C.-C. Chiu, C.-H. Sun, C.-L. Li, and C.-H. Huang, “Comparative study of some population-based optimization algorithms on inverse scattering of a two-dimensional perfectly conducting cylinder in dielectric slab medium,” IEEE Trans. Geosci. Remote Sens. 51, 2302–2315 (2013).

[Crossref]

L. Poli, G. Oliveri, P. Rocca, and A. Massa, “Bayesian compressive sensing approaches for the reconstruction of two-dimensional sparse scatterers under TE illuminations,” IEEE Trans. Geosci. Remote Sens. 51, 2920–2936 (2013).

G. Oliveri, L. Poli, P. Rocca, and A. Massa, “Bayesian compressive optical imaging within the Rytov approximation,” Opt. Lett. 37, 1760–1762 (2012).

[Crossref]

L. Poli, G. Oliveri, and A. Massa, “Microwave imaging within the first-order Born approximation by means of the contrast-field Bayesian compressive sensing,” IEEE Trans. Antennas Propag. 60, 2865–2879 (2012).

[Crossref]

G. Oliveri, M. Carlin, and A. Massa, “Complex-weight sparse linear array synthesis by Bayesian compressive sampling,” IEEE Trans. Antennas Propag. 60, 2309–2326 (2012).

[Crossref]

G. Oliveri, P. Rocca, and A. Massa, “Reliable diagnosis of large linear arrays—Bayesian compressive sensing approach,” IEEE Trans. Antennas Propag. 60, 4627–4636 (2012).

[Crossref]

F. Viani, G. Oliveri, and A. Massa, “Compressive sensing pattern matching techniques for synthesizing planar sparse arrays,” IEEE Trans. Antennas Propag. 59, 467–481 (2011).

[Crossref]

G. Oliveri, P. Rocca, and A. Massa, “A Bayesian compressive sampling-based inversion for imaging sparse scatterers,” IEEE Trans. Geosci. Remote Sens. 49, 3993–4006 (2011).

[Crossref]

G. Oliveri and A. Massa, “Bayesian compressive sampling for pattern synthesis with maximally sparse non-uniform linear arrays,” IEEE Trans. Antennas Propag. 59, 467–481 (2011).

[Crossref]

J. Shen, X. Chen, Y. Zhong, and L. Ran, “Inverse scattering problem in presence of a conducting cylinder,” Opt. Express 19, 10698–10706 (2011).

[Crossref]

A. Brancaccio, G. Leone, and R. Solimene, “Fault detection in metallic grid scattering,” J. Opt. Soc. Am. A 28, 2588–2599 (2011).

[Crossref]

P. Rocca, G. Oliveri, and A. Massa, “Differential evolution as applied to electromagnetics,” IEEE Antennas Propag. Mag. 53, 38–49 (2011).

[Crossref]

Y. Alvarez-Lopez, A. Dominguez-Casas, C. Garcia-Gonzalez, and F. Las-Heras, “Geometry reconstruction of metallic bodies using the sources reconstruction method,” IEEE Antennas Wireless Propag. Lett. 9, 1197–1200 (2010).

[Crossref]

K. Agarwal, X. Chen, and Y. Zhong, “A multipole-expansion based linear sampling method for solving inverse scattering problems,” Opt. Express 18, 6366–6381 (2010).

[Crossref]

J. A. Tropp and S. J. Wright, “Computational methods for sparse solution of linear inverse problems,” Proc. IEEE 98, 948–958 (2010).

[Crossref]

P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, “Evolutionary optimization as applied to inverse scattering problems,” Inverse Problems 25, 1–41 (2009).

S. Ji, D. Dunson, and L. Carin, “Multitask compressive sensing,” IEEE Trans. Signal Process. 57(4), 92–106 (2009).

[Crossref]

E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25, 21–30 (2008).

[Crossref]

S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,” IEEE Trans. Signal Process. 56, 2346–2356 (2008).

[Crossref]

I. T. Rekanos, “Shape reconstruction of a perfectly conducting scatterer using differential evolution and particle swarm optimization,” IEEE Trans. Geosci. Remote Sens. 46, 1967–1974 (2008).

[Crossref]

R. Solimene, A. Brancaccio, J. Romano, and R. Pierri, “Localizing thin metallic cylinders by a 2.5-D linear distributional approach: experimental results,” IEEE Trans. Antennas Propag. 56, 2630–2637 (2008).

[Crossref]

R. G. Baraniuk, “Compressive sampling,” IEEE Signal Process. Mag. 24, 118–121 (2007).

[Crossref]

R. Pierri, A. Liseno, R. Solimene, and F. Soldovieri, “Beyond physical optics SVD shape reconstruction of metallic cylinders,” IEEE Trans. Antennas Propag. 54, 655–665 (2006).

[Crossref]

R. Pierri, R. Solimene, A. Liseno, and J. Romano, “Linear distribution imaging of thin metallic cylinders under mutual scattering,” IEEE Trans. Antennas Propag. 53, 3019–3029 (2005).

[Crossref]

Y.-C. Chen, Y.-F. Chen, C.-C. Chiu, and C.-Y. Chang, “Image reconstruction of a buried perfectly conducting cylinder illuminated by transverse electric waves,” Int. J. Imaging Syst. Technol. 15, 261–265 (2005).

[Crossref]

W. Chien and C.-C. Chiu, “Using NU-SSGA to reduce the searching time in inverse problem of a buried metallic object,” IEEE Trans. Antennas Propag. 53, 3128–3134 (2005).

[Crossref]

F. K. Gruber, E. A. Marengo, and A. J. Devaney, “Time-reversal imaging with multiple signal classification considering multiple scattering between the targets,” J. Acoust. Soc. Am. 115, 3042–3047 (2004).

[Crossref]

T. Miwa and I. Arai, “Super-resolution imaging for point reflectors near transmitting and receiving array,” IEEE Trans. Antennas Propag. 52, 220–229 (2004).

[Crossref]

G. Micolau, M. Saillard, and P. Borderies, “DORT method as applied to ultrawideband signals for detection of buried objects,” IEEE Trans. Geosci. Remote Sens. 41, 1813–1820 (2003).

[Crossref]

E. Cekli and H. A. Cirpan, “Unconditional maximum likelihood approach for localization of near-field sources: algorithm and performance analysis,” J. Inst. Electron. Commun. Eng. Jpn. 57, 9–15 (2003).

Y. Zhou, J. Li, and H. Ling, “Shape inversion of metallic cavities using hybrid genetic algorithm combined with tabu list,” Electron. Lett. 39, 280–281 (2003).

[Crossref]

A. Qing, “Electromagnetic inverse scattering of multiple two-dimensional perfectly conducting objects by the differential evolution strategy,” IEEE Trans. Antennas Propag. 51, 1251–1262 (2003).

[Crossref]

A. Liseno, R. Pierri, and F. Soldovieri, “Shape identification by physical optics: the two-dimensional TE case,” J. Opt. Soc. Am. A 20, 1827–1830 (2003).

[Crossref]

T. Dorney, W. Symes, R. Baraniuk, and D. Mittleman, “Terahertz multistatic reflection imaging,” J. Opt. Soc. Am. A 19, 1432–1442 (2002).

[Crossref]

A. Liseno and R. Pierri, “Imaging perfectly conducting objects as support of induced currents: Kirchhoff approximation and frequency diversity,” J. Opt. Soc. Am. A 19, 1308–1318 (2002).

[Crossref]

I. T. Rekanos and T. D. Tsiboukis, “An inverse scattering technique for microwave imaging of binary objects,” IEEE Trans. Microw. Theory Tech. 50, 1439–1441 (2002).

[Crossref]

C. Ramananjaona, M. Lambert, and D. Lesselier, “Shape inversion from TM and TE real data by controlled evolution of level sets,” Inverse Probl. 17, 1585–1595 (2001).

[Crossref]

A. Qing, C. K. Lee, and L. Jen, “Electromagnetic inverse scattering of two-dimensional perfectly conducting objects by real-coded genetic algorithm,” IEEE Trans. Geosci. Remote Sens. 39, 665–676 (2001).

[Crossref]

A. Qing and C. K. Lee, “Microwave imaging of parallel perfectly conducting cylinders using real-coded genetic algorithm coupled with Newton–Kantorovich method” Prog. Electromagn. Res. 28, 275–294 (2000).

[Crossref]

K. A. Michalski, “Electromagnetic imaging of circular–cylindrical conductors and tunnels using a differential evolution algorithm,” Microw. Opt. Technol. Lett. 27, 330–334 (2000).

[Crossref]

D. Asteli and B. Ottersten, “The effect of local scattering on direction of arrival estimation with MUSIC,” IEEE Trans. Signal Process. 47, 3220–3234 (1999).

[Crossref]

T. Takenaka, Z. Q. Meng, T. Tanaka, and W. C. Chew, “Local shape function combined with genetic algorithm applied to inverse scattering for strips,” Microw. Opt. Technol. Lett. 16, 337–341 (1997).

[Crossref]

G. P. Otto and W. C. Chew, “Microwave inverse scattering—local shape function imaging for improved resolution of strong scatterers,” IEEE Trans. Microwave Theory Tech. 42, 137–141 (1994).

[Crossref]

R. E. Kleinman and P. M. van den Berg, “Two-dimensional location and shape reconstruction,” Radio Sci. 29, 1157–1169 (1994).

[Crossref]

W. C. Chew, L. Gurel, Y.-M. Wang, G. Otto, R. L. Wagner, and Q. H. Liu, “A generalized recursive algorithm for wave-scattering solutions in two dimensions,” IEEE Trans. Microwave Theory Tech. 40, 716–723 (1992).

[Crossref]

W. C. Chew and G. P. Otto, “Microwave imaging of multiple conducting cylinders using local shape functions,” IEEE Microw. Guided Wave Lett. 2, 284–286 (1992).

[Crossref]

O. M. Bucci and G. Franceschetti, “On the degrees of freedom of scattered fields,” IEEE Trans. Antennas Propag. 37, 918–926 (1989).

[Crossref]

D. Colton and P. Monk, “A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region II,” SIAM J. Appl. Math. 46, 506–523 (1986).

[Crossref]

Y. Alvarez-Lopez, A. Dominguez-Casas, C. Garcia-Gonzalez, and F. Las-Heras, “Geometry reconstruction of metallic bodies using the sources reconstruction method,” IEEE Antennas Wireless Propag. Lett. 9, 1197–1200 (2010).

[Crossref]

T. Miwa and I. Arai, “Super-resolution imaging for point reflectors near transmitting and receiving array,” IEEE Trans. Antennas Propag. 52, 220–229 (2004).

[Crossref]

D. Asteli and B. Ottersten, “The effect of local scattering on direction of arrival estimation with MUSIC,” IEEE Trans. Signal Process. 47, 3220–3234 (1999).

[Crossref]

R. G. Baraniuk, “Compressive sampling,” IEEE Signal Process. Mag. 24, 118–121 (2007).

[Crossref]

P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, “Evolutionary optimization as applied to inverse scattering problems,” Inverse Problems 25, 1–41 (2009).

G. Micolau, M. Saillard, and P. Borderies, “DORT method as applied to ultrawideband signals for detection of buried objects,” IEEE Trans. Geosci. Remote Sens. 41, 1813–1820 (2003).

[Crossref]

A. Brancaccio, G. Leone, and R. Solimene, “Fault detection in metallic grid scattering,” J. Opt. Soc. Am. A 28, 2588–2599 (2011).

[Crossref]

R. Solimene, A. Brancaccio, J. Romano, and R. Pierri, “Localizing thin metallic cylinders by a 2.5-D linear distributional approach: experimental results,” IEEE Trans. Antennas Propag. 56, 2630–2637 (2008).

[Crossref]

E. P. Ribeiro, A. C. Bruno, P. C. Ribeiro, J. Szczupak, and O. G. Symko, “Image of a two-dimensional magnetic moment distribution: application to detect small metallic objects in the human body,” in 1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 1992), Vol. 5, 2178–2179.

O. M. Bucci and G. Franceschetti, “On the degrees of freedom of scattered fields,” IEEE Trans. Antennas Propag. 37, 918–926 (1989).

[Crossref]

E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25, 21–30 (2008).

[Crossref]

S. Ji, D. Dunson, and L. Carin, “Multitask compressive sensing,” IEEE Trans. Signal Process. 57(4), 92–106 (2009).

[Crossref]

S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,” IEEE Trans. Signal Process. 56, 2346–2356 (2008).

[Crossref]

G. Oliveri, M. Carlin, and A. Massa, “Complex-weight sparse linear array synthesis by Bayesian compressive sampling,” IEEE Trans. Antennas Propag. 60, 2309–2326 (2012).

[Crossref]

E. Cekli and H. A. Cirpan, “Unconditional maximum likelihood approach for localization of near-field sources: algorithm and performance analysis,” J. Inst. Electron. Commun. Eng. Jpn. 57, 9–15 (2003).

Y.-C. Chen, Y.-F. Chen, C.-C. Chiu, and C.-Y. Chang, “Image reconstruction of a buried perfectly conducting cylinder illuminated by transverse electric waves,” Int. J. Imaging Syst. Technol. 15, 261–265 (2005).

[Crossref]

J. Shen, X. Chen, Y. Zhong, and L. Ran, “Inverse scattering problem in presence of a conducting cylinder,” Opt. Express 19, 10698–10706 (2011).

[Crossref]

K. Agarwal, X. Chen, and Y. Zhong, “A multipole-expansion based linear sampling method for solving inverse scattering problems,” Opt. Express 18, 6366–6381 (2010).

[Crossref]

Y.-C. Chen, Y.-F. Chen, C.-C. Chiu, and C.-Y. Chang, “Image reconstruction of a buried perfectly conducting cylinder illuminated by transverse electric waves,” Int. J. Imaging Syst. Technol. 15, 261–265 (2005).

[Crossref]

Y.-C. Chen, Y.-F. Chen, C.-C. Chiu, and C.-Y. Chang, “Image reconstruction of a buried perfectly conducting cylinder illuminated by transverse electric waves,” Int. J. Imaging Syst. Technol. 15, 261–265 (2005).

[Crossref]

T. Takenaka, Z. Q. Meng, T. Tanaka, and W. C. Chew, “Local shape function combined with genetic algorithm applied to inverse scattering for strips,” Microw. Opt. Technol. Lett. 16, 337–341 (1997).

[Crossref]

G. P. Otto and W. C. Chew, “Microwave inverse scattering—local shape function imaging for improved resolution of strong scatterers,” IEEE Trans. Microwave Theory Tech. 42, 137–141 (1994).

[Crossref]

W. C. Chew, L. Gurel, Y.-M. Wang, G. Otto, R. L. Wagner, and Q. H. Liu, “A generalized recursive algorithm for wave-scattering solutions in two dimensions,” IEEE Trans. Microwave Theory Tech. 40, 716–723 (1992).

[Crossref]

W. C. Chew and G. P. Otto, “Microwave imaging of multiple conducting cylinders using local shape functions,” IEEE Microw. Guided Wave Lett. 2, 284–286 (1992).

[Crossref]

W. Chien and C.-C. Chiu, “Using NU-SSGA to reduce the searching time in inverse problem of a buried metallic object,” IEEE Trans. Antennas Propag. 53, 3128–3134 (2005).

[Crossref]

C.-C. Chiu, C.-H. Sun, C.-L. Li, and C.-H. Huang, “Comparative study of some population-based optimization algorithms on inverse scattering of a two-dimensional perfectly conducting cylinder in dielectric slab medium,” IEEE Trans. Geosci. Remote Sens. 51, 2302–2315 (2013).

[Crossref]

W. Chien and C.-C. Chiu, “Using NU-SSGA to reduce the searching time in inverse problem of a buried metallic object,” IEEE Trans. Antennas Propag. 53, 3128–3134 (2005).

[Crossref]

Y.-C. Chen, Y.-F. Chen, C.-C. Chiu, and C.-Y. Chang, “Image reconstruction of a buried perfectly conducting cylinder illuminated by transverse electric waves,” Int. J. Imaging Syst. Technol. 15, 261–265 (2005).

[Crossref]

E. Cekli and H. A. Cirpan, “Unconditional maximum likelihood approach for localization of near-field sources: algorithm and performance analysis,” J. Inst. Electron. Commun. Eng. Jpn. 57, 9–15 (2003).

D. Colton and P. Monk, “A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region II,” SIAM J. Appl. Math. 46, 506–523 (1986).

[Crossref]

F. K. Gruber, E. A. Marengo, and A. J. Devaney, “Time-reversal imaging with multiple signal classification considering multiple scattering between the targets,” J. Acoust. Soc. Am. 115, 3042–3047 (2004).

[Crossref]

Y. Alvarez-Lopez, A. Dominguez-Casas, C. Garcia-Gonzalez, and F. Las-Heras, “Geometry reconstruction of metallic bodies using the sources reconstruction method,” IEEE Antennas Wireless Propag. Lett. 9, 1197–1200 (2010).

[Crossref]

P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, “Evolutionary optimization as applied to inverse scattering problems,” Inverse Problems 25, 1–41 (2009).

S. Ji, D. Dunson, and L. Carin, “Multitask compressive sensing,” IEEE Trans. Signal Process. 57(4), 92–106 (2009).

[Crossref]

O. M. Bucci and G. Franceschetti, “On the degrees of freedom of scattered fields,” IEEE Trans. Antennas Propag. 37, 918–926 (1989).

[Crossref]

P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, “Evolutionary optimization as applied to inverse scattering problems,” Inverse Problems 25, 1–41 (2009).

Y. Alvarez-Lopez, A. Dominguez-Casas, C. Garcia-Gonzalez, and F. Las-Heras, “Geometry reconstruction of metallic bodies using the sources reconstruction method,” IEEE Antennas Wireless Propag. Lett. 9, 1197–1200 (2010).

[Crossref]

F. K. Gruber, E. A. Marengo, and A. J. Devaney, “Time-reversal imaging with multiple signal classification considering multiple scattering between the targets,” J. Acoust. Soc. Am. 115, 3042–3047 (2004).

[Crossref]

W. C. Chew, L. Gurel, Y.-M. Wang, G. Otto, R. L. Wagner, and Q. H. Liu, “A generalized recursive algorithm for wave-scattering solutions in two dimensions,” IEEE Trans. Microwave Theory Tech. 40, 716–723 (1992).

[Crossref]

C.-C. Chiu, C.-H. Sun, C.-L. Li, and C.-H. Huang, “Comparative study of some population-based optimization algorithms on inverse scattering of a two-dimensional perfectly conducting cylinder in dielectric slab medium,” IEEE Trans. Geosci. Remote Sens. 51, 2302–2315 (2013).

[Crossref]

A. Qing, C. K. Lee, and L. Jen, “Electromagnetic inverse scattering of two-dimensional perfectly conducting objects by real-coded genetic algorithm,” IEEE Trans. Geosci. Remote Sens. 39, 665–676 (2001).

[Crossref]

S. Ji, D. Dunson, and L. Carin, “Multitask compressive sensing,” IEEE Trans. Signal Process. 57(4), 92–106 (2009).

[Crossref]

S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,” IEEE Trans. Signal Process. 56, 2346–2356 (2008).

[Crossref]

R. E. Kleinman and P. M. van den Berg, “Two-dimensional location and shape reconstruction,” Radio Sci. 29, 1157–1169 (1994).

[Crossref]

K. J. Langenberg, K. Mayer, A. Zimmer, and C. Kohl, “Nondestructive evaluation of embedded structures in concrete: modeling and tomographic imaging,” in Proceedings of the URSI International Symposium on Electromagnetic Theory (URSI EMTS, 2004), pp. 1203–1205.

C. Ramananjaona, M. Lambert, and D. Lesselier, “Shape inversion from TM and TE real data by controlled evolution of level sets,” Inverse Probl. 17, 1585–1595 (2001).

[Crossref]

K. J. Langenberg, K. Mayer, A. Zimmer, and C. Kohl, “Nondestructive evaluation of embedded structures in concrete: modeling and tomographic imaging,” in Proceedings of the URSI International Symposium on Electromagnetic Theory (URSI EMTS, 2004), pp. 1203–1205.

Y. Alvarez-Lopez, A. Dominguez-Casas, C. Garcia-Gonzalez, and F. Las-Heras, “Geometry reconstruction of metallic bodies using the sources reconstruction method,” IEEE Antennas Wireless Propag. Lett. 9, 1197–1200 (2010).

[Crossref]

A. Qing, C. K. Lee, and L. Jen, “Electromagnetic inverse scattering of two-dimensional perfectly conducting objects by real-coded genetic algorithm,” IEEE Trans. Geosci. Remote Sens. 39, 665–676 (2001).

[Crossref]

A. Qing and C. K. Lee, “Microwave imaging of parallel perfectly conducting cylinders using real-coded genetic algorithm coupled with Newton–Kantorovich method” Prog. Electromagn. Res. 28, 275–294 (2000).

[Crossref]

C. Ramananjaona, M. Lambert, and D. Lesselier, “Shape inversion from TM and TE real data by controlled evolution of level sets,” Inverse Probl. 17, 1585–1595 (2001).

[Crossref]

C.-C. Chiu, C.-H. Sun, C.-L. Li, and C.-H. Huang, “Comparative study of some population-based optimization algorithms on inverse scattering of a two-dimensional perfectly conducting cylinder in dielectric slab medium,” IEEE Trans. Geosci. Remote Sens. 51, 2302–2315 (2013).

[Crossref]

Y. Zhou, J. Li, and H. Ling, “Shape inversion of metallic cavities using hybrid genetic algorithm combined with tabu list,” Electron. Lett. 39, 280–281 (2003).

[Crossref]

Y. Zhou, J. Li, and H. Ling, “Shape inversion of metallic cavities using hybrid genetic algorithm combined with tabu list,” Electron. Lett. 39, 280–281 (2003).

[Crossref]

R. Pierri, A. Liseno, R. Solimene, and F. Soldovieri, “Beyond physical optics SVD shape reconstruction of metallic cylinders,” IEEE Trans. Antennas Propag. 54, 655–665 (2006).

[Crossref]

R. Pierri, R. Solimene, A. Liseno, and J. Romano, “Linear distribution imaging of thin metallic cylinders under mutual scattering,” IEEE Trans. Antennas Propag. 53, 3019–3029 (2005).

[Crossref]

A. Liseno, R. Pierri, and F. Soldovieri, “Shape identification by physical optics: the two-dimensional TE case,” J. Opt. Soc. Am. A 20, 1827–1830 (2003).

[Crossref]

A. Liseno and R. Pierri, “Imaging perfectly conducting objects as support of induced currents: Kirchhoff approximation and frequency diversity,” J. Opt. Soc. Am. A 19, 1308–1318 (2002).

[Crossref]

W. C. Chew, L. Gurel, Y.-M. Wang, G. Otto, R. L. Wagner, and Q. H. Liu, “A generalized recursive algorithm for wave-scattering solutions in two dimensions,” IEEE Trans. Microwave Theory Tech. 40, 716–723 (1992).

[Crossref]

F. K. Gruber, E. A. Marengo, and A. J. Devaney, “Time-reversal imaging with multiple signal classification considering multiple scattering between the targets,” J. Acoust. Soc. Am. 115, 3042–3047 (2004).

[Crossref]

L. Poli, G. Oliveri, P. Rocca, and A. Massa, “Bayesian compressive sensing approaches for the reconstruction of two-dimensional sparse scatterers under TE illuminations,” IEEE Trans. Geosci. Remote Sens. 51, 2920–2936 (2013).

G. Oliveri, M. Carlin, and A. Massa, “Complex-weight sparse linear array synthesis by Bayesian compressive sampling,” IEEE Trans. Antennas Propag. 60, 2309–2326 (2012).

[Crossref]

G. Oliveri, P. Rocca, and A. Massa, “Reliable diagnosis of large linear arrays—Bayesian compressive sensing approach,” IEEE Trans. Antennas Propag. 60, 4627–4636 (2012).

[Crossref]

G. Oliveri, L. Poli, P. Rocca, and A. Massa, “Bayesian compressive optical imaging within the Rytov approximation,” Opt. Lett. 37, 1760–1762 (2012).

[Crossref]

L. Poli, G. Oliveri, and A. Massa, “Microwave imaging within the first-order Born approximation by means of the contrast-field Bayesian compressive sensing,” IEEE Trans. Antennas Propag. 60, 2865–2879 (2012).

[Crossref]

G. Oliveri and A. Massa, “Bayesian compressive sampling for pattern synthesis with maximally sparse non-uniform linear arrays,” IEEE Trans. Antennas Propag. 59, 467–481 (2011).

[Crossref]

F. Viani, G. Oliveri, and A. Massa, “Compressive sensing pattern matching techniques for synthesizing planar sparse arrays,” IEEE Trans. Antennas Propag. 59, 467–481 (2011).

[Crossref]

G. Oliveri, P. Rocca, and A. Massa, “A Bayesian compressive sampling-based inversion for imaging sparse scatterers,” IEEE Trans. Geosci. Remote Sens. 49, 3993–4006 (2011).

[Crossref]

P. Rocca, G. Oliveri, and A. Massa, “Differential evolution as applied to electromagnetics,” IEEE Antennas Propag. Mag. 53, 38–49 (2011).

[Crossref]

P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, “Evolutionary optimization as applied to inverse scattering problems,” Inverse Problems 25, 1–41 (2009).

K. J. Langenberg, K. Mayer, A. Zimmer, and C. Kohl, “Nondestructive evaluation of embedded structures in concrete: modeling and tomographic imaging,” in Proceedings of the URSI International Symposium on Electromagnetic Theory (URSI EMTS, 2004), pp. 1203–1205.

T. Takenaka, Z. Q. Meng, T. Tanaka, and W. C. Chew, “Local shape function combined with genetic algorithm applied to inverse scattering for strips,” Microw. Opt. Technol. Lett. 16, 337–341 (1997).

[Crossref]

K. A. Michalski, “Electromagnetic imaging of circular–cylindrical conductors and tunnels using a differential evolution algorithm,” Microw. Opt. Technol. Lett. 27, 330–334 (2000).

[Crossref]

G. Micolau, M. Saillard, and P. Borderies, “DORT method as applied to ultrawideband signals for detection of buried objects,” IEEE Trans. Geosci. Remote Sens. 41, 1813–1820 (2003).

[Crossref]

T. Miwa and I. Arai, “Super-resolution imaging for point reflectors near transmitting and receiving array,” IEEE Trans. Antennas Propag. 52, 220–229 (2004).

[Crossref]

D. Colton and P. Monk, “A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region II,” SIAM J. Appl. Math. 46, 506–523 (1986).

[Crossref]

L. Poli, G. Oliveri, P. Rocca, and A. Massa, “Bayesian compressive sensing approaches for the reconstruction of two-dimensional sparse scatterers under TE illuminations,” IEEE Trans. Geosci. Remote Sens. 51, 2920–2936 (2013).

G. Oliveri, M. Carlin, and A. Massa, “Complex-weight sparse linear array synthesis by Bayesian compressive sampling,” IEEE Trans. Antennas Propag. 60, 2309–2326 (2012).

[Crossref]

G. Oliveri, P. Rocca, and A. Massa, “Reliable diagnosis of large linear arrays—Bayesian compressive sensing approach,” IEEE Trans. Antennas Propag. 60, 4627–4636 (2012).

[Crossref]

L. Poli, G. Oliveri, and A. Massa, “Microwave imaging within the first-order Born approximation by means of the contrast-field Bayesian compressive sensing,” IEEE Trans. Antennas Propag. 60, 2865–2879 (2012).

[Crossref]

G. Oliveri, L. Poli, P. Rocca, and A. Massa, “Bayesian compressive optical imaging within the Rytov approximation,” Opt. Lett. 37, 1760–1762 (2012).

[Crossref]

G. Oliveri, P. Rocca, and A. Massa, “A Bayesian compressive sampling-based inversion for imaging sparse scatterers,” IEEE Trans. Geosci. Remote Sens. 49, 3993–4006 (2011).

[Crossref]

F. Viani, G. Oliveri, and A. Massa, “Compressive sensing pattern matching techniques for synthesizing planar sparse arrays,” IEEE Trans. Antennas Propag. 59, 467–481 (2011).

[Crossref]

G. Oliveri and A. Massa, “Bayesian compressive sampling for pattern synthesis with maximally sparse non-uniform linear arrays,” IEEE Trans. Antennas Propag. 59, 467–481 (2011).

[Crossref]

P. Rocca, G. Oliveri, and A. Massa, “Differential evolution as applied to electromagnetics,” IEEE Antennas Propag. Mag. 53, 38–49 (2011).

[Crossref]

D. Asteli and B. Ottersten, “The effect of local scattering on direction of arrival estimation with MUSIC,” IEEE Trans. Signal Process. 47, 3220–3234 (1999).

[Crossref]

W. C. Chew, L. Gurel, Y.-M. Wang, G. Otto, R. L. Wagner, and Q. H. Liu, “A generalized recursive algorithm for wave-scattering solutions in two dimensions,” IEEE Trans. Microwave Theory Tech. 40, 716–723 (1992).

[Crossref]

G. P. Otto and W. C. Chew, “Microwave inverse scattering—local shape function imaging for improved resolution of strong scatterers,” IEEE Trans. Microwave Theory Tech. 42, 137–141 (1994).

[Crossref]

W. C. Chew and G. P. Otto, “Microwave imaging of multiple conducting cylinders using local shape functions,” IEEE Microw. Guided Wave Lett. 2, 284–286 (1992).

[Crossref]

R. Solimene, A. Brancaccio, J. Romano, and R. Pierri, “Localizing thin metallic cylinders by a 2.5-D linear distributional approach: experimental results,” IEEE Trans. Antennas Propag. 56, 2630–2637 (2008).

[Crossref]

R. Pierri, A. Liseno, R. Solimene, and F. Soldovieri, “Beyond physical optics SVD shape reconstruction of metallic cylinders,” IEEE Trans. Antennas Propag. 54, 655–665 (2006).

[Crossref]

R. Pierri, R. Solimene, A. Liseno, and J. Romano, “Linear distribution imaging of thin metallic cylinders under mutual scattering,” IEEE Trans. Antennas Propag. 53, 3019–3029 (2005).

[Crossref]

A. Liseno, R. Pierri, and F. Soldovieri, “Shape identification by physical optics: the two-dimensional TE case,” J. Opt. Soc. Am. A 20, 1827–1830 (2003).

[Crossref]

A. Liseno and R. Pierri, “Imaging perfectly conducting objects as support of induced currents: Kirchhoff approximation and frequency diversity,” J. Opt. Soc. Am. A 19, 1308–1318 (2002).

[Crossref]

L. Poli, G. Oliveri, P. Rocca, and A. Massa, “Bayesian compressive sensing approaches for the reconstruction of two-dimensional sparse scatterers under TE illuminations,” IEEE Trans. Geosci. Remote Sens. 51, 2920–2936 (2013).

G. Oliveri, L. Poli, P. Rocca, and A. Massa, “Bayesian compressive optical imaging within the Rytov approximation,” Opt. Lett. 37, 1760–1762 (2012).

[Crossref]

L. Poli, G. Oliveri, and A. Massa, “Microwave imaging within the first-order Born approximation by means of the contrast-field Bayesian compressive sensing,” IEEE Trans. Antennas Propag. 60, 2865–2879 (2012).

[Crossref]

A. Qing, “Electromagnetic inverse scattering of multiple two-dimensional perfectly conducting objects by the differential evolution strategy,” IEEE Trans. Antennas Propag. 51, 1251–1262 (2003).

[Crossref]

A. Qing, C. K. Lee, and L. Jen, “Electromagnetic inverse scattering of two-dimensional perfectly conducting objects by real-coded genetic algorithm,” IEEE Trans. Geosci. Remote Sens. 39, 665–676 (2001).

[Crossref]

A. Qing and C. K. Lee, “Microwave imaging of parallel perfectly conducting cylinders using real-coded genetic algorithm coupled with Newton–Kantorovich method” Prog. Electromagn. Res. 28, 275–294 (2000).

[Crossref]

C. Ramananjaona, M. Lambert, and D. Lesselier, “Shape inversion from TM and TE real data by controlled evolution of level sets,” Inverse Probl. 17, 1585–1595 (2001).

[Crossref]

I. T. Rekanos, “Shape reconstruction of a perfectly conducting scatterer using differential evolution and particle swarm optimization,” IEEE Trans. Geosci. Remote Sens. 46, 1967–1974 (2008).

[Crossref]

I. T. Rekanos and T. D. Tsiboukis, “An inverse scattering technique for microwave imaging of binary objects,” IEEE Trans. Microw. Theory Tech. 50, 1439–1441 (2002).

[Crossref]

E. P. Ribeiro, A. C. Bruno, P. C. Ribeiro, J. Szczupak, and O. G. Symko, “Image of a two-dimensional magnetic moment distribution: application to detect small metallic objects in the human body,” in 1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 1992), Vol. 5, 2178–2179.

E. P. Ribeiro, A. C. Bruno, P. C. Ribeiro, J. Szczupak, and O. G. Symko, “Image of a two-dimensional magnetic moment distribution: application to detect small metallic objects in the human body,” in 1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 1992), Vol. 5, 2178–2179.

L. Poli, G. Oliveri, P. Rocca, and A. Massa, “Bayesian compressive sensing approaches for the reconstruction of two-dimensional sparse scatterers under TE illuminations,” IEEE Trans. Geosci. Remote Sens. 51, 2920–2936 (2013).

G. Oliveri, P. Rocca, and A. Massa, “Reliable diagnosis of large linear arrays—Bayesian compressive sensing approach,” IEEE Trans. Antennas Propag. 60, 4627–4636 (2012).

[Crossref]

G. Oliveri, L. Poli, P. Rocca, and A. Massa, “Bayesian compressive optical imaging within the Rytov approximation,” Opt. Lett. 37, 1760–1762 (2012).

[Crossref]

G. Oliveri, P. Rocca, and A. Massa, “A Bayesian compressive sampling-based inversion for imaging sparse scatterers,” IEEE Trans. Geosci. Remote Sens. 49, 3993–4006 (2011).

[Crossref]

P. Rocca, G. Oliveri, and A. Massa, “Differential evolution as applied to electromagnetics,” IEEE Antennas Propag. Mag. 53, 38–49 (2011).

[Crossref]

P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, “Evolutionary optimization as applied to inverse scattering problems,” Inverse Problems 25, 1–41 (2009).

R. Solimene, A. Brancaccio, J. Romano, and R. Pierri, “Localizing thin metallic cylinders by a 2.5-D linear distributional approach: experimental results,” IEEE Trans. Antennas Propag. 56, 2630–2637 (2008).

[Crossref]

R. Pierri, R. Solimene, A. Liseno, and J. Romano, “Linear distribution imaging of thin metallic cylinders under mutual scattering,” IEEE Trans. Antennas Propag. 53, 3019–3029 (2005).

[Crossref]

G. Micolau, M. Saillard, and P. Borderies, “DORT method as applied to ultrawideband signals for detection of buried objects,” IEEE Trans. Geosci. Remote Sens. 41, 1813–1820 (2003).

[Crossref]

R. Pierri, A. Liseno, R. Solimene, and F. Soldovieri, “Beyond physical optics SVD shape reconstruction of metallic cylinders,” IEEE Trans. Antennas Propag. 54, 655–665 (2006).

[Crossref]

A. Liseno, R. Pierri, and F. Soldovieri, “Shape identification by physical optics: the two-dimensional TE case,” J. Opt. Soc. Am. A 20, 1827–1830 (2003).

[Crossref]

A. Brancaccio, G. Leone, and R. Solimene, “Fault detection in metallic grid scattering,” J. Opt. Soc. Am. A 28, 2588–2599 (2011).

[Crossref]

R. Solimene, A. Brancaccio, J. Romano, and R. Pierri, “Localizing thin metallic cylinders by a 2.5-D linear distributional approach: experimental results,” IEEE Trans. Antennas Propag. 56, 2630–2637 (2008).

[Crossref]

R. Pierri, A. Liseno, R. Solimene, and F. Soldovieri, “Beyond physical optics SVD shape reconstruction of metallic cylinders,” IEEE Trans. Antennas Propag. 54, 655–665 (2006).

[Crossref]

R. Pierri, R. Solimene, A. Liseno, and J. Romano, “Linear distribution imaging of thin metallic cylinders under mutual scattering,” IEEE Trans. Antennas Propag. 53, 3019–3029 (2005).

[Crossref]

C.-C. Chiu, C.-H. Sun, C.-L. Li, and C.-H. Huang, “Comparative study of some population-based optimization algorithms on inverse scattering of a two-dimensional perfectly conducting cylinder in dielectric slab medium,” IEEE Trans. Geosci. Remote Sens. 51, 2302–2315 (2013).

[Crossref]

E. P. Ribeiro, A. C. Bruno, P. C. Ribeiro, J. Szczupak, and O. G. Symko, “Image of a two-dimensional magnetic moment distribution: application to detect small metallic objects in the human body,” in 1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 1992), Vol. 5, 2178–2179.

E. P. Ribeiro, A. C. Bruno, P. C. Ribeiro, J. Szczupak, and O. G. Symko, “Image of a two-dimensional magnetic moment distribution: application to detect small metallic objects in the human body,” in 1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 1992), Vol. 5, 2178–2179.

T. Takenaka, Z. Q. Meng, T. Tanaka, and W. C. Chew, “Local shape function combined with genetic algorithm applied to inverse scattering for strips,” Microw. Opt. Technol. Lett. 16, 337–341 (1997).

[Crossref]

T. Takenaka, Z. Q. Meng, T. Tanaka, and W. C. Chew, “Local shape function combined with genetic algorithm applied to inverse scattering for strips,” Microw. Opt. Technol. Lett. 16, 337–341 (1997).

[Crossref]

J. A. Tropp and S. J. Wright, “Computational methods for sparse solution of linear inverse problems,” Proc. IEEE 98, 948–958 (2010).

[Crossref]

I. T. Rekanos and T. D. Tsiboukis, “An inverse scattering technique for microwave imaging of binary objects,” IEEE Trans. Microw. Theory Tech. 50, 1439–1441 (2002).

[Crossref]

R. E. Kleinman and P. M. van den Berg, “Two-dimensional location and shape reconstruction,” Radio Sci. 29, 1157–1169 (1994).

[Crossref]

F. Viani, G. Oliveri, and A. Massa, “Compressive sensing pattern matching techniques for synthesizing planar sparse arrays,” IEEE Trans. Antennas Propag. 59, 467–481 (2011).

[Crossref]

W. C. Chew, L. Gurel, Y.-M. Wang, G. Otto, R. L. Wagner, and Q. H. Liu, “A generalized recursive algorithm for wave-scattering solutions in two dimensions,” IEEE Trans. Microwave Theory Tech. 40, 716–723 (1992).

[Crossref]

E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25, 21–30 (2008).

[Crossref]

W. C. Chew, L. Gurel, Y.-M. Wang, G. Otto, R. L. Wagner, and Q. H. Liu, “A generalized recursive algorithm for wave-scattering solutions in two dimensions,” IEEE Trans. Microwave Theory Tech. 40, 716–723 (1992).

[Crossref]

J. A. Tropp and S. J. Wright, “Computational methods for sparse solution of linear inverse problems,” Proc. IEEE 98, 948–958 (2010).

[Crossref]

S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,” IEEE Trans. Signal Process. 56, 2346–2356 (2008).

[Crossref]

J. Shen, X. Chen, Y. Zhong, and L. Ran, “Inverse scattering problem in presence of a conducting cylinder,” Opt. Express 19, 10698–10706 (2011).

[Crossref]

K. Agarwal, X. Chen, and Y. Zhong, “A multipole-expansion based linear sampling method for solving inverse scattering problems,” Opt. Express 18, 6366–6381 (2010).

[Crossref]

Y. Zhou, J. Li, and H. Ling, “Shape inversion of metallic cavities using hybrid genetic algorithm combined with tabu list,” Electron. Lett. 39, 280–281 (2003).

[Crossref]

K. J. Langenberg, K. Mayer, A. Zimmer, and C. Kohl, “Nondestructive evaluation of embedded structures in concrete: modeling and tomographic imaging,” in Proceedings of the URSI International Symposium on Electromagnetic Theory (URSI EMTS, 2004), pp. 1203–1205.

Y. Zhou, J. Li, and H. Ling, “Shape inversion of metallic cavities using hybrid genetic algorithm combined with tabu list,” Electron. Lett. 39, 280–281 (2003).

[Crossref]

P. Rocca, G. Oliveri, and A. Massa, “Differential evolution as applied to electromagnetics,” IEEE Antennas Propag. Mag. 53, 38–49 (2011).

[Crossref]

Y. Alvarez-Lopez, A. Dominguez-Casas, C. Garcia-Gonzalez, and F. Las-Heras, “Geometry reconstruction of metallic bodies using the sources reconstruction method,” IEEE Antennas Wireless Propag. Lett. 9, 1197–1200 (2010).

[Crossref]

W. C. Chew and G. P. Otto, “Microwave imaging of multiple conducting cylinders using local shape functions,” IEEE Microw. Guided Wave Lett. 2, 284–286 (1992).

[Crossref]

R. G. Baraniuk, “Compressive sampling,” IEEE Signal Process. Mag. 24, 118–121 (2007).

[Crossref]

E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25, 21–30 (2008).

[Crossref]

L. Poli, G. Oliveri, and A. Massa, “Microwave imaging within the first-order Born approximation by means of the contrast-field Bayesian compressive sensing,” IEEE Trans. Antennas Propag. 60, 2865–2879 (2012).

[Crossref]

G. Oliveri and A. Massa, “Bayesian compressive sampling for pattern synthesis with maximally sparse non-uniform linear arrays,” IEEE Trans. Antennas Propag. 59, 467–481 (2011).

[Crossref]

G. Oliveri, M. Carlin, and A. Massa, “Complex-weight sparse linear array synthesis by Bayesian compressive sampling,” IEEE Trans. Antennas Propag. 60, 2309–2326 (2012).

[Crossref]

F. Viani, G. Oliveri, and A. Massa, “Compressive sensing pattern matching techniques for synthesizing planar sparse arrays,” IEEE Trans. Antennas Propag. 59, 467–481 (2011).

[Crossref]

G. Oliveri, P. Rocca, and A. Massa, “Reliable diagnosis of large linear arrays—Bayesian compressive sensing approach,” IEEE Trans. Antennas Propag. 60, 4627–4636 (2012).

[Crossref]

O. M. Bucci and G. Franceschetti, “On the degrees of freedom of scattered fields,” IEEE Trans. Antennas Propag. 37, 918–926 (1989).

[Crossref]

A. Qing, “Electromagnetic inverse scattering of multiple two-dimensional perfectly conducting objects by the differential evolution strategy,” IEEE Trans. Antennas Propag. 51, 1251–1262 (2003).

[Crossref]

R. Pierri, A. Liseno, R. Solimene, and F. Soldovieri, “Beyond physical optics SVD shape reconstruction of metallic cylinders,” IEEE Trans. Antennas Propag. 54, 655–665 (2006).

[Crossref]

R. Solimene, A. Brancaccio, J. Romano, and R. Pierri, “Localizing thin metallic cylinders by a 2.5-D linear distributional approach: experimental results,” IEEE Trans. Antennas Propag. 56, 2630–2637 (2008).

[Crossref]

T. Miwa and I. Arai, “Super-resolution imaging for point reflectors near transmitting and receiving array,” IEEE Trans. Antennas Propag. 52, 220–229 (2004).

[Crossref]

W. Chien and C.-C. Chiu, “Using NU-SSGA to reduce the searching time in inverse problem of a buried metallic object,” IEEE Trans. Antennas Propag. 53, 3128–3134 (2005).

[Crossref]

R. Pierri, R. Solimene, A. Liseno, and J. Romano, “Linear distribution imaging of thin metallic cylinders under mutual scattering,” IEEE Trans. Antennas Propag. 53, 3019–3029 (2005).

[Crossref]

G. Micolau, M. Saillard, and P. Borderies, “DORT method as applied to ultrawideband signals for detection of buried objects,” IEEE Trans. Geosci. Remote Sens. 41, 1813–1820 (2003).

[Crossref]

C.-C. Chiu, C.-H. Sun, C.-L. Li, and C.-H. Huang, “Comparative study of some population-based optimization algorithms on inverse scattering of a two-dimensional perfectly conducting cylinder in dielectric slab medium,” IEEE Trans. Geosci. Remote Sens. 51, 2302–2315 (2013).

[Crossref]

I. T. Rekanos, “Shape reconstruction of a perfectly conducting scatterer using differential evolution and particle swarm optimization,” IEEE Trans. Geosci. Remote Sens. 46, 1967–1974 (2008).

[Crossref]

A. Qing, C. K. Lee, and L. Jen, “Electromagnetic inverse scattering of two-dimensional perfectly conducting objects by real-coded genetic algorithm,” IEEE Trans. Geosci. Remote Sens. 39, 665–676 (2001).

[Crossref]

G. Oliveri, P. Rocca, and A. Massa, “A Bayesian compressive sampling-based inversion for imaging sparse scatterers,” IEEE Trans. Geosci. Remote Sens. 49, 3993–4006 (2011).

[Crossref]

L. Poli, G. Oliveri, P. Rocca, and A. Massa, “Bayesian compressive sensing approaches for the reconstruction of two-dimensional sparse scatterers under TE illuminations,” IEEE Trans. Geosci. Remote Sens. 51, 2920–2936 (2013).

I. T. Rekanos and T. D. Tsiboukis, “An inverse scattering technique for microwave imaging of binary objects,” IEEE Trans. Microw. Theory Tech. 50, 1439–1441 (2002).

[Crossref]

W. C. Chew, L. Gurel, Y.-M. Wang, G. Otto, R. L. Wagner, and Q. H. Liu, “A generalized recursive algorithm for wave-scattering solutions in two dimensions,” IEEE Trans. Microwave Theory Tech. 40, 716–723 (1992).

[Crossref]

G. P. Otto and W. C. Chew, “Microwave inverse scattering—local shape function imaging for improved resolution of strong scatterers,” IEEE Trans. Microwave Theory Tech. 42, 137–141 (1994).

[Crossref]

S. Ji, D. Dunson, and L. Carin, “Multitask compressive sensing,” IEEE Trans. Signal Process. 57(4), 92–106 (2009).

[Crossref]

D. Asteli and B. Ottersten, “The effect of local scattering on direction of arrival estimation with MUSIC,” IEEE Trans. Signal Process. 47, 3220–3234 (1999).

[Crossref]

S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,” IEEE Trans. Signal Process. 56, 2346–2356 (2008).

[Crossref]

Y.-C. Chen, Y.-F. Chen, C.-C. Chiu, and C.-Y. Chang, “Image reconstruction of a buried perfectly conducting cylinder illuminated by transverse electric waves,” Int. J. Imaging Syst. Technol. 15, 261–265 (2005).

[Crossref]

C. Ramananjaona, M. Lambert, and D. Lesselier, “Shape inversion from TM and TE real data by controlled evolution of level sets,” Inverse Probl. 17, 1585–1595 (2001).

[Crossref]

P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, “Evolutionary optimization as applied to inverse scattering problems,” Inverse Problems 25, 1–41 (2009).

F. K. Gruber, E. A. Marengo, and A. J. Devaney, “Time-reversal imaging with multiple signal classification considering multiple scattering between the targets,” J. Acoust. Soc. Am. 115, 3042–3047 (2004).

[Crossref]

E. Cekli and H. A. Cirpan, “Unconditional maximum likelihood approach for localization of near-field sources: algorithm and performance analysis,” J. Inst. Electron. Commun. Eng. Jpn. 57, 9–15 (2003).

A. Brancaccio, G. Leone, and R. Solimene, “Fault detection in metallic grid scattering,” J. Opt. Soc. Am. A 28, 2588–2599 (2011).

[Crossref]

A. Schatzberg and A. Devaney, “Rough surface inverse scattering within the Rytov approximation,” J. Opt. Soc. Am. A 10, 942–950 (1993).

[Crossref]

A. Liseno and R. Pierri, “Imaging perfectly conducting objects as support of induced currents: Kirchhoff approximation and frequency diversity,” J. Opt. Soc. Am. A 19, 1308–1318 (2002).

[Crossref]

A. Liseno, R. Pierri, and F. Soldovieri, “Shape identification by physical optics: the two-dimensional TE case,” J. Opt. Soc. Am. A 20, 1827–1830 (2003).

[Crossref]

T. Dorney, W. Symes, R. Baraniuk, and D. Mittleman, “Terahertz multistatic reflection imaging,” J. Opt. Soc. Am. A 19, 1432–1442 (2002).

[Crossref]

K. A. Michalski, “Electromagnetic imaging of circular–cylindrical conductors and tunnels using a differential evolution algorithm,” Microw. Opt. Technol. Lett. 27, 330–334 (2000).

[Crossref]

T. Takenaka, Z. Q. Meng, T. Tanaka, and W. C. Chew, “Local shape function combined with genetic algorithm applied to inverse scattering for strips,” Microw. Opt. Technol. Lett. 16, 337–341 (1997).

[Crossref]

J. Shen, X. Chen, Y. Zhong, and L. Ran, “Inverse scattering problem in presence of a conducting cylinder,” Opt. Express 19, 10698–10706 (2011).

[Crossref]

K. Agarwal, X. Chen, and Y. Zhong, “A multipole-expansion based linear sampling method for solving inverse scattering problems,” Opt. Express 18, 6366–6381 (2010).

[Crossref]

J. A. Tropp and S. J. Wright, “Computational methods for sparse solution of linear inverse problems,” Proc. IEEE 98, 948–958 (2010).

[Crossref]

A. Qing and C. K. Lee, “Microwave imaging of parallel perfectly conducting cylinders using real-coded genetic algorithm coupled with Newton–Kantorovich method” Prog. Electromagn. Res. 28, 275–294 (2000).

[Crossref]

R. E. Kleinman and P. M. van den Berg, “Two-dimensional location and shape reconstruction,” Radio Sci. 29, 1157–1169 (1994).

[Crossref]

D. Colton and P. Monk, “A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region II,” SIAM J. Appl. Math. 46, 506–523 (1986).

[Crossref]

K. J. Langenberg, K. Mayer, A. Zimmer, and C. Kohl, “Nondestructive evaluation of embedded structures in concrete: modeling and tomographic imaging,” in Proceedings of the URSI International Symposium on Electromagnetic Theory (URSI EMTS, 2004), pp. 1203–1205.

E. P. Ribeiro, A. C. Bruno, P. C. Ribeiro, J. Szczupak, and O. G. Symko, “Image of a two-dimensional magnetic moment distribution: application to detect small metallic objects in the human body,” in 1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 1992), Vol. 5, 2178–2179.

S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing code,” (2013), http://people.ee.duke.edu/lcarin/BCS.html .