. Int. Ed. 50, 2262–2265 (2011).
[CrossRef]

Ullal, C.

Vicidomini, G.

G. Vicidomini, A. Schönle, H. Ta, K. Y. Han, G. Moneron, C. Eggeling, and S. W. Hell, “STED nanoscopy with time-gated detection: theoretical and experimental aspects,” PLoS ONE 8, e54421 (2013).
[CrossRef]

S. Galiani, B. Harke, G. Vicidomini, G. Lignani, F. Benfenati, A. Diaspro, and P. Bianchini, “Strategies to maximize the performance of a STED microscope,” Opt. Express 20, 7362–7374 (2012).
[CrossRef]

Voort, H.

H. Voort and G. Brakenhoff, “3-D image formation in high-aperture fluorescence confocal microscopy: a numerical analysis,” J. Microsc. 158, 43–54 (1990).
[CrossRef]

Wang, T.

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12, 115707 (2010).
[CrossRef]

Watanabe, T.

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, “Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator,” Opt. Eng. 43, 1136 (2004).
[CrossRef]

Westphal, V.

B. Harke, J. Keller, C. Ullal, V. Westphal, A. Schönle, and S. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16, 4154–4162 (2008).
[CrossRef]

V. Westphal and S. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94, 143903 (2005).
[CrossRef]

Wichmann, J.

Willig, K.

K. Willig, B. Harke, R. Medda, and S. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4, 915–918 (2007).
[CrossRef]

Willig, K. I.

K. Y. Han, K. I. Willig, E. Rittweger, F. Jelezko, C. Eggeling, and S. W. Hell, “Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light,” Nano Lett. 9, 3323–3329 (2009).
[CrossRef]

Woehl, J.

Wolf, E.

E. Wolf, “Electromagnetic diffraction in optical systems. I. an integral representation of the image field,” Proc. R. Soc. Edinburgh, Sect. A 253, 349–357 (1959).
[CrossRef]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358–379 (1959).
[CrossRef]

M. Born, E. Wolf, and A. Bhatia, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).

Wurm, C.

J. Fölling, M. Bossi, H. Bock, R. Medda, C. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5, 943–945 (2008).
[CrossRef]

Xi, P.

Y. Liu, Y. Ding, E. Alonas, W. Zhao, P. Santangelo, D. Jin, J. Piper, J. Teng, Q. Ren, and P. Xi, “Achieving λ/10 resolution CW STED nanoscopy with a Ti:sapphire oscillator,” PLoS ONE 7, e40003 (2012).
[CrossRef]

Y. Ding, P. Xi, and Q. Ren, “Hacking the optical diffraction limit: review on recent developments of fluorescence nanoscopy,” Chin. Sci. Bull. 56, 1857–1876 (2011).
[CrossRef]

Xu, Z.

Yamamoto, K.

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, “Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator,” Opt. Eng. 43, 1136 (2004).
[CrossRef]

Zhao, W.

Y. Liu, Y. Ding, E. Alonas, W. Zhao, P. Santangelo, D. Jin, J. Piper, J. Teng, Q. Ren, and P. Xi, “Achieving λ/10 resolution CW STED nanoscopy with a Ti:sapphire oscillator,” PLoS ONE 7, e40003 (2012).
[CrossRef]

Angew. Chem. (1)

S. Irvine, T. Staudt, E. Rittweger, J. Engelhardt, and S. Hell, “Direct light-driven modulation of luminescence from mn-doped znse quantum dots,” Angew. Chem. 120, 2725–2728 (2008).
[CrossRef]

Angew. Chem. Int. Ed. (1)

Y. Tzeng, O. Faklaris, B. Chang, Y. Kuo, J. Hsu, and H. Chang, “Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion,” Angew. Chem. Int. Ed. 50, 2262–2265 (2011).
[CrossRef]

Archiv für Mikroskopische Anatomie (1)

E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Archiv für Mikroskopische Anatomie 9, 413–418 (1873).
[CrossRef]

Chin. Sci. Bull. (1)

Y. Ding, P. Xi, and Q. Ren, “Hacking the optical diffraction limit: review on recent developments of fluorescence nanoscopy,” Chin. Sci. Bull. 56, 1857–1876 (2011).
[CrossRef]

J. Microsc. (1)

H. Voort and G. Brakenhoff, “3-D image formation in high-aperture fluorescence confocal microscopy: a numerical analysis,” J. Microsc. 158, 43–54 (1990).
[CrossRef]

J. Opt. (1)

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12, 115707 (2010).
[CrossRef]

J. Opt. Soc. Am. A (2)

Nano Lett. (1)

K. Y. Han, K. I. Willig, E. Rittweger, F. Jelezko, C. Eggeling, and S. W. Hell, “Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light,” Nano Lett. 9, 3323–3329 (2009).
[CrossRef]

Nat. Methods (2)

J. Fölling, M. Bossi, H. Bock, R. Medda, C. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5, 943–945 (2008).
[CrossRef]

K. Willig, B. Harke, R. Medda, and S. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4, 915–918 (2007).
[CrossRef]

Nat. Photonics (1)

E. Rittweger, K. Han, S. Irvine, C. Eggeling, and S. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3, 144–147 (2009).
[CrossRef]

Opt. Eng. (1)

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, “Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator,” Opt. Eng. 43, 1136 (2004).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

V. Westphal and S. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94, 143903 (2005).
[CrossRef]

PLoS ONE (2)

G. Vicidomini, A. Schönle, H. Ta, K. Y. Han, G. Moneron, C. Eggeling, and S. W. Hell, “STED nanoscopy with time-gated detection: theoretical and experimental aspects,” PLoS ONE 8, e54421 (2013).
[CrossRef]

Y. Liu, Y. Ding, E. Alonas, W. Zhao, P. Santangelo, D. Jin, J. Piper, J. Teng, Q. Ren, and P. Xi, “Achieving λ/10 resolution CW STED nanoscopy with a Ti:sapphire oscillator,” PLoS ONE 7, e40003 (2012).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

G. Donnert, J. Keller, R. Medda, M. Andrei, S. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[CrossRef]

Proc. R. Soc. Edinburgh, Sect. A (1)

E. Wolf, “Electromagnetic diffraction in optical systems. I. an integral representation of the image field,” Proc. R. Soc. Edinburgh, Sect. A 253, 349–357 (1959).
[CrossRef]

Proc. R. Soc. London, Ser. A (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358–379 (1959).
[CrossRef]

Other (4)

“STED3D: PSF simulation and resolution estimation for STED,” http://code.google.com/p/sted3d/ .

M. Born, E. Wolf, and A. Bhatia, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).

“Fluorescent dyes used in STED microscopy,” February 2013, http://nanobiophotonics.mpibpc.mpg.de/old/dyes/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics