K. F. Ren, C. Rozé, and T. Girasole, “Scattering and transversal divergence of anellipsoidal particle by using vectorial complex raymodel,” J. Quant. Spectrosc. Radiat. Transfer 113, 2419–2423 (2012).

[CrossRef]

K. Jiang, X. Han, and K. F. Ren, “Scattering from an elliptical cylinder by using the vectorial complex ray model,” Appl. Opt. 51, 8159–8168 (2012).

[CrossRef]

F. Xu, K. F. Ren, and X. Cai, “Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. I. By a spherical particle,” Appl. Opt. 45, 4990–4999 (2006).

[CrossRef]

F. Xu, K. F. Ren, X. Cai, and J. Shen, “Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. II. By a spheroidal particle with end-on incidence,” Appl. Opt. 45, 5000–5009 (2006).

[CrossRef]

R. Goldman, “Curvature formulas for implicit curves and surfaces,” Comput. Aid. Geom. Des. 22, 632–658 (2005).

[CrossRef]

L. Mees, K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation, numerical results,” Appl. Opt. 38, 1867–1876 (1999).

[CrossRef]

G. Gouesbet and L. Mees, “Generalized Lorenz–Mie theory for infinitely long elliptical cylinders,” J. Opt. Soc. Am. A 16, 1333–1341 (1999).

[CrossRef]

G. Gouesbet, L. Mees, and G. Gréhan, “Partial wave expansions of higher-order Gaussian beams in elliptical cylindrical coordinates,” J. Opt. A 1, 121–132 (1999).

[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Description of arbitrary shaped beams in elliptical cylinder coordinates, by using a plane wave spectrum approach,” Opt. Commun. 161, 63–78 (1999).

[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “The structure of generalized Lorenz–Mie theory for elliptical infinite cylinders,” Part. Part. Syst. Charact. 16, 3–10 (1999).

[CrossRef]

C. L. Adler, J. A. Lock, and B. R. Stone, “Rainbow scattering by a cylinder with a nearly elliptical cross section,” Appl. Opt. 37, 1540–1550 (1998).

[CrossRef]

G. Gouesbet, L. Mees, and G. Gréhan, “Partial wave description of shaped beams in elliptical cylinder coordinates,” J. Opt. Soc. Am. A 15, 3028–3038 (1998).

[CrossRef]

G. Gouesbet, “Interaction between an infinite cylinder and an arbitrary shaped beam,” Appl. Opt. 36, 4292–4304 (1997).

[CrossRef]

J. A. Lock, “Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder,” J. Opt. Soc. Am. A 14, 640–652 (1997).

[CrossRef]

J. A. Lock, “Morphology-dependent resonances of an infinitely long circular cylinder illuminated by a diagonally incident plane wave or a focused Gaussian beam,” J. Opt. Soc. Am. A 14, 653–661 (1997).

[CrossRef]

C. L. Adler, J. A. Lock, B. R. Stone, and C. J. Garcia, “High-order interior caustics produced in scattering of a diagonally incident plane wave by a circular cylinder,” J. Opt. Soc. Am. A 14, 1305–1315 (1997).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in GLMT-framework, formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

S. Kozaki, “A new expression for the scattering of a Gaussian beam by a conducting cylinder,” IEEE Trans. Antennas Propag. 30, 881–887 (1982).

[CrossRef]

S. Kozaki, “Scattering of a Gaussian beam by a homogeneous dielectric cylinder,” J. Appl. Phys. 53, 7195–7200 (1982).

[CrossRef]

T. Kojima and Y. Yanagiuchi, “Scattering of an offset two-dimensional Gaussian beam wave by a cylinder,” J. Appl. Phys. 50, 41–46 (1979).

[CrossRef]

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979).

[CrossRef]

J. R. Wait, “Scattering of a plane wave from a circular dielectric cylinder at oblique incidence,” Can. J. Phys. 33, 189–195 (1955).

[CrossRef]

C. L. Adler, J. A. Lock, and B. R. Stone, “Rainbow scattering by a cylinder with a nearly elliptical cross section,” Appl. Opt. 37, 1540–1550 (1998).

[CrossRef]

C. L. Adler, J. A. Lock, B. R. Stone, and C. J. Garcia, “High-order interior caustics produced in scattering of a diagonally incident plane wave by a circular cylinder,” J. Opt. Soc. Am. A 14, 1305–1315 (1997).

[CrossRef]

F. Xu, K. F. Ren, and X. Cai, “Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. I. By a spherical particle,” Appl. Opt. 45, 4990–4999 (2006).

[CrossRef]

F. Xu, K. F. Ren, X. Cai, and J. Shen, “Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. II. By a spheroidal particle with end-on incidence,” Appl. Opt. 45, 5000–5009 (2006).

[CrossRef]

E. Zimmermann, R. Dändliker, N. Souli, and B. Krattiker, “Scattering of an off-axis Gaussian beam by a dielectric cylinder compared with a rigorous electromagnetic approach,” J. Opt. Soc. Am. A 12, 398–403 (1995).

[CrossRef]

B. Krattiger, A. Bruno, H. Widmer, M. Geiser, and R. Dändliker, “Laser-based refractive-index detection for capillary electrophoresis: ray-tracing interference theory,” Appl. Opt. 32, 956–965 (1993).

[CrossRef]

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979).

[CrossRef]

K. F. Ren, C. Rozé, and T. Girasole, “Scattering and transversal divergence of anellipsoidal particle by using vectorial complex raymodel,” J. Quant. Spectrosc. Radiat. Transfer 113, 2419–2423 (2012).

[CrossRef]

K. F. Ren, F. Onofri, C. Rozé, and T. Girasole, “Vectorial complex ray model and application to two-dimensional scattering of plane wave by a spheroidal particle,” Opt. Lett. 36, 370–372 (2011).

[CrossRef]

R. Goldman, “Curvature formulas for implicit curves and surfaces,” Comput. Aid. Geom. Des. 22, 632–658 (2005).

[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Localized approximation for Gaussian beams in elliptical cylinder coordinates,” Appl. Opt. 39, 1008–1025 (2000).

[CrossRef]

L. Mees, K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation, numerical results,” Appl. Opt. 38, 1867–1876 (1999).

[CrossRef]

G. Gouesbet and L. Mees, “Generalized Lorenz–Mie theory for infinitely long elliptical cylinders,” J. Opt. Soc. Am. A 16, 1333–1341 (1999).

[CrossRef]

G. Gouesbet, L. Mees, and G. Gréhan, “Partial wave expansions of higher-order Gaussian beams in elliptical cylindrical coordinates,” J. Opt. A 1, 121–132 (1999).

[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Description of arbitrary shaped beams in elliptical cylinder coordinates, by using a plane wave spectrum approach,” Opt. Commun. 161, 63–78 (1999).

[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “The structure of generalized Lorenz–Mie theory for elliptical infinite cylinders,” Part. Part. Syst. Charact. 16, 3–10 (1999).

[CrossRef]

G. Gouesbet, L. Mees, and G. Gréhan, “Partial wave description of shaped beams in elliptical cylinder coordinates,” J. Opt. Soc. Am. A 15, 3028–3038 (1998).

[CrossRef]

G. Gouesbet, “Interaction between an infinite cylinder and an arbitrary shaped beam,” Appl. Opt. 36, 4292–4304 (1997).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in GLMT-framework, formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Localized approximation for Gaussian beams in elliptical cylinder coordinates,” Appl. Opt. 39, 1008–1025 (2000).

[CrossRef]

L. Mees, K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation, numerical results,” Appl. Opt. 38, 1867–1876 (1999).

[CrossRef]

G. Gouesbet, L. Mees, and G. Gréhan, “Partial wave expansions of higher-order Gaussian beams in elliptical cylindrical coordinates,” J. Opt. A 1, 121–132 (1999).

[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Description of arbitrary shaped beams in elliptical cylinder coordinates, by using a plane wave spectrum approach,” Opt. Commun. 161, 63–78 (1999).

[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “The structure of generalized Lorenz–Mie theory for elliptical infinite cylinders,” Part. Part. Syst. Charact. 16, 3–10 (1999).

[CrossRef]

G. Gouesbet, L. Mees, and G. Gréhan, “Partial wave description of shaped beams in elliptical cylinder coordinates,” J. Opt. Soc. Am. A 15, 3028–3038 (1998).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in GLMT-framework, formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

T. Kojima and Y. Yanagiuchi, “Scattering of an offset two-dimensional Gaussian beam wave by a cylinder,” J. Appl. Phys. 50, 41–46 (1979).

[CrossRef]

S. Kozaki, “A new expression for the scattering of a Gaussian beam by a conducting cylinder,” IEEE Trans. Antennas Propag. 30, 881–887 (1982).

[CrossRef]

S. Kozaki, “Scattering of a Gaussian beam by a homogeneous dielectric cylinder,” J. Appl. Phys. 53, 7195–7200 (1982).

[CrossRef]

C. L. Adler, J. A. Lock, and B. R. Stone, “Rainbow scattering by a cylinder with a nearly elliptical cross section,” Appl. Opt. 37, 1540–1550 (1998).

[CrossRef]

C. L. Adler, J. A. Lock, B. R. Stone, and C. J. Garcia, “High-order interior caustics produced in scattering of a diagonally incident plane wave by a circular cylinder,” J. Opt. Soc. Am. A 14, 1305–1315 (1997).

[CrossRef]

J. A. Lock, “Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder,” J. Opt. Soc. Am. A 14, 640–652 (1997).

[CrossRef]

J. A. Lock, “Morphology-dependent resonances of an infinitely long circular cylinder illuminated by a diagonally incident plane wave or a focused Gaussian beam,” J. Opt. Soc. Am. A 14, 653–661 (1997).

[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Localized approximation for Gaussian beams in elliptical cylinder coordinates,” Appl. Opt. 39, 1008–1025 (2000).

[CrossRef]

L. Mees, K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation, numerical results,” Appl. Opt. 38, 1867–1876 (1999).

[CrossRef]

G. Gouesbet and L. Mees, “Generalized Lorenz–Mie theory for infinitely long elliptical cylinders,” J. Opt. Soc. Am. A 16, 1333–1341 (1999).

[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Description of arbitrary shaped beams in elliptical cylinder coordinates, by using a plane wave spectrum approach,” Opt. Commun. 161, 63–78 (1999).

[CrossRef]

G. Gouesbet, L. Mees, and G. Gréhan, “Partial wave expansions of higher-order Gaussian beams in elliptical cylindrical coordinates,” J. Opt. A 1, 121–132 (1999).

[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “The structure of generalized Lorenz–Mie theory for elliptical infinite cylinders,” Part. Part. Syst. Charact. 16, 3–10 (1999).

[CrossRef]

G. Gouesbet, L. Mees, and G. Gréhan, “Partial wave description of shaped beams in elliptical cylinder coordinates,” J. Opt. Soc. Am. A 15, 3028–3038 (1998).

[CrossRef]

K. Jiang, X. Han, and K. F. Ren, “Scattering from an elliptical cylinder by using the vectorial complex ray model,” Appl. Opt. 51, 8159–8168 (2012).

[CrossRef]

K. F. Ren, C. Rozé, and T. Girasole, “Scattering and transversal divergence of anellipsoidal particle by using vectorial complex raymodel,” J. Quant. Spectrosc. Radiat. Transfer 113, 2419–2423 (2012).

[CrossRef]

K. F. Ren, F. Onofri, C. Rozé, and T. Girasole, “Vectorial complex ray model and application to two-dimensional scattering of plane wave by a spheroidal particle,” Opt. Lett. 36, 370–372 (2011).

[CrossRef]

F. Xu, K. F. Ren, and X. Cai, “Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. I. By a spherical particle,” Appl. Opt. 45, 4990–4999 (2006).

[CrossRef]

F. Xu, K. F. Ren, X. Cai, and J. Shen, “Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. II. By a spheroidal particle with end-on incidence,” Appl. Opt. 45, 5000–5009 (2006).

[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Localized approximation for Gaussian beams in elliptical cylinder coordinates,” Appl. Opt. 39, 1008–1025 (2000).

[CrossRef]

L. Mees, K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation, numerical results,” Appl. Opt. 38, 1867–1876 (1999).

[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “The structure of generalized Lorenz–Mie theory for elliptical infinite cylinders,” Part. Part. Syst. Charact. 16, 3–10 (1999).

[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Description of arbitrary shaped beams in elliptical cylinder coordinates, by using a plane wave spectrum approach,” Opt. Commun. 161, 63–78 (1999).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in GLMT-framework, formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

K. F. Ren, C. Rozé, and T. Girasole, “Scattering and transversal divergence of anellipsoidal particle by using vectorial complex raymodel,” J. Quant. Spectrosc. Radiat. Transfer 113, 2419–2423 (2012).

[CrossRef]

K. F. Ren, F. Onofri, C. Rozé, and T. Girasole, “Vectorial complex ray model and application to two-dimensional scattering of plane wave by a spheroidal particle,” Opt. Lett. 36, 370–372 (2011).

[CrossRef]

C. L. Adler, J. A. Lock, and B. R. Stone, “Rainbow scattering by a cylinder with a nearly elliptical cross section,” Appl. Opt. 37, 1540–1550 (1998).

[CrossRef]

C. L. Adler, J. A. Lock, B. R. Stone, and C. J. Garcia, “High-order interior caustics produced in scattering of a diagonally incident plane wave by a circular cylinder,” J. Opt. Soc. Am. A 14, 1305–1315 (1997).

[CrossRef]

J. R. Wait, “Scattering of a plane wave from a circular dielectric cylinder at oblique incidence,” Can. J. Phys. 33, 189–195 (1955).

[CrossRef]

F. Xu, K. F. Ren, and X. Cai, “Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. I. By a spherical particle,” Appl. Opt. 45, 4990–4999 (2006).

[CrossRef]

F. Xu, K. F. Ren, X. Cai, and J. Shen, “Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. II. By a spheroidal particle with end-on incidence,” Appl. Opt. 45, 5000–5009 (2006).

[CrossRef]

T. Kojima and Y. Yanagiuchi, “Scattering of an offset two-dimensional Gaussian beam wave by a cylinder,” J. Appl. Phys. 50, 41–46 (1979).

[CrossRef]

D. Marcuse, “Light scattering from elliptical fibers,” Appl. Opt. 13, 1903–1905 (1974).

[CrossRef]

A. R. Steinhardt and L. Fukshansky, “Geometrical optics approach to the intensity distribution in finite cylindrical media,” Appl. Opt. 26, 3778–3789 (1987).

[CrossRef]

E. A. Hovenac, “Calculation of far-field scattering from nonspherical particles using a geometrical optics approach,” Appl. Opt. 30, 4739–4746 (1991).

[CrossRef]

B. Krattiger, A. Bruno, H. Widmer, M. Geiser, and R. Dändliker, “Laser-based refractive-index detection for capillary electrophoresis: ray-tracing interference theory,” Appl. Opt. 32, 956–965 (1993).

[CrossRef]

G. Gouesbet, “Interaction between an infinite cylinder and an arbitrary shaped beam,” Appl. Opt. 36, 4292–4304 (1997).

[CrossRef]

C. L. Adler, J. A. Lock, and B. R. Stone, “Rainbow scattering by a cylinder with a nearly elliptical cross section,” Appl. Opt. 37, 1540–1550 (1998).

[CrossRef]

L. Mees, K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation, numerical results,” Appl. Opt. 38, 1867–1876 (1999).

[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Localized approximation for Gaussian beams in elliptical cylinder coordinates,” Appl. Opt. 39, 1008–1025 (2000).

[CrossRef]

J. Lock, “Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz–Mie theory. I. Localized model description of an on-axis tightly focused laser beam with spherical aberration,” Appl. Opt. 43, 2532–2544 (2004).

[CrossRef]

F. Xu, K. F. Ren, and X. Cai, “Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. I. By a spherical particle,” Appl. Opt. 45, 4990–4999 (2006).

[CrossRef]

F. Xu, K. F. Ren, X. Cai, and J. Shen, “Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. II. By a spheroidal particle with end-on incidence,” Appl. Opt. 45, 5000–5009 (2006).

[CrossRef]

K. Jiang, X. Han, and K. F. Ren, “Scattering from an elliptical cylinder by using the vectorial complex ray model,” Appl. Opt. 51, 8159–8168 (2012).

[CrossRef]

J. R. Wait, “Scattering of a plane wave from a circular dielectric cylinder at oblique incidence,” Can. J. Phys. 33, 189–195 (1955).

[CrossRef]

R. Goldman, “Curvature formulas for implicit curves and surfaces,” Comput. Aid. Geom. Des. 22, 632–658 (2005).

[CrossRef]

S. Kozaki, “A new expression for the scattering of a Gaussian beam by a conducting cylinder,” IEEE Trans. Antennas Propag. 30, 881–887 (1982).

[CrossRef]

S. Kozaki, “Scattering of a Gaussian beam by a homogeneous dielectric cylinder,” J. Appl. Phys. 53, 7195–7200 (1982).

[CrossRef]

T. Kojima and Y. Yanagiuchi, “Scattering of an offset two-dimensional Gaussian beam wave by a cylinder,” J. Appl. Phys. 50, 41–46 (1979).

[CrossRef]

G. Gouesbet, L. Mees, and G. Gréhan, “Partial wave expansions of higher-order Gaussian beams in elliptical cylindrical coordinates,” J. Opt. A 1, 121–132 (1999).

[CrossRef]

G. Gouesbet and L. Mees, “Generalized Lorenz–Mie theory for infinitely long elliptical cylinders,” J. Opt. Soc. Am. A 16, 1333–1341 (1999).

[CrossRef]

E. Zimmermann, R. Dändliker, N. Souli, and B. Krattiker, “Scattering of an off-axis Gaussian beam by a dielectric cylinder compared with a rigorous electromagnetic approach,” J. Opt. Soc. Am. A 12, 398–403 (1995).

[CrossRef]

J. A. Lock, “Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder,” J. Opt. Soc. Am. A 14, 640–652 (1997).

[CrossRef]

J. A. Lock, “Morphology-dependent resonances of an infinitely long circular cylinder illuminated by a diagonally incident plane wave or a focused Gaussian beam,” J. Opt. Soc. Am. A 14, 653–661 (1997).

[CrossRef]

C. L. Adler, J. A. Lock, B. R. Stone, and C. J. Garcia, “High-order interior caustics produced in scattering of a diagonally incident plane wave by a circular cylinder,” J. Opt. Soc. Am. A 14, 1305–1315 (1997).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in GLMT-framework, formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

G. Gouesbet, L. Mees, and G. Gréhan, “Partial wave description of shaped beams in elliptical cylinder coordinates,” J. Opt. Soc. Am. A 15, 3028–3038 (1998).

[CrossRef]

K. F. Ren, C. Rozé, and T. Girasole, “Scattering and transversal divergence of anellipsoidal particle by using vectorial complex raymodel,” J. Quant. Spectrosc. Radiat. Transfer 113, 2419–2423 (2012).

[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Description of arbitrary shaped beams in elliptical cylinder coordinates, by using a plane wave spectrum approach,” Opt. Commun. 161, 63–78 (1999).

[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “The structure of generalized Lorenz–Mie theory for elliptical infinite cylinders,” Part. Part. Syst. Charact. 16, 3–10 (1999).

[CrossRef]

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979).

[CrossRef]