Abstract

A hybrid antiresonant reflecting waveguide, type B (ARROW-B) plasmonic waveguide based on the resonant coupling between a guided dielectric mode and surface plasmon polariton wave is proposed. Employing the finite element method, hybrid modes including two bound supermodes are obtained at visible frequencies by varying the environmental refractive index. We investigate the propagation characteristics of hybrid modes, where the significant change of modal power by the symmetric bound mode is observed in plasmonic waveguide coupling suitable for highly sensitive detection of bulk refractive index change. Further, anomalous dispersion is shown by the antisymmetric bound mode which leads to large group velocity dispersion of 3.165×104ps/kmnm and, thus, makes this hybrid plasmonic waveguide ideal for observation of soliton generation.

© 2013 Optical Society of America

Full Article  |  PDF Article
Related Articles
Simulations of hybrid long-range plasmon modes with application to 90° bends

Aloyse Degiron, Claudio Dellagiacoma, James G. McIlhargey, Gennady Shvets, Olivier J. F. Martin, and David R. Smith
Opt. Lett. 32(16) 2354-2356 (2007)

Bound modes analysis of symmetric dielectric loaded surface plasmon-polariton waveguides

Yun Binfeng, Hu Guohua, and Cui Yiping
Opt. Express 17(5) 3610-3618 (2009)

Characteristics analysis of a hybrid surface plasmonic waveguide with nanometric confinement and high optical intensity

Yun Binfeng, Hu Guohua, Ji Yang, and Cui Yiping
J. Opt. Soc. Am. B 26(10) 1924-1929 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription