Abstract

A spectral-domain analysis is presented for the scattering by perfectly conducting cylindrical objects behind a dielectric wall. The solution is developed with an analytical-numerical technique, based on the cylindrical wave approach. Suitable cylindrical functions and their spectral representations are introduced as basis functions for the scattered fields, to deal with their interaction with the planar interfaces bounding the wall. The numerical solution is given in TE and TM polarizations states, and in both near- and far-field zones. The model yields an accurate computation of direct scattering that can be useful for through-wall-imaging applications. A stack of three different dielectric media is considered in the theoretical model. In the numerical results, the upper medium, where the incident field is generated, is assumed to be filled by air, the central layer represents the wall, and the lower medium, which contains the scatterers, is air filled, too. Also general problems of scattering by buried objects can be simulated, being the cylinders buried in a medium of arbitrary permittivity, placed below a dielectric layer.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Daniels, Surface Penetrating Radar, 2nd ed. (IEE, 2004).
  2. M. G. Amin, ed., Through-the Wall Radar Imaging (CRC Press, 2010).
  3. E. J. Baranoski, “Through wall imaging: historical perspective and future directions,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (2008), pp. 5173–5176.
  4. A. T.-S. Ho, W. H. Tham, and K. S. Low, “Through-wall radar image reconstruction based on time-domain transient signals in the presence of noise,” in Proceedings of IEEE International Symposium on Geoscience Remote Sensing (IEEE, 2005), pp. 4271–4274.
  5. F. Soldovieri and R. Solimene, “Through-wall imaging via a linear inverse scattering algorithm,” IEEE Geosci. Remote Sens. Lett. 4, 513–517 (2007).
    [CrossRef]
  6. A. Giannopoulos, “Modelling ground penetrating radar by GprMax,” Constr. Build. Mater. 19, 755–762 (2005).
    [CrossRef]
  7. C. Lei and S. Ouyang, “Through-wall surveillance using ultra-wideband short pulse radar: numerical simulation,” in Proceedings of 2nd IEEE International Conference on Industrial and Electronics Applications (2007), pp. 1551–1554.
  8. M. Dehmollaian and K. Sarabandi, “Hybrid FDTD and ray optics approximation for simulation of through-wall microwave imaging,” in Proceedings of Antennas and Propagation Society International Symposium (2006), pp. 249–252.
  9. P. C. Chang, R. J. Burkholder, J. L. Volakis, R. J. Marhefka, and Y. Bayram, “High-frequency EM characterization of through-wall building imaging,” IEEE Trans. Geosci. Remote Sens. 47, 1375–1387 (2009).
    [CrossRef]
  10. M. Di Vico, F. Frezza, L. Pajewski, and G. Schettini, “Scattering by buried dielectric cylindrical structures,” Radio Sci. 40, RS6S18 (2005).
    [CrossRef]
  11. F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Line source scattering by buried perfectly conducting circular cylinders,” Int. J. Ant. Propag. 2012, 261818 (2012).
    [CrossRef]
  12. F. Frezza, L. Pajewski, C. Ponti, G. Schettini, and N. Tedeschi, “Electromagnetic scattering by a metallic cylinder buried in a lossy medium with the cylindrical wave approach,” IEEE Geosci. Remote Sens. Lett. 10, 179–183 (2013).
    [CrossRef]
  13. M. A. Fiaz, F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Scattering by a circular cylinder buried under a slightly rough surface: the cylindrical-wave approach,” IEEE Trans. Antennas Propag. 60, 2834–2842 (2012).
    [CrossRef]
  14. M. A. Fiaz, F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Asymptotic solution for a scattered field by cylindrical objects buried beneath a slightly rough surface,” Near Surf. Geophys. 11, 177–183 (2013).
  15. F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Scattering by dielectric circular cylinders in a dielectric slab,” J. Opt. Soc. Am. A 27, 687–695 (2010).
    [CrossRef]
  16. F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Scattering by perfectly conducting circular cylinders buried in a dielectric slab through the cylindrical wave approach,” IEEE Trans. Antennas Propag. 57, 1208–1217 (2009).
    [CrossRef]
  17. I. N. Sneddon, Mixed Boundary Value Problems in Potential Theory (North-Holland, 1966).
  18. A. Z. Elsherbeni, “A comparative study of two-dimensional multiple scattering techniques,” Radio Sci. 29, 1023–1033 (1994).
    [CrossRef]
  19. A. C. Ludwig, “Wire grid modeling of surfaces,” IEEE Trans. Antennas Propag. 35, 1045–1048 (1987).
    [CrossRef]
  20. F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Accurate wire-grid modelling of buried conducting cylindrical scatterers,” Nondestr. Test. Evaluation 27, 199–207 (2012), Special Issue on Civil Engineering Applications of Ground Penetrating Radar.
  21. F. Frezza, L. Pajewski, C. Ponti, G. Schettini, and N. Tedeschi, “Cylindrical-wave approach for electromagnetic scattering by subsurface metallic targets in a lossy medium,” J. Appl. Geophys. doi: 10.1016/j.jappgeo.2013.01.004 (2013) (to be published).
    [CrossRef]

2013 (2)

M. A. Fiaz, F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Asymptotic solution for a scattered field by cylindrical objects buried beneath a slightly rough surface,” Near Surf. Geophys. 11, 177–183 (2013).

F. Frezza, L. Pajewski, C. Ponti, G. Schettini, and N. Tedeschi, “Electromagnetic scattering by a metallic cylinder buried in a lossy medium with the cylindrical wave approach,” IEEE Geosci. Remote Sens. Lett. 10, 179–183 (2013).
[CrossRef]

2012 (3)

M. A. Fiaz, F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Scattering by a circular cylinder buried under a slightly rough surface: the cylindrical-wave approach,” IEEE Trans. Antennas Propag. 60, 2834–2842 (2012).
[CrossRef]

F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Accurate wire-grid modelling of buried conducting cylindrical scatterers,” Nondestr. Test. Evaluation 27, 199–207 (2012), Special Issue on Civil Engineering Applications of Ground Penetrating Radar.

F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Line source scattering by buried perfectly conducting circular cylinders,” Int. J. Ant. Propag. 2012, 261818 (2012).
[CrossRef]

2010 (1)

2009 (2)

F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Scattering by perfectly conducting circular cylinders buried in a dielectric slab through the cylindrical wave approach,” IEEE Trans. Antennas Propag. 57, 1208–1217 (2009).
[CrossRef]

P. C. Chang, R. J. Burkholder, J. L. Volakis, R. J. Marhefka, and Y. Bayram, “High-frequency EM characterization of through-wall building imaging,” IEEE Trans. Geosci. Remote Sens. 47, 1375–1387 (2009).
[CrossRef]

2007 (1)

F. Soldovieri and R. Solimene, “Through-wall imaging via a linear inverse scattering algorithm,” IEEE Geosci. Remote Sens. Lett. 4, 513–517 (2007).
[CrossRef]

2005 (2)

A. Giannopoulos, “Modelling ground penetrating radar by GprMax,” Constr. Build. Mater. 19, 755–762 (2005).
[CrossRef]

M. Di Vico, F. Frezza, L. Pajewski, and G. Schettini, “Scattering by buried dielectric cylindrical structures,” Radio Sci. 40, RS6S18 (2005).
[CrossRef]

1994 (1)

A. Z. Elsherbeni, “A comparative study of two-dimensional multiple scattering techniques,” Radio Sci. 29, 1023–1033 (1994).
[CrossRef]

1987 (1)

A. C. Ludwig, “Wire grid modeling of surfaces,” IEEE Trans. Antennas Propag. 35, 1045–1048 (1987).
[CrossRef]

Baranoski, E. J.

E. J. Baranoski, “Through wall imaging: historical perspective and future directions,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (2008), pp. 5173–5176.

Bayram, Y.

P. C. Chang, R. J. Burkholder, J. L. Volakis, R. J. Marhefka, and Y. Bayram, “High-frequency EM characterization of through-wall building imaging,” IEEE Trans. Geosci. Remote Sens. 47, 1375–1387 (2009).
[CrossRef]

Burkholder, R. J.

P. C. Chang, R. J. Burkholder, J. L. Volakis, R. J. Marhefka, and Y. Bayram, “High-frequency EM characterization of through-wall building imaging,” IEEE Trans. Geosci. Remote Sens. 47, 1375–1387 (2009).
[CrossRef]

Chang, P. C.

P. C. Chang, R. J. Burkholder, J. L. Volakis, R. J. Marhefka, and Y. Bayram, “High-frequency EM characterization of through-wall building imaging,” IEEE Trans. Geosci. Remote Sens. 47, 1375–1387 (2009).
[CrossRef]

Daniels, D. J.

D. J. Daniels, Surface Penetrating Radar, 2nd ed. (IEE, 2004).

Dehmollaian, M.

M. Dehmollaian and K. Sarabandi, “Hybrid FDTD and ray optics approximation for simulation of through-wall microwave imaging,” in Proceedings of Antennas and Propagation Society International Symposium (2006), pp. 249–252.

Di Vico, M.

M. Di Vico, F. Frezza, L. Pajewski, and G. Schettini, “Scattering by buried dielectric cylindrical structures,” Radio Sci. 40, RS6S18 (2005).
[CrossRef]

Elsherbeni, A. Z.

A. Z. Elsherbeni, “A comparative study of two-dimensional multiple scattering techniques,” Radio Sci. 29, 1023–1033 (1994).
[CrossRef]

Fiaz, M. A.

M. A. Fiaz, F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Asymptotic solution for a scattered field by cylindrical objects buried beneath a slightly rough surface,” Near Surf. Geophys. 11, 177–183 (2013).

M. A. Fiaz, F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Scattering by a circular cylinder buried under a slightly rough surface: the cylindrical-wave approach,” IEEE Trans. Antennas Propag. 60, 2834–2842 (2012).
[CrossRef]

Frezza, F.

F. Frezza, L. Pajewski, C. Ponti, G. Schettini, and N. Tedeschi, “Electromagnetic scattering by a metallic cylinder buried in a lossy medium with the cylindrical wave approach,” IEEE Geosci. Remote Sens. Lett. 10, 179–183 (2013).
[CrossRef]

M. A. Fiaz, F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Asymptotic solution for a scattered field by cylindrical objects buried beneath a slightly rough surface,” Near Surf. Geophys. 11, 177–183 (2013).

F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Accurate wire-grid modelling of buried conducting cylindrical scatterers,” Nondestr. Test. Evaluation 27, 199–207 (2012), Special Issue on Civil Engineering Applications of Ground Penetrating Radar.

M. A. Fiaz, F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Scattering by a circular cylinder buried under a slightly rough surface: the cylindrical-wave approach,” IEEE Trans. Antennas Propag. 60, 2834–2842 (2012).
[CrossRef]

F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Line source scattering by buried perfectly conducting circular cylinders,” Int. J. Ant. Propag. 2012, 261818 (2012).
[CrossRef]

F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Scattering by dielectric circular cylinders in a dielectric slab,” J. Opt. Soc. Am. A 27, 687–695 (2010).
[CrossRef]

F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Scattering by perfectly conducting circular cylinders buried in a dielectric slab through the cylindrical wave approach,” IEEE Trans. Antennas Propag. 57, 1208–1217 (2009).
[CrossRef]

M. Di Vico, F. Frezza, L. Pajewski, and G. Schettini, “Scattering by buried dielectric cylindrical structures,” Radio Sci. 40, RS6S18 (2005).
[CrossRef]

F. Frezza, L. Pajewski, C. Ponti, G. Schettini, and N. Tedeschi, “Cylindrical-wave approach for electromagnetic scattering by subsurface metallic targets in a lossy medium,” J. Appl. Geophys. doi: 10.1016/j.jappgeo.2013.01.004 (2013) (to be published).
[CrossRef]

Giannopoulos, A.

A. Giannopoulos, “Modelling ground penetrating radar by GprMax,” Constr. Build. Mater. 19, 755–762 (2005).
[CrossRef]

Ho, A. T.-S.

A. T.-S. Ho, W. H. Tham, and K. S. Low, “Through-wall radar image reconstruction based on time-domain transient signals in the presence of noise,” in Proceedings of IEEE International Symposium on Geoscience Remote Sensing (IEEE, 2005), pp. 4271–4274.

Lei, C.

C. Lei and S. Ouyang, “Through-wall surveillance using ultra-wideband short pulse radar: numerical simulation,” in Proceedings of 2nd IEEE International Conference on Industrial and Electronics Applications (2007), pp. 1551–1554.

Low, K. S.

A. T.-S. Ho, W. H. Tham, and K. S. Low, “Through-wall radar image reconstruction based on time-domain transient signals in the presence of noise,” in Proceedings of IEEE International Symposium on Geoscience Remote Sensing (IEEE, 2005), pp. 4271–4274.

Ludwig, A. C.

A. C. Ludwig, “Wire grid modeling of surfaces,” IEEE Trans. Antennas Propag. 35, 1045–1048 (1987).
[CrossRef]

Marhefka, R. J.

P. C. Chang, R. J. Burkholder, J. L. Volakis, R. J. Marhefka, and Y. Bayram, “High-frequency EM characterization of through-wall building imaging,” IEEE Trans. Geosci. Remote Sens. 47, 1375–1387 (2009).
[CrossRef]

Ouyang, S.

C. Lei and S. Ouyang, “Through-wall surveillance using ultra-wideband short pulse radar: numerical simulation,” in Proceedings of 2nd IEEE International Conference on Industrial and Electronics Applications (2007), pp. 1551–1554.

Pajewski, L.

M. A. Fiaz, F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Asymptotic solution for a scattered field by cylindrical objects buried beneath a slightly rough surface,” Near Surf. Geophys. 11, 177–183 (2013).

F. Frezza, L. Pajewski, C. Ponti, G. Schettini, and N. Tedeschi, “Electromagnetic scattering by a metallic cylinder buried in a lossy medium with the cylindrical wave approach,” IEEE Geosci. Remote Sens. Lett. 10, 179–183 (2013).
[CrossRef]

F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Line source scattering by buried perfectly conducting circular cylinders,” Int. J. Ant. Propag. 2012, 261818 (2012).
[CrossRef]

M. A. Fiaz, F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Scattering by a circular cylinder buried under a slightly rough surface: the cylindrical-wave approach,” IEEE Trans. Antennas Propag. 60, 2834–2842 (2012).
[CrossRef]

F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Accurate wire-grid modelling of buried conducting cylindrical scatterers,” Nondestr. Test. Evaluation 27, 199–207 (2012), Special Issue on Civil Engineering Applications of Ground Penetrating Radar.

F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Scattering by dielectric circular cylinders in a dielectric slab,” J. Opt. Soc. Am. A 27, 687–695 (2010).
[CrossRef]

F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Scattering by perfectly conducting circular cylinders buried in a dielectric slab through the cylindrical wave approach,” IEEE Trans. Antennas Propag. 57, 1208–1217 (2009).
[CrossRef]

M. Di Vico, F. Frezza, L. Pajewski, and G. Schettini, “Scattering by buried dielectric cylindrical structures,” Radio Sci. 40, RS6S18 (2005).
[CrossRef]

F. Frezza, L. Pajewski, C. Ponti, G. Schettini, and N. Tedeschi, “Cylindrical-wave approach for electromagnetic scattering by subsurface metallic targets in a lossy medium,” J. Appl. Geophys. doi: 10.1016/j.jappgeo.2013.01.004 (2013) (to be published).
[CrossRef]

Ponti, C.

M. A. Fiaz, F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Asymptotic solution for a scattered field by cylindrical objects buried beneath a slightly rough surface,” Near Surf. Geophys. 11, 177–183 (2013).

F. Frezza, L. Pajewski, C. Ponti, G. Schettini, and N. Tedeschi, “Electromagnetic scattering by a metallic cylinder buried in a lossy medium with the cylindrical wave approach,” IEEE Geosci. Remote Sens. Lett. 10, 179–183 (2013).
[CrossRef]

M. A. Fiaz, F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Scattering by a circular cylinder buried under a slightly rough surface: the cylindrical-wave approach,” IEEE Trans. Antennas Propag. 60, 2834–2842 (2012).
[CrossRef]

F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Line source scattering by buried perfectly conducting circular cylinders,” Int. J. Ant. Propag. 2012, 261818 (2012).
[CrossRef]

F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Accurate wire-grid modelling of buried conducting cylindrical scatterers,” Nondestr. Test. Evaluation 27, 199–207 (2012), Special Issue on Civil Engineering Applications of Ground Penetrating Radar.

F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Scattering by dielectric circular cylinders in a dielectric slab,” J. Opt. Soc. Am. A 27, 687–695 (2010).
[CrossRef]

F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Scattering by perfectly conducting circular cylinders buried in a dielectric slab through the cylindrical wave approach,” IEEE Trans. Antennas Propag. 57, 1208–1217 (2009).
[CrossRef]

F. Frezza, L. Pajewski, C. Ponti, G. Schettini, and N. Tedeschi, “Cylindrical-wave approach for electromagnetic scattering by subsurface metallic targets in a lossy medium,” J. Appl. Geophys. doi: 10.1016/j.jappgeo.2013.01.004 (2013) (to be published).
[CrossRef]

Sarabandi, K.

M. Dehmollaian and K. Sarabandi, “Hybrid FDTD and ray optics approximation for simulation of through-wall microwave imaging,” in Proceedings of Antennas and Propagation Society International Symposium (2006), pp. 249–252.

Schettini, G.

F. Frezza, L. Pajewski, C. Ponti, G. Schettini, and N. Tedeschi, “Electromagnetic scattering by a metallic cylinder buried in a lossy medium with the cylindrical wave approach,” IEEE Geosci. Remote Sens. Lett. 10, 179–183 (2013).
[CrossRef]

M. A. Fiaz, F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Asymptotic solution for a scattered field by cylindrical objects buried beneath a slightly rough surface,” Near Surf. Geophys. 11, 177–183 (2013).

F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Accurate wire-grid modelling of buried conducting cylindrical scatterers,” Nondestr. Test. Evaluation 27, 199–207 (2012), Special Issue on Civil Engineering Applications of Ground Penetrating Radar.

F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Line source scattering by buried perfectly conducting circular cylinders,” Int. J. Ant. Propag. 2012, 261818 (2012).
[CrossRef]

M. A. Fiaz, F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Scattering by a circular cylinder buried under a slightly rough surface: the cylindrical-wave approach,” IEEE Trans. Antennas Propag. 60, 2834–2842 (2012).
[CrossRef]

F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Scattering by dielectric circular cylinders in a dielectric slab,” J. Opt. Soc. Am. A 27, 687–695 (2010).
[CrossRef]

F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Scattering by perfectly conducting circular cylinders buried in a dielectric slab through the cylindrical wave approach,” IEEE Trans. Antennas Propag. 57, 1208–1217 (2009).
[CrossRef]

M. Di Vico, F. Frezza, L. Pajewski, and G. Schettini, “Scattering by buried dielectric cylindrical structures,” Radio Sci. 40, RS6S18 (2005).
[CrossRef]

F. Frezza, L. Pajewski, C. Ponti, G. Schettini, and N. Tedeschi, “Cylindrical-wave approach for electromagnetic scattering by subsurface metallic targets in a lossy medium,” J. Appl. Geophys. doi: 10.1016/j.jappgeo.2013.01.004 (2013) (to be published).
[CrossRef]

Sneddon, I. N.

I. N. Sneddon, Mixed Boundary Value Problems in Potential Theory (North-Holland, 1966).

Soldovieri, F.

F. Soldovieri and R. Solimene, “Through-wall imaging via a linear inverse scattering algorithm,” IEEE Geosci. Remote Sens. Lett. 4, 513–517 (2007).
[CrossRef]

Solimene, R.

F. Soldovieri and R. Solimene, “Through-wall imaging via a linear inverse scattering algorithm,” IEEE Geosci. Remote Sens. Lett. 4, 513–517 (2007).
[CrossRef]

Tedeschi, N.

F. Frezza, L. Pajewski, C. Ponti, G. Schettini, and N. Tedeschi, “Electromagnetic scattering by a metallic cylinder buried in a lossy medium with the cylindrical wave approach,” IEEE Geosci. Remote Sens. Lett. 10, 179–183 (2013).
[CrossRef]

F. Frezza, L. Pajewski, C. Ponti, G. Schettini, and N. Tedeschi, “Cylindrical-wave approach for electromagnetic scattering by subsurface metallic targets in a lossy medium,” J. Appl. Geophys. doi: 10.1016/j.jappgeo.2013.01.004 (2013) (to be published).
[CrossRef]

Tham, W. H.

A. T.-S. Ho, W. H. Tham, and K. S. Low, “Through-wall radar image reconstruction based on time-domain transient signals in the presence of noise,” in Proceedings of IEEE International Symposium on Geoscience Remote Sensing (IEEE, 2005), pp. 4271–4274.

Volakis, J. L.

P. C. Chang, R. J. Burkholder, J. L. Volakis, R. J. Marhefka, and Y. Bayram, “High-frequency EM characterization of through-wall building imaging,” IEEE Trans. Geosci. Remote Sens. 47, 1375–1387 (2009).
[CrossRef]

Constr. Build. Mater. (1)

A. Giannopoulos, “Modelling ground penetrating radar by GprMax,” Constr. Build. Mater. 19, 755–762 (2005).
[CrossRef]

IEEE Geosci. Remote Sens. Lett. (2)

F. Soldovieri and R. Solimene, “Through-wall imaging via a linear inverse scattering algorithm,” IEEE Geosci. Remote Sens. Lett. 4, 513–517 (2007).
[CrossRef]

F. Frezza, L. Pajewski, C. Ponti, G. Schettini, and N. Tedeschi, “Electromagnetic scattering by a metallic cylinder buried in a lossy medium with the cylindrical wave approach,” IEEE Geosci. Remote Sens. Lett. 10, 179–183 (2013).
[CrossRef]

IEEE Trans. Antennas Propag. (3)

M. A. Fiaz, F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Scattering by a circular cylinder buried under a slightly rough surface: the cylindrical-wave approach,” IEEE Trans. Antennas Propag. 60, 2834–2842 (2012).
[CrossRef]

F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Scattering by perfectly conducting circular cylinders buried in a dielectric slab through the cylindrical wave approach,” IEEE Trans. Antennas Propag. 57, 1208–1217 (2009).
[CrossRef]

A. C. Ludwig, “Wire grid modeling of surfaces,” IEEE Trans. Antennas Propag. 35, 1045–1048 (1987).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (1)

P. C. Chang, R. J. Burkholder, J. L. Volakis, R. J. Marhefka, and Y. Bayram, “High-frequency EM characterization of through-wall building imaging,” IEEE Trans. Geosci. Remote Sens. 47, 1375–1387 (2009).
[CrossRef]

Int. J. Ant. Propag. (1)

F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Line source scattering by buried perfectly conducting circular cylinders,” Int. J. Ant. Propag. 2012, 261818 (2012).
[CrossRef]

J. Opt. Soc. Am. A (1)

Near Surf. Geophys. (1)

M. A. Fiaz, F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Asymptotic solution for a scattered field by cylindrical objects buried beneath a slightly rough surface,” Near Surf. Geophys. 11, 177–183 (2013).

Nondestr. Test. Evaluation (1)

F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Accurate wire-grid modelling of buried conducting cylindrical scatterers,” Nondestr. Test. Evaluation 27, 199–207 (2012), Special Issue on Civil Engineering Applications of Ground Penetrating Radar.

Radio Sci. (2)

M. Di Vico, F. Frezza, L. Pajewski, and G. Schettini, “Scattering by buried dielectric cylindrical structures,” Radio Sci. 40, RS6S18 (2005).
[CrossRef]

A. Z. Elsherbeni, “A comparative study of two-dimensional multiple scattering techniques,” Radio Sci. 29, 1023–1033 (1994).
[CrossRef]

Other (8)

C. Lei and S. Ouyang, “Through-wall surveillance using ultra-wideband short pulse radar: numerical simulation,” in Proceedings of 2nd IEEE International Conference on Industrial and Electronics Applications (2007), pp. 1551–1554.

M. Dehmollaian and K. Sarabandi, “Hybrid FDTD and ray optics approximation for simulation of through-wall microwave imaging,” in Proceedings of Antennas and Propagation Society International Symposium (2006), pp. 249–252.

D. J. Daniels, Surface Penetrating Radar, 2nd ed. (IEE, 2004).

M. G. Amin, ed., Through-the Wall Radar Imaging (CRC Press, 2010).

E. J. Baranoski, “Through wall imaging: historical perspective and future directions,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (2008), pp. 5173–5176.

A. T.-S. Ho, W. H. Tham, and K. S. Low, “Through-wall radar image reconstruction based on time-domain transient signals in the presence of noise,” in Proceedings of IEEE International Symposium on Geoscience Remote Sensing (IEEE, 2005), pp. 4271–4274.

F. Frezza, L. Pajewski, C. Ponti, G. Schettini, and N. Tedeschi, “Cylindrical-wave approach for electromagnetic scattering by subsurface metallic targets in a lossy medium,” J. Appl. Geophys. doi: 10.1016/j.jappgeo.2013.01.004 (2013) (to be published).
[CrossRef]

I. N. Sneddon, Mixed Boundary Value Problems in Potential Theory (North-Holland, 1966).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Geometry of the scattering problem.

Fig. 2.
Fig. 2.

Decomposition of the total scattered field.

Fig. 3.
Fig. 3.

Simulation of a perfectly conducting cylinder placed below a wall of thickness Λ=5 and refraction index n1=1.5 along a line in ξ=0.1 (radius of the reference cylinder R=1, center in (10, 0); n2=2; normal incidence; TM polarization).

Fig. 4.
Fig. 4.

Geometry of a through-wall scattering scenario.

Fig. 5.
Fig. 5.

Modulus of the electromagnetic field in medium 2 for a perfectly conducting cylinder placed below a wall of thickness h=11cm and refraction index n1=2, at four frequencies: (a) 800 MHz; (b) 1200 MHz; (c) 1600 MHz; (d) 2000 MHz [radius a=5cm and center in (41 cm, 0); normal incidence; TM polarization].

Fig. 6.
Fig. 6.

Modulus of the electromagnetic field in medium 2 for a perfectly conducting cylinder buried in a semi-infinite medium with refraction index n2=2, below a layer of thickness h=20cm and refraction index n1=1.5, at two frequencies: (a) 600 MHz; (b) 1200 MHz [radius a=10cm; center (1.2 m, 0); normal incidence; TM polarization].

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

Vi(ξ,ζ)=V0ei(niξ+niζ).
Vr(ξ,ζ)=V0Γ01(ni)ei(niξ+niζ),
Vt1(ξ,ζ)=V0T01(ni)ein1[nt1(ξΛ)+nt1ζ],
Vr1(ξ,ζ)=V0T01(ni)Γ12(ni)ein1[nt1(ξΛ)+nt1ζ],
Vt2(ξ,ζ)=V0T01(ni)T12(ni)ein2[nt2(ξΛ)+nt2ζ].
Vt2(ξ,ζ)=V0T01(ni)T12(ni)ein2[nt2(χpΛ)+nt2ηp]=+iJ(n2ρp)eiθpeiφt2.
Vs(ξ,ζ)=V0p=1Nm=+cpmCWm(n2ξp,n2ζp).
Hm(1)(n2ρq)eimθq=eimθqp=+iHm+(1)(n2ρqp)×eiθqpJ(n2ρp)eiθp
Vs(ξ,ζ)=V0=+J(n2ρp)eiθpq=1Nm=+cqm×[CWm(n2ξqp,n2ζqp)(1δqp)+H(1)(n2ρp)J(n2ρp)δqpδm],
CWm(ξ,ζ)=12π+Fm(ξ,n)einζdn.
Fm(ξ,n)=21(n)2ei|ξ|1(n)2{eimarccosn,ξ0eimarccosn,ξ0,
RWm(ξ,ζ)=12π+Γ21(n)Fm(ξ,n)einζdn,
Vsr(ξ,ζ)=V0=+J(n2ρp)eiθpq=1Nm=+cqm×RWm+[n2(χpχq+2Λ),n2(ηpηq)].
TWm(ξ,ζ;χ)=12π+T21(n)Fm(n2ξ,n)ein11(n2n/n1)2(ξ+χq)ein2n(ζηq)dn,
Vst(ξ,ζ)=V0q=1Nm=+cqmTWm(ξ,ζ;χq).
TTWm(ξ,ζ;χ)=12π+T10(n)T21(n)Fm[n2(χqΛ),n]×ein11(n2n/n1)2Λei1(n2n)2ξein2n(ζηq)dn.
Vstt(ξ,ζ)=V0q=1Nm=+cqmTTWm(ξ,ζ;χq).
TRWm(j)(ξ,ζ;χq,Λ)=12π+T21(n)[Γ10(n)]g[Γ12(n)]rFm[n2(χqΛ),n]×ein11(n2n/n1)2[(1)j+1ξ+hΛ]ein2n(ζηq)dn,h=j,ifj=2,4,6,rmh=j+1,ifj=1,3,5,,
Vstr(j)(ξ,ζ)=V0q=1Nm=+cqmTRWm(j)(ξ,ζ;χq,Λ)j=1,2,3,.
TRTWm2,2(j)(ξ,ζ;χq,Λ)=12π+T21(n)T10(n)[Γ10(n)](j+1)2[Γ12(n)](j1)2Fm[n2(ξ+χq2Λ),n]×ein11(n2n/n1)2(j+1)Λein2n(ζηq)dn,j=1,3,5,.
Vstrt(j)2,2(ξ,ζ)=V0q=1Nm=+cqmTRTWm2,2(j)(ξ,ζ;χq,Λ)j=1,3,5,.
Vstrt(j)2,2(ξ,ζ)=V0=+J(n2ρp)eiθpq=1Nm=+cqm×TRTWm+2,2(j)[n2(χp+χq2Λ),n2(ηpηq);Λ],j=1,3,5,.
TRTWm2,0(j)(ξ,ζ;χq,Λ)=12π+T10(n)[Γ10(n)]j2[Γ12(n)]j2Fm[n2(χqΛ),n]×ein11(n2n/n1)2(j+1)Λei1(n2n)2ξein2n(ζηq)dn,j=2,4,6,.
Vstrt(j)2,0(ξ,ζ)=V0q=1Nm=+cqmTRTWm2,0(j)(ξ,ζ;χq,Λ)j=2,4,6,.
[Vt2+Vs+Vsr+j=1joddVstrt(j)2,2]ρt=k0αt=0,withp=1,,N.
[ρt(Vt2+Vs+Vsr+j=1joddVstrt(j)2,2)]ρp=k0αp=0,withp=1,,N.
q=1Nm=+Amqp(TM,TE)cqm=Bp(TM,TE){=0,±1,,±p=1,,N,
Amqp(TM,TE)=iG(TM,TE){CWm(n2ξqp,n2ζqp)(1δqp)+δqpδmG(TM,TE)(n2ρp)+j=1+RWm+[n2(χp+χq2Λ),n2(ηpηq)]+j=1joddTRTWm+2,2(j)[n2(χp+χq2Λ),n2(ηpηq);(j+1)Λ]},
Bp(TM,TE)=G(TM,TE){T01(ni)T12(ni)ein2[nt2(χpΛ)+nt2ηp]eiφt2},
2πR=N2πα,

Metrics