Abstract

A method that uses digital heterodyne holography reconstruction to extract scattered light modulated by a single-cycle ultrasound (US) burst is demonstrated and analyzed. An US burst is used to shift the pulsed laser frequency by a series of discrete harmonic frequencies which are then locked on a CCD. The analysis demonstrates that the unmodulated light’s contribution to the detected signal can be canceled by appropriate selection of the pulse repetition frequency. It is also shown that the modulated signal can be maximized by selecting a pulse sequence which consists of a pulse followed by its inverted counterpart. The system is used to image a 12 mm thick chicken breast with 2 mm wide optically absorbing objects embedded at the midplane. Furthermore, the method can be revised to detect the nonlinear US modulated signal by locking at the second harmonic US frequency.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model,” Phys. Rev. Lett. 87, 043903 (2001).
    [CrossRef]
  2. S. Leveque, A. C. Boccara, M. Lebec, and H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
    [CrossRef]
  3. M. Gross, P. Goy, and M. Al-Koussa, “Shot-noise detection of ultrasound-tagged photons in ultrasound-modulated optical imaging,” Opt. Lett. 28, 2482–2485 (2003).
    [CrossRef]
  4. F. Ramaz, B. C. Forget, M. Atlan, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12, 5469–5474 (2004).
    [CrossRef]
  5. H. Ruan, M. L. Mather, and S. P. Morgan, “Pulse inversion ultrasound modulated optical tomography,” Opt. Lett. 37, 1658–1660 (2012).
    [CrossRef]
  6. Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
    [CrossRef]
  7. K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photonics 6, 657–661 (2012).
    [CrossRef]
  8. W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
    [CrossRef]
  9. S. Sakadzic and L. V. Wang, “High-resolution ultrasound-modulated optical tomography in biological tissue,” Opt. Lett. 29, 2770–2772 (2004).
    [CrossRef]
  10. Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
    [CrossRef]
  11. M. Atlan, B. C. Forget, F. Ramaz, A. C. Bocarra, and M. Gross, “Pulsed acousto-optics imaging in dynamic scattering media with heterodyne parallel speckle detection,” Opt. Lett. 30, 1360–1362 (2005).
    [CrossRef]
  12. L. Sui, R. A. Roy, C. A. DiMarzio, and T. W. Murray, “Imaging in diffuse media with pulsed-ultrasound-modulated light and the photorefractive effect,” Appl. Opt. 44, 4041–4048 (2005).
    [CrossRef]
  13. S. I. Aanonsen, T. Barkve, J. N. Tjotta, and S. Tjotta, “Distortion and harmonic generation in the nearfield of a finite amplitude sound beam,” J. Acoust. Soc. Am. 75, 749–768 (1984).
    [CrossRef]
  14. D. H. Simpson, C. T. Chin, and P. N. Burns, “Pulse inversion doppler: a new method for detecting nonlinear echoes from microbubbles contrast agents,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 372–382 (1999).
    [CrossRef]
  15. B. Ward, A. C. Baker, and V. F. Humphrey, “Nonlinear propagation applied to the improvement of resolution in diagnostic medical ultrasound,” J. Acoust. Soc. Am. 101, 143–154 (1997).
    [CrossRef]
  16. J. Selb, L. Pottier, and A. C. Boccara, “Nonlinear effects in acousto-optic imaging,” Opt. Lett. 27, 918–920 (2002).
    [CrossRef]
  17. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
    [CrossRef]
  18. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  19. S. M. Bentzen, “Evaluation of the spatial resolution of a CT scanner by direct analysis of the edge response function,” Med. Phys. 10, 579–581 (1983).
    [CrossRef]

2012

H. Ruan, M. L. Mather, and S. P. Morgan, “Pulse inversion ultrasound modulated optical tomography,” Opt. Lett. 37, 1658–1660 (2012).
[CrossRef]

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[CrossRef]

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photonics 6, 657–661 (2012).
[CrossRef]

2008

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

2005

M. Atlan, B. C. Forget, F. Ramaz, A. C. Bocarra, and M. Gross, “Pulsed acousto-optics imaging in dynamic scattering media with heterodyne parallel speckle detection,” Opt. Lett. 30, 1360–1362 (2005).
[CrossRef]

L. Sui, R. A. Roy, C. A. DiMarzio, and T. W. Murray, “Imaging in diffuse media with pulsed-ultrasound-modulated light and the photorefractive effect,” Appl. Opt. 44, 4041–4048 (2005).
[CrossRef]

2004

F. Ramaz, B. C. Forget, M. Atlan, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12, 5469–5474 (2004).
[CrossRef]

S. Sakadzic and L. V. Wang, “High-resolution ultrasound-modulated optical tomography in biological tissue,” Opt. Lett. 29, 2770–2772 (2004).
[CrossRef]

2003

M. Gross, P. Goy, and M. Al-Koussa, “Shot-noise detection of ultrasound-tagged photons in ultrasound-modulated optical imaging,” Opt. Lett. 28, 2482–2485 (2003).
[CrossRef]

2002

J. Selb, L. Pottier, and A. C. Boccara, “Nonlinear effects in acousto-optic imaging,” Opt. Lett. 27, 918–920 (2002).
[CrossRef]

2001

L. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model,” Phys. Rev. Lett. 87, 043903 (2001).
[CrossRef]

1999

S. Leveque, A. C. Boccara, M. Lebec, and H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
[CrossRef]

D. H. Simpson, C. T. Chin, and P. N. Burns, “Pulse inversion doppler: a new method for detecting nonlinear echoes from microbubbles contrast agents,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 372–382 (1999).
[CrossRef]

1997

B. Ward, A. C. Baker, and V. F. Humphrey, “Nonlinear propagation applied to the improvement of resolution in diagnostic medical ultrasound,” J. Acoust. Soc. Am. 101, 143–154 (1997).
[CrossRef]

I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
[CrossRef]

1995

W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
[CrossRef]

1984

S. I. Aanonsen, T. Barkve, J. N. Tjotta, and S. Tjotta, “Distortion and harmonic generation in the nearfield of a finite amplitude sound beam,” J. Acoust. Soc. Am. 75, 749–768 (1984).
[CrossRef]

1983

S. M. Bentzen, “Evaluation of the spatial resolution of a CT scanner by direct analysis of the edge response function,” Med. Phys. 10, 579–581 (1983).
[CrossRef]

Aanonsen, S. I.

S. I. Aanonsen, T. Barkve, J. N. Tjotta, and S. Tjotta, “Distortion and harmonic generation in the nearfield of a finite amplitude sound beam,” J. Acoust. Soc. Am. 75, 749–768 (1984).
[CrossRef]

Al-Koussa, M.

M. Gross, P. Goy, and M. Al-Koussa, “Shot-noise detection of ultrasound-tagged photons in ultrasound-modulated optical imaging,” Opt. Lett. 28, 2482–2485 (2003).
[CrossRef]

Atlan, M.

M. Atlan, B. C. Forget, F. Ramaz, A. C. Bocarra, and M. Gross, “Pulsed acousto-optics imaging in dynamic scattering media with heterodyne parallel speckle detection,” Opt. Lett. 30, 1360–1362 (2005).
[CrossRef]

F. Ramaz, B. C. Forget, M. Atlan, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12, 5469–5474 (2004).
[CrossRef]

Baker, A. C.

B. Ward, A. C. Baker, and V. F. Humphrey, “Nonlinear propagation applied to the improvement of resolution in diagnostic medical ultrasound,” J. Acoust. Soc. Am. 101, 143–154 (1997).
[CrossRef]

Barkve, T.

S. I. Aanonsen, T. Barkve, J. N. Tjotta, and S. Tjotta, “Distortion and harmonic generation in the nearfield of a finite amplitude sound beam,” J. Acoust. Soc. Am. 75, 749–768 (1984).
[CrossRef]

Bentzen, S. M.

S. M. Bentzen, “Evaluation of the spatial resolution of a CT scanner by direct analysis of the edge response function,” Med. Phys. 10, 579–581 (1983).
[CrossRef]

Bocarra, A. C.

M. Atlan, B. C. Forget, F. Ramaz, A. C. Bocarra, and M. Gross, “Pulsed acousto-optics imaging in dynamic scattering media with heterodyne parallel speckle detection,” Opt. Lett. 30, 1360–1362 (2005).
[CrossRef]

Boccara, A. C.

F. Ramaz, B. C. Forget, M. Atlan, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12, 5469–5474 (2004).
[CrossRef]

J. Selb, L. Pottier, and A. C. Boccara, “Nonlinear effects in acousto-optic imaging,” Opt. Lett. 27, 918–920 (2002).
[CrossRef]

S. Leveque, A. C. Boccara, M. Lebec, and H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
[CrossRef]

Burns, P. N.

D. H. Simpson, C. T. Chin, and P. N. Burns, “Pulse inversion doppler: a new method for detecting nonlinear echoes from microbubbles contrast agents,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 372–382 (1999).
[CrossRef]

Chin, C. T.

D. H. Simpson, C. T. Chin, and P. N. Burns, “Pulse inversion doppler: a new method for detecting nonlinear echoes from microbubbles contrast agents,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 372–382 (1999).
[CrossRef]

Cui, M.

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photonics 6, 657–661 (2012).
[CrossRef]

Delaye, P.

F. Ramaz, B. C. Forget, M. Atlan, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12, 5469–5474 (2004).
[CrossRef]

Dimarzio, C. A.

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[CrossRef]

L. Sui, R. A. Roy, C. A. DiMarzio, and T. W. Murray, “Imaging in diffuse media with pulsed-ultrasound-modulated light and the photorefractive effect,” Appl. Opt. 44, 4041–4048 (2005).
[CrossRef]

Fiolka, R.

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photonics 6, 657–661 (2012).
[CrossRef]

Forget, B. C.

M. Atlan, B. C. Forget, F. Ramaz, A. C. Bocarra, and M. Gross, “Pulsed acousto-optics imaging in dynamic scattering media with heterodyne parallel speckle detection,” Opt. Lett. 30, 1360–1362 (2005).
[CrossRef]

F. Ramaz, B. C. Forget, M. Atlan, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12, 5469–5474 (2004).
[CrossRef]

Goy, P.

M. Gross, P. Goy, and M. Al-Koussa, “Shot-noise detection of ultrasound-tagged photons in ultrasound-modulated optical imaging,” Opt. Lett. 28, 2482–2485 (2003).
[CrossRef]

Gross, M.

M. Atlan, B. C. Forget, F. Ramaz, A. C. Bocarra, and M. Gross, “Pulsed acousto-optics imaging in dynamic scattering media with heterodyne parallel speckle detection,” Opt. Lett. 30, 1360–1362 (2005).
[CrossRef]

F. Ramaz, B. C. Forget, M. Atlan, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12, 5469–5474 (2004).
[CrossRef]

M. Gross, P. Goy, and M. Al-Koussa, “Shot-noise detection of ultrasound-tagged photons in ultrasound-modulated optical imaging,” Opt. Lett. 28, 2482–2485 (2003).
[CrossRef]

Hemmer, P.

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

Humphrey, V. F.

B. Ward, A. C. Baker, and V. F. Humphrey, “Nonlinear propagation applied to the improvement of resolution in diagnostic medical ultrasound,” J. Acoust. Soc. Am. 101, 143–154 (1997).
[CrossRef]

Judkewitz, B.

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[CrossRef]

Kim, C.

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

Lebec, M.

S. Leveque, A. C. Boccara, M. Lebec, and H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
[CrossRef]

Leutz, W.

W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
[CrossRef]

Leveque, S.

S. Leveque, A. C. Boccara, M. Lebec, and H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
[CrossRef]

Li, Y.

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

Maret, G.

W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
[CrossRef]

Mather, M. L.

H. Ruan, M. L. Mather, and S. P. Morgan, “Pulse inversion ultrasound modulated optical tomography,” Opt. Lett. 37, 1658–1660 (2012).
[CrossRef]

Morgan, S. P.

H. Ruan, M. L. Mather, and S. P. Morgan, “Pulse inversion ultrasound modulated optical tomography,” Opt. Lett. 37, 1658–1660 (2012).
[CrossRef]

Murray, T. W.

L. Sui, R. A. Roy, C. A. DiMarzio, and T. W. Murray, “Imaging in diffuse media with pulsed-ultrasound-modulated light and the photorefractive effect,” Appl. Opt. 44, 4041–4048 (2005).
[CrossRef]

Pottier, L.

J. Selb, L. Pottier, and A. C. Boccara, “Nonlinear effects in acousto-optic imaging,” Opt. Lett. 27, 918–920 (2002).
[CrossRef]

Ramaz, F.

M. Atlan, B. C. Forget, F. Ramaz, A. C. Bocarra, and M. Gross, “Pulsed acousto-optics imaging in dynamic scattering media with heterodyne parallel speckle detection,” Opt. Lett. 30, 1360–1362 (2005).
[CrossRef]

F. Ramaz, B. C. Forget, M. Atlan, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12, 5469–5474 (2004).
[CrossRef]

Roosen, G.

F. Ramaz, B. C. Forget, M. Atlan, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12, 5469–5474 (2004).
[CrossRef]

Roy, R. A.

L. Sui, R. A. Roy, C. A. DiMarzio, and T. W. Murray, “Imaging in diffuse media with pulsed-ultrasound-modulated light and the photorefractive effect,” Appl. Opt. 44, 4041–4048 (2005).
[CrossRef]

Ruan, H.

H. Ruan, M. L. Mather, and S. P. Morgan, “Pulse inversion ultrasound modulated optical tomography,” Opt. Lett. 37, 1658–1660 (2012).
[CrossRef]

Saint-Jalmes, H.

S. Leveque, A. C. Boccara, M. Lebec, and H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
[CrossRef]

Sakadzic, S.

S. Sakadzic and L. V. Wang, “High-resolution ultrasound-modulated optical tomography in biological tissue,” Opt. Lett. 29, 2770–2772 (2004).
[CrossRef]

Selb, J.

J. Selb, L. Pottier, and A. C. Boccara, “Nonlinear effects in acousto-optic imaging,” Opt. Lett. 27, 918–920 (2002).
[CrossRef]

Si, K.

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photonics 6, 657–661 (2012).
[CrossRef]

Simpson, D. H.

D. H. Simpson, C. T. Chin, and P. N. Burns, “Pulse inversion doppler: a new method for detecting nonlinear echoes from microbubbles contrast agents,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 372–382 (1999).
[CrossRef]

Sui, L.

L. Sui, R. A. Roy, C. A. DiMarzio, and T. W. Murray, “Imaging in diffuse media with pulsed-ultrasound-modulated light and the photorefractive effect,” Appl. Opt. 44, 4041–4048 (2005).
[CrossRef]

Tjotta, J. N.

S. I. Aanonsen, T. Barkve, J. N. Tjotta, and S. Tjotta, “Distortion and harmonic generation in the nearfield of a finite amplitude sound beam,” J. Acoust. Soc. Am. 75, 749–768 (1984).
[CrossRef]

Tjotta, S.

S. I. Aanonsen, T. Barkve, J. N. Tjotta, and S. Tjotta, “Distortion and harmonic generation in the nearfield of a finite amplitude sound beam,” J. Acoust. Soc. Am. 75, 749–768 (1984).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).

Wagner, K. H.

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

Wang, L.

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

Wang, L. V.

S. Sakadzic and L. V. Wang, “High-resolution ultrasound-modulated optical tomography in biological tissue,” Opt. Lett. 29, 2770–2772 (2004).
[CrossRef]

L. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model,” Phys. Rev. Lett. 87, 043903 (2001).
[CrossRef]

Wang, Y. M.

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[CrossRef]

Ward, B.

B. Ward, A. C. Baker, and V. F. Humphrey, “Nonlinear propagation applied to the improvement of resolution in diagnostic medical ultrasound,” J. Acoust. Soc. Am. 101, 143–154 (1997).
[CrossRef]

Yamaguchi, I.

I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
[CrossRef]

Yang, C.

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[CrossRef]

Zhang, H.

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

Zhang, T.

I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
[CrossRef]

Appl. Opt.

L. Sui, R. A. Roy, C. A. DiMarzio, and T. W. Murray, “Imaging in diffuse media with pulsed-ultrasound-modulated light and the photorefractive effect,” Appl. Opt. 44, 4041–4048 (2005).
[CrossRef]

Appl. Phys. Lett.

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

D. H. Simpson, C. T. Chin, and P. N. Burns, “Pulse inversion doppler: a new method for detecting nonlinear echoes from microbubbles contrast agents,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 372–382 (1999).
[CrossRef]

J. Acoust. Soc. Am.

B. Ward, A. C. Baker, and V. F. Humphrey, “Nonlinear propagation applied to the improvement of resolution in diagnostic medical ultrasound,” J. Acoust. Soc. Am. 101, 143–154 (1997).
[CrossRef]

S. I. Aanonsen, T. Barkve, J. N. Tjotta, and S. Tjotta, “Distortion and harmonic generation in the nearfield of a finite amplitude sound beam,” J. Acoust. Soc. Am. 75, 749–768 (1984).
[CrossRef]

Med. Phys.

S. M. Bentzen, “Evaluation of the spatial resolution of a CT scanner by direct analysis of the edge response function,” Med. Phys. 10, 579–581 (1983).
[CrossRef]

Nat. Commun.

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[CrossRef]

Nat. Photonics

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photonics 6, 657–661 (2012).
[CrossRef]

Opt. Express

F. Ramaz, B. C. Forget, M. Atlan, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12, 5469–5474 (2004).
[CrossRef]

Opt. Lett.

H. Ruan, M. L. Mather, and S. P. Morgan, “Pulse inversion ultrasound modulated optical tomography,” Opt. Lett. 37, 1658–1660 (2012).
[CrossRef]

S. Leveque, A. C. Boccara, M. Lebec, and H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
[CrossRef]

M. Gross, P. Goy, and M. Al-Koussa, “Shot-noise detection of ultrasound-tagged photons in ultrasound-modulated optical imaging,” Opt. Lett. 28, 2482–2485 (2003).
[CrossRef]

S. Sakadzic and L. V. Wang, “High-resolution ultrasound-modulated optical tomography in biological tissue,” Opt. Lett. 29, 2770–2772 (2004).
[CrossRef]

M. Atlan, B. C. Forget, F. Ramaz, A. C. Bocarra, and M. Gross, “Pulsed acousto-optics imaging in dynamic scattering media with heterodyne parallel speckle detection,” Opt. Lett. 30, 1360–1362 (2005).
[CrossRef]

J. Selb, L. Pottier, and A. C. Boccara, “Nonlinear effects in acousto-optic imaging,” Opt. Lett. 27, 918–920 (2002).
[CrossRef]

I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
[CrossRef]

Phys. Rev. Lett.

L. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model,” Phys. Rev. Lett. 87, 043903 (2001).
[CrossRef]

Physica B

W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
[CrossRef]

Other

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Digital holography detection. (a) Scattered light from the aperture interferes with the reference at the detector plane; (b) static speckles can be observed corresponding to US modulated light; (c) Fourier transform of (b); and (d) averaging over the rows to obtain the US modulated signal.

Fig. 2.
Fig. 2.

Pulse sequences for US: noninverted and inverted US pulse train; Laser: laser pulse train. The US and laser are synchronized so that the US pulse arriving at the US focal zone modulates the light at the phases shown. Ta, US pulse duration; Ti, pulse train interval; Tp, laser pulse duration; Te, exposure time.

Fig. 3.
Fig. 3.

(a) Harmonic response of the lock-in detection (fi=100kHz, Tp=120ns); (b) zoom in at 1–1.5 MHz of (a); (c) spectrum of the light frequency shifted by US modulation (US pulse central frequency is 2.25 MHz); (d) zoom in at 1–1.5 MHz of (c); (e) spectrum of the time-varying fringes due to interference between US modulated light and reference beam (Δf=2.25MHz); and (f) zoom in at 1–1.5 MHz of (e).

Fig. 4.
Fig. 4.

Pulse sequences for second harmonic detection. US, noninverted and inverted US pulses; Laser, lock-in laser pulses. The US and laser are synchronized so that the US pulse arriving at the US focal zone modulates the light at the phases shown. Ta, US pulse duration; Ti, pulse train interval; Tp, laser pulse duration; Te, exposure time.

Fig. 5.
Fig. 5.

(a) Harmonic response of the lock-in laser pulses (Ti=5μs, Tp=120ns); (b) zoom in (a) at 1.2–1.7 MHz; (c) frequency shift by the US with pulse central frequency at 2.25 MHz, pulse repetition rate fi=100kHz; (d) zoom in (c) at 3.5–4 MHz; (e) frequency domain of interference signal between US modulated light and reference beam when Δf=2.3MHz; and (f) zoom in (e) at 1.2–1.7 MHz. The dashed vertical lines in (b), (d), and (f) indicate the position of the second harmonic frequency components which do not overlap with their fundamental counterparts.

Fig. 6.
Fig. 6.

Experimental setup. AP, aperture slit; BE, beam expander; BS1 and BS2, nonpolarized beam splitters; L, 50 mm lens; M1 and M2, mirrors; UT, ultrasound transducer.

Fig. 7.
Fig. 7.

(a) Comparison of cross sections of the reconstructed images of the aperture slit; (b) objects embedded into a piece of chicken breast; (c) DC image of the sample; and (d) AC image of the sample.

Fig. 8.
Fig. 8.

(a) Reconstructed aperture images locked at the fundamental and the second harmonic frequency; (b) modulation depth of fundamental frequency modulation and second harmonic modulation with US pressure; (c) edge response functions of DC signal, fundamental modulation and second harmonic modulation; (d) line spread functions of (c).

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

I=Ir+Ib+Im+2IrIbcos(2πΔft0+Δφrb)+2IrImcos[2π(Δf±fa)t0+Δφrm]+2IbImcos(±fat0+Δφbm),
I=Ir+2IrIbcos(2πΔft0+Δφrb)+2IrImcos[2π(Δf±fa)t0+Δφrm].
I=Ir+2IrIbcos(2πΔft1+Δφrb)+2IrImcos[2π(Δf±fa)t1+Δφrm].
2πΔf(t1t0)=(2n+1)π,n=0,1,2,,
Δf=(n+12)fi,n=0,1,2,,
2π(Δf±fa)(t1t0)=2nπ,nz;2πΔf(t1t0)±2πfa(t1t0)=2nπ,
±2πfa(t1t0)=(2n+1)π2nπ,n,nz.
2πfaTi=(2n+1)π,n=0,1,2,,
fa=(n+12)fi,n=0,1,2,.
g(t)=1Ancos(2πnfi2t)+Bnsin(2πnfi2t),
An=1π{ππ+ab2πsin[ba(x+π)]cos(nx)dx+0ba2πsin(bax+π)cos(nx)dx},
An=1π[0ab2πsin(bax)cos(nxnπ)dx0ba2πsin(bax)cos(nx)dx];
An=1π{0ab2πsin(bax)[cos(nxnπ)cos(nx)]dx}.
Bn=1π{0ab2πsin(bax)[sin(nxnπ)sin(nx)]dx}.
g(t)=1Ancos[2π(n+12)fit]+Bnsin[2π(n+12)fit],n=0,1,2,.
P(f)=sinc2(πfTp)[0δ(fnfi)sinc(πfTe)]2,
P(f)=sinc2(πfTp)0δ(fnfi).
S(f)=A(f)δ[f(n+12)fi],
F(f)={A(Δf+f)δ[Δf+f(n+12)fi],(n+12)fiΔfA(Δff)δ[Δff(n+12)fi],(n+12)fi<Δf,
F(f)={A(Δf+f)δ[(n+12)fi+f(n+12)fi],nnA(Δff)δ[(n+12)fif(n+12)fi],n<n,
F(f)={A(Δf+f)δ[(nn)fi+f],nnA(Δff)δ[(nn)fif],n<n,
F(f)={A(Δf+f)δ(nfi+f),n=0,1,2,A(Δff)δ(nfif),n=1,2,3,.
Δf=(2n+1)fi,n=0,1,2,,
P(f)=sinc2(πfTp)0δ(f2nfi).
F(f)={A(Δf+f)δ[(n12)fi+f],n=1,2,3,A(Δff)δ[(n12)fif],n=0,1,2,.
S(f)=A(f)δ(fnfi),
F(f)={A(Δf+f)δ(Δf+fnfi),nfiΔfA(Δff)δ(Δffnfi),nfi<Δf,
F(f)={A(Δf+f)δ[(n2n1)fi+f],n2n10A(Δff)δ[(n2n1)fif],n2n1<0,
F(f)={A(Δf+f)δ(nfi+f),n=0,1,2,A(Δff)δ(nfif),n=1,2,3,.

Metrics