Abstract

A hybrid antiresonant reflecting waveguide, type B (ARROW-B) plasmonic waveguide based on the resonant coupling between a guided dielectric mode and surface plasmon polariton wave is proposed. Employing the finite element method, hybrid modes including two bound supermodes are obtained at visible frequencies by varying the environmental refractive index. We investigate the propagation characteristics of hybrid modes, where the significant change of modal power by the symmetric bound mode is observed in plasmonic waveguide coupling suitable for highly sensitive detection of bulk refractive index change. Further, anomalous dispersion is shown by the antisymmetric bound mode which leads to large group velocity dispersion of 3.165×104ps/kmnm and, thus, makes this hybrid plasmonic waveguide ideal for observation of soliton generation.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef]
  2. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
    [CrossRef]
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
    [CrossRef]
  4. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  5. H. Raether, Surface Plasmons (Springer-Verlag, 1988).
  6. S. A. Maier, “Plasmonics: metal nanostructures for subwavelength photonic devices,” IEEE J. Sel. Top. Quantum Electron. 12, 1214–1220 (2006).
    [CrossRef]
  7. J. Homola, J. Cytroky, M. Skalsky, J. Hradilova, and P. Kolarova, “A surface plasmon resonance based integrated optical sensor,” Sens. Actuator B Chem. 38–39, 286–290 (1997).
    [CrossRef]
  8. J. Homola, Surface Plasmon Resonance Based Sensors, Springer Series on Chemical Sensors and Biosensors (Springer-Verlag, 2006).
  9. M. Piliarik and J. Homola, “Surface plasmon resnonance (SPR) sensors: approaching their limits?” Opt. Express 17, 16505–16517 (2009).
    [CrossRef]
  10. S. A. Maier, P. G. Kik, H. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle Plasmon waveguide,” Nat. Mater. 2, 229–232 (2009).
    [CrossRef]
  11. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plamson polaritons,” Opt. Express 13, 977–984 (2005).
    [CrossRef]
  12. Shruti, R. K. Sinha, T. Srivastava, and R. Bhattacharyya, “Propagation characteristics of coupled surface plasmon polaritons in PVDF slab waveguides at terahertz frequencies,” J. Opt. 15, 035001 (2013).
    [CrossRef]
  13. S. I. Bozhevolnvi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
    [CrossRef]
  14. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87061106 (2005).
    [CrossRef]
  15. M. Yan and M. Qiu, “Guided plasmon polariton at 2D metal comers,” J. Opt. Soc. Am. B 24, 2333–2343 (2007).
    [CrossRef]
  16. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31, 2133–2135 (2006).
    [CrossRef]
  17. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long range propagation,” Nat. Photonics 2, 496–500 (2008).
    [CrossRef]
  18. H. Chu, Y. A. Akimov, P. Bai, and E.-P. Li, “Hybrid dielectric loaded plasmonic waveguide and wavelength selective components for efficiently controlling light at subwavelength scale,” J. Opt. Soc. Am. B 28, 2895–2901 (2011).
    [CrossRef]
  19. V. Dillu, Shruti, T. Srivastava, and R. K. Sinha, “Propagation characteristics of silver nanorods based compact waveguides for plasmonic circuitry,” Phys. E 48, 75–79 (2013).
    [CrossRef]
  20. R. Slavador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Quantum Electron. 14, 1496–1501 (2008).
    [CrossRef]
  21. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17, 16646–16653 (2009).
    [CrossRef]
  22. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18, 12971–12979 (2010).
    [CrossRef]
  23. R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10, 105018 (2008).
    [CrossRef]
  24. J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmonic polariton waveguide on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
    [CrossRef]
  25. L. Chen, X. Li, and G. Wang, “A hybrid long-range plasmonic waveguide with subwavelength confinement,” Opt. Commun. 291, 400–404 (2013).
    [CrossRef]
  26. V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
    [CrossRef]
  27. T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides-numerical results and analytical expressions,” IEEE J. Quantum Electron. 28, 1689–1700 (1992).
    [CrossRef]
  28. Shruti, R. K. Sinha, and R. Bhattacharyya, “Anti-resonant reflecting photonic crystal waveguides (ARRPCW): modeling and design,” Opt. Quantum Electron. 41, 181–187 (2009).
    [CrossRef]
  29. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
    [CrossRef]
  30. T. Baba and Y. Kokubun, “New polarization-insensitive antiresonant reflecting optical waveguide,” IEEE Photon. Technol. Lett. 1, 232–234 (1989).
    [CrossRef]
  31. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).
  32. E. N. Economou, “Surface plasmon in thin films,” Phys. Rev. 182, 539–554 (1969).
    [CrossRef]
  33. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
    [CrossRef]
  34. J. J. Burke and G. I. Stegeman, “Surface-polariton-like waves guided by thin lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
    [CrossRef]
  35. P. Berini, “Plasmon-polariton modes guided by a metal film of finite width bounded by different dielectrics,” Opt. Express 7329–335 (2000).
    [CrossRef]
  36. P. Berini, “Long-range surface plasmon polariton,” Adv. Opt. Photon. 1, 484–588 (2009).
    [CrossRef]

2013 (3)

Shruti, R. K. Sinha, T. Srivastava, and R. Bhattacharyya, “Propagation characteristics of coupled surface plasmon polaritons in PVDF slab waveguides at terahertz frequencies,” J. Opt. 15, 035001 (2013).
[CrossRef]

V. Dillu, Shruti, T. Srivastava, and R. K. Sinha, “Propagation characteristics of silver nanorods based compact waveguides for plasmonic circuitry,” Phys. E 48, 75–79 (2013).
[CrossRef]

L. Chen, X. Li, and G. Wang, “A hybrid long-range plasmonic waveguide with subwavelength confinement,” Opt. Commun. 291, 400–404 (2013).
[CrossRef]

2011 (2)

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[CrossRef]

H. Chu, Y. A. Akimov, P. Bai, and E.-P. Li, “Hybrid dielectric loaded plasmonic waveguide and wavelength selective components for efficiently controlling light at subwavelength scale,” J. Opt. Soc. Am. B 28, 2895–2901 (2011).
[CrossRef]

2010 (2)

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18, 12971–12979 (2010).
[CrossRef]

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmonic polariton waveguide on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[CrossRef]

2009 (5)

Shruti, R. K. Sinha, and R. Bhattacharyya, “Anti-resonant reflecting photonic crystal waveguides (ARRPCW): modeling and design,” Opt. Quantum Electron. 41, 181–187 (2009).
[CrossRef]

S. A. Maier, P. G. Kik, H. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle Plasmon waveguide,” Nat. Mater. 2, 229–232 (2009).
[CrossRef]

M. Piliarik and J. Homola, “Surface plasmon resnonance (SPR) sensors: approaching their limits?” Opt. Express 17, 16505–16517 (2009).
[CrossRef]

D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17, 16646–16653 (2009).
[CrossRef]

P. Berini, “Long-range surface plasmon polariton,” Adv. Opt. Photon. 1, 484–588 (2009).
[CrossRef]

2008 (3)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

R. Slavador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Quantum Electron. 14, 1496–1501 (2008).
[CrossRef]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10, 105018 (2008).
[CrossRef]

2007 (2)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[CrossRef]

M. Yan and M. Qiu, “Guided plasmon polariton at 2D metal comers,” J. Opt. Soc. Am. B 24, 2333–2343 (2007).
[CrossRef]

2006 (4)

L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31, 2133–2135 (2006).
[CrossRef]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef]

S. A. Maier, “Plasmonics: metal nanostructures for subwavelength photonic devices,” IEEE J. Sel. Top. Quantum Electron. 12, 1214–1220 (2006).
[CrossRef]

S. I. Bozhevolnvi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

2005 (2)

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87061106 (2005).
[CrossRef]

R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plamson polaritons,” Opt. Express 13, 977–984 (2005).
[CrossRef]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

2000 (1)

1997 (1)

J. Homola, J. Cytroky, M. Skalsky, J. Hradilova, and P. Kolarova, “A surface plasmon resonance based integrated optical sensor,” Sens. Actuator B Chem. 38–39, 286–290 (1997).
[CrossRef]

1992 (1)

T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides-numerical results and analytical expressions,” IEEE J. Quantum Electron. 28, 1689–1700 (1992).
[CrossRef]

1989 (1)

T. Baba and Y. Kokubun, “New polarization-insensitive antiresonant reflecting optical waveguide,” IEEE Photon. Technol. Lett. 1, 232–234 (1989).
[CrossRef]

1986 (2)

J. J. Burke and G. I. Stegeman, “Surface-polariton-like waves guided by thin lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

1981 (1)

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[CrossRef]

1969 (1)

E. N. Economou, “Surface plasmon in thin films,” Phys. Rev. 182, 539–554 (1969).
[CrossRef]

Aitchison, J. S.

Akimov, Y. A.

Alam, M. Z.

Atwater, H.

S. A. Maier, P. G. Kik, H. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle Plasmon waveguide,” Nat. Mater. 2, 229–232 (2009).
[CrossRef]

Baba, T.

T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides-numerical results and analytical expressions,” IEEE J. Quantum Electron. 28, 1689–1700 (1992).
[CrossRef]

T. Baba and Y. Kokubun, “New polarization-insensitive antiresonant reflecting optical waveguide,” IEEE Photon. Technol. Lett. 1, 232–234 (1989).
[CrossRef]

Bai, P.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Bartal, G.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[CrossRef]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10, 105018 (2008).
[CrossRef]

Berini, P.

Bhattacharyya, R.

Shruti, R. K. Sinha, T. Srivastava, and R. Bhattacharyya, “Propagation characteristics of coupled surface plasmon polaritons in PVDF slab waveguides at terahertz frequencies,” J. Opt. 15, 035001 (2013).
[CrossRef]

Shruti, R. K. Sinha, and R. Bhattacharyya, “Anti-resonant reflecting photonic crystal waveguides (ARRPCW): modeling and design,” Opt. Quantum Electron. 41, 181–187 (2009).
[CrossRef]

Bouhelier, A.

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmonic polariton waveguide on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[CrossRef]

Bozhevolnvi, S. I.

S. I. Bozhevolnvi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

Burke, J. J.

J. J. Burke and G. I. Stegeman, “Surface-polariton-like waves guided by thin lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Charbonneau, R.

Chen, L.

L. Chen, X. Li, and G. Wang, “A hybrid long-range plasmonic waveguide with subwavelength confinement,” Opt. Commun. 291, 400–404 (2013).
[CrossRef]

L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31, 2133–2135 (2006).
[CrossRef]

Chu, H.

Colas des Francs, G.

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmonic polariton waveguide on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[CrossRef]

Cytroky, J.

J. Homola, J. Cytroky, M. Skalsky, J. Hradilova, and P. Kolarova, “A surface plasmon resonance based integrated optical sensor,” Sens. Actuator B Chem. 38–39, 286–290 (1997).
[CrossRef]

Dai, D.

Dereux, A.

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmonic polariton waveguide on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Devaux, E.

S. I. Bozhevolnvi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

Dillu, V.

V. Dillu, Shruti, T. Srivastava, and R. K. Sinha, “Propagation characteristics of silver nanorods based compact waveguides for plasmonic circuitry,” Phys. E 48, 75–79 (2013).
[CrossRef]

Duguay, M. A.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

Ebbesen, T. W.

S. I. Bozhevolnvi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Economou, E. N.

E. N. Economou, “Surface plasmon in thin films,” Phys. Rev. 182, 539–554 (1969).
[CrossRef]

Fukui, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87061106 (2005).
[CrossRef]

Garcia-Meca, C.

R. Slavador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Quantum Electron. 14, 1496–1501 (2008).
[CrossRef]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Gramotnev, D. K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87061106 (2005).
[CrossRef]

Grandidier, J.

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmonic polariton waveguide on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[CrossRef]

Halas, N. J.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[CrossRef]

Haraguchi, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87061106 (2005).
[CrossRef]

Harel, E.

S. A. Maier, P. G. Kik, H. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle Plasmon waveguide,” Nat. Mater. 2, 229–232 (2009).
[CrossRef]

He, S.

Homola, J.

M. Piliarik and J. Homola, “Surface plasmon resnonance (SPR) sensors: approaching their limits?” Opt. Express 17, 16505–16517 (2009).
[CrossRef]

J. Homola, J. Cytroky, M. Skalsky, J. Hradilova, and P. Kolarova, “A surface plasmon resonance based integrated optical sensor,” Sens. Actuator B Chem. 38–39, 286–290 (1997).
[CrossRef]

J. Homola, Surface Plasmon Resonance Based Sensors, Springer Series on Chemical Sensors and Biosensors (Springer-Verlag, 2006).

Hradilova, J.

J. Homola, J. Cytroky, M. Skalsky, J. Hradilova, and P. Kolarova, “A surface plasmon resonance based integrated optical sensor,” Sens. Actuator B Chem. 38–39, 286–290 (1997).
[CrossRef]

Kik, P. G.

S. A. Maier, P. G. Kik, H. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle Plasmon waveguide,” Nat. Mater. 2, 229–232 (2009).
[CrossRef]

Koch, T. L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

Koel, B. E.

S. A. Maier, P. G. Kik, H. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle Plasmon waveguide,” Nat. Mater. 2, 229–232 (2009).
[CrossRef]

Kokubun, Y.

T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides-numerical results and analytical expressions,” IEEE J. Quantum Electron. 28, 1689–1700 (1992).
[CrossRef]

T. Baba and Y. Kokubun, “New polarization-insensitive antiresonant reflecting optical waveguide,” IEEE Photon. Technol. Lett. 1, 232–234 (1989).
[CrossRef]

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

Kolarova, P.

J. Homola, J. Cytroky, M. Skalsky, J. Hradilova, and P. Kolarova, “A surface plasmon resonance based integrated optical sensor,” Sens. Actuator B Chem. 38–39, 286–290 (1997).
[CrossRef]

Lahoud, N.

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[CrossRef]

Laluet, J.-Y.

S. I. Bozhevolnvi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

Li, E.-P.

Li, X.

L. Chen, X. Li, and G. Wang, “A hybrid long-range plasmonic waveguide with subwavelength confinement,” Opt. Commun. 291, 400–404 (2013).
[CrossRef]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[CrossRef]

Lipson, M.

Maier, S. A.

S. A. Maier, P. G. Kik, H. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle Plasmon waveguide,” Nat. Mater. 2, 229–232 (2009).
[CrossRef]

S. A. Maier, “Plasmonics: metal nanostructures for subwavelength photonic devices,” IEEE J. Sel. Top. Quantum Electron. 12, 1214–1220 (2006).
[CrossRef]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Markey, L.

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmonic polariton waveguide on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[CrossRef]

Marti, J.

R. Slavador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Quantum Electron. 14, 1496–1501 (2008).
[CrossRef]

Martinez, A.

R. Slavador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Quantum Electron. 14, 1496–1501 (2008).
[CrossRef]

Massenot, S.

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmonic polariton waveguide on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[CrossRef]

Matsuo, S.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87061106 (2005).
[CrossRef]

Mattiussi, G.

Meier, J.

Meltzer, S.

S. A. Maier, P. G. Kik, H. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle Plasmon waveguide,” Nat. Mater. 2, 229–232 (2009).
[CrossRef]

Mojahedi, M.

Ogawa, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87061106 (2005).
[CrossRef]

Okamoto, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87061106 (2005).
[CrossRef]

Ortuno, R.

R. Slavador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Quantum Electron. 14, 1496–1501 (2008).
[CrossRef]

Oulton, R. F.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[CrossRef]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10, 105018 (2008).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef]

Pfeiffer, L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

Pile, D. F. P.

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10, 105018 (2008).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87061106 (2005).
[CrossRef]

Piliarik, M.

Qiu, M.

Raether, H.

H. Raether, Surface Plasmons (Springer-Verlag, 1988).

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle Plasmon waveguide,” Nat. Mater. 2, 229–232 (2009).
[CrossRef]

Sarid, D.

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[CrossRef]

Shakya, J.

Shruti,

V. Dillu, Shruti, T. Srivastava, and R. K. Sinha, “Propagation characteristics of silver nanorods based compact waveguides for plasmonic circuitry,” Phys. E 48, 75–79 (2013).
[CrossRef]

Shruti, R. K. Sinha, T. Srivastava, and R. Bhattacharyya, “Propagation characteristics of coupled surface plasmon polaritons in PVDF slab waveguides at terahertz frequencies,” J. Opt. 15, 035001 (2013).
[CrossRef]

Shruti, R. K. Sinha, and R. Bhattacharyya, “Anti-resonant reflecting photonic crystal waveguides (ARRPCW): modeling and design,” Opt. Quantum Electron. 41, 181–187 (2009).
[CrossRef]

Sinha, R. K.

Shruti, R. K. Sinha, T. Srivastava, and R. Bhattacharyya, “Propagation characteristics of coupled surface plasmon polaritons in PVDF slab waveguides at terahertz frequencies,” J. Opt. 15, 035001 (2013).
[CrossRef]

V. Dillu, Shruti, T. Srivastava, and R. K. Sinha, “Propagation characteristics of silver nanorods based compact waveguides for plasmonic circuitry,” Phys. E 48, 75–79 (2013).
[CrossRef]

Shruti, R. K. Sinha, and R. Bhattacharyya, “Anti-resonant reflecting photonic crystal waveguides (ARRPCW): modeling and design,” Opt. Quantum Electron. 41, 181–187 (2009).
[CrossRef]

Skalsky, M.

J. Homola, J. Cytroky, M. Skalsky, J. Hradilova, and P. Kolarova, “A surface plasmon resonance based integrated optical sensor,” Sens. Actuator B Chem. 38–39, 286–290 (1997).
[CrossRef]

Slavador, R.

R. Slavador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Quantum Electron. 14, 1496–1501 (2008).
[CrossRef]

Sorger, V. J.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Srivastava, T.

V. Dillu, Shruti, T. Srivastava, and R. K. Sinha, “Propagation characteristics of silver nanorods based compact waveguides for plasmonic circuitry,” Phys. E 48, 75–79 (2013).
[CrossRef]

Shruti, R. K. Sinha, T. Srivastava, and R. Bhattacharyya, “Propagation characteristics of coupled surface plasmon polaritons in PVDF slab waveguides at terahertz frequencies,” J. Opt. 15, 035001 (2013).
[CrossRef]

Stegeman, G. I.

J. J. Burke and G. I. Stegeman, “Surface-polariton-like waves guided by thin lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnvi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

Wang, G.

L. Chen, X. Li, and G. Wang, “A hybrid long-range plasmonic waveguide with subwavelength confinement,” Opt. Commun. 291, 400–404 (2013).
[CrossRef]

Wang, Y.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[CrossRef]

Weeber, J.-C.

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmonic polariton waveguide on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[CrossRef]

Yan, M.

Ye, Z.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[CrossRef]

Yin, X.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[CrossRef]

Zhang, X.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[CrossRef]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10, 105018 (2008).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (3)

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87061106 (2005).
[CrossRef]

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmonic polariton waveguide on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[CrossRef]

IEEE J. Quantum Electron. (2)

T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides-numerical results and analytical expressions,” IEEE J. Quantum Electron. 28, 1689–1700 (1992).
[CrossRef]

R. Slavador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Quantum Electron. 14, 1496–1501 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. A. Maier, “Plasmonics: metal nanostructures for subwavelength photonic devices,” IEEE J. Sel. Top. Quantum Electron. 12, 1214–1220 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Baba and Y. Kokubun, “New polarization-insensitive antiresonant reflecting optical waveguide,” IEEE Photon. Technol. Lett. 1, 232–234 (1989).
[CrossRef]

J. Opt. (1)

Shruti, R. K. Sinha, T. Srivastava, and R. Bhattacharyya, “Propagation characteristics of coupled surface plasmon polaritons in PVDF slab waveguides at terahertz frequencies,” J. Opt. 15, 035001 (2013).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nat. Commun. (1)

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[CrossRef]

Nat. Mater. (1)

S. A. Maier, P. G. Kik, H. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle Plasmon waveguide,” Nat. Mater. 2, 229–232 (2009).
[CrossRef]

Nat. Photonics (2)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[CrossRef]

Nature (2)

S. I. Bozhevolnvi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

New J. Phys. (1)

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10, 105018 (2008).
[CrossRef]

Opt. Commun. (1)

L. Chen, X. Li, and G. Wang, “A hybrid long-range plasmonic waveguide with subwavelength confinement,” Opt. Commun. 291, 400–404 (2013).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

Shruti, R. K. Sinha, and R. Bhattacharyya, “Anti-resonant reflecting photonic crystal waveguides (ARRPCW): modeling and design,” Opt. Quantum Electron. 41, 181–187 (2009).
[CrossRef]

Phys. E (1)

V. Dillu, Shruti, T. Srivastava, and R. K. Sinha, “Propagation characteristics of silver nanorods based compact waveguides for plasmonic circuitry,” Phys. E 48, 75–79 (2013).
[CrossRef]

Phys. Rev. (1)

E. N. Economou, “Surface plasmon in thin films,” Phys. Rev. 182, 539–554 (1969).
[CrossRef]

Phys. Rev. B (1)

J. J. Burke and G. I. Stegeman, “Surface-polariton-like waves guided by thin lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Phys. Rev. Lett. (1)

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[CrossRef]

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef]

Sens. Actuator B Chem. (1)

J. Homola, J. Cytroky, M. Skalsky, J. Hradilova, and P. Kolarova, “A surface plasmon resonance based integrated optical sensor,” Sens. Actuator B Chem. 38–39, 286–290 (1997).
[CrossRef]

Other (4)

J. Homola, Surface Plasmon Resonance Based Sensors, Springer Series on Chemical Sensors and Biosensors (Springer-Verlag, 2006).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

H. Raether, Surface Plasmons (Springer-Verlag, 1988).

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the hybrid ARROW-B plasmonic waveguide. (b) Propagation loss of ARROW-B plasmonic waveguide versus first cladding thickness for first three TM modes.

Fig. 2.
Fig. 2.

(a) Transverse electric field distribution (Ey) of antisymmetric bound mode (ab) at superstrate index na=1.5 at λ=0.6328μm. (b) Schematic representation of (Ey) field distribution for ab mode.

Fig. 3.
Fig. 3.

Transverse electric field distribution (Ey) for the modal transformation of the hybrid modes at superstrate index (a) na=1.42, (b) na=1.44, (e) na=1.46, and (f) na=1.5 at λ=0.6328μm. (c), (d), (g), and (h) Schematic representation of (Ey) field distribution of the modal transformation of hybrid modes.

Fig. 4.
Fig. 4.

(a) Variation of real (neff) and (b) propagation lengths of symmetric bound (sb) mode (TM1) and antisymmetric bound (ab) mode (TM0) of hybrid ARROW-B plasmonic waveguide for varying superstrate index.

Fig. 5.
Fig. 5.

Normalized output power of symmetric bound (sb) mode versus the interaction length of the waveguide for na=1.4 and 1.46.

Fig. 6.
Fig. 6.

Variation of GVD of antisymmetric (ab) mode as a function of superstrate index na at λ=0.6328μm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d2λ4n2(1nc2n22+λ24n22dce2)12,
d2=dce2(2N+1),N=0,1,2.
L=λ4π(Im(neff)).

Metrics