Abstract

A glare source in the visual field modifies the brightness of a test patch surrounded by a mesopic background. In this study, we investigated the effect of two levels of transient glare on brightness perception for several combinations of mesopic reference test luminances (Lts) and background luminances (Lbs). While brightness perception was affected by Lb, there were no appreciable effects for changes in the Lt. The highest brightness reduction was found for Lbs in the low mesopic range. Considering the main proposal that brightness can be inferred from contrast and the Lb sets the mesopic luminance adaptation, we hypothesized that contrast gain and retinal adaptation mechanisms would act when a transient glare source was present in the visual field. A physiology-based model that adequately fitted the present and previous results was developed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. M. Matesanz, L. A. Issolio, I. Arranz, C. de la Rosa, J. A. Menéndez, S. Mar, and J. A. Aparicio, “Temporal retinal sensitivity in mesopic adaptation,” Ophthalmic Physiolog. Opt. 31, 615–624 (2011).
    [CrossRef]
  2. A. Reeves, “Visual adaptation,” in The Visual Neurosciences, L. Chalupa and J. Werner, eds. (MIT, 2004) pp. 851–862.
  3. A. Stockman and L. T. Sharpe, “Into the twilight zone: the complexities of mesopic vision and luminous efficiency,” Ophthalmic Physiolog. Opt. 26, 225–239 (2006).
    [CrossRef]
  4. I. C. Bichao, D. Yager, and J. Meng, “Disability glare: effects of temporal characteristics of the glare source and of the visual-field location of the test stimulus,” J. Opt. Soc. Am. A 12, 2252–2258 (1995).
    [CrossRef]
  5. G. A. Fry and M. Alpern, “The effect of a peripheral glare source upon the apparent brightness of an object,” J. Opt. Soc. Am. 43, 189–195 (1953).
    [CrossRef]
  6. E. M. Colombo, J. F. Barraza, and L. A. Issolio, “Effect of brief exposure to glare on brightness perception in the scotopic–mesopic range,” Light. Res. Technol. 32, 65–69 (2000).
    [CrossRef]
  7. L. L. Holladay, “Action of a light-source in the field of view in lowering visibility,” J. Opt. Soc. Am. 14, 1–15 (1927).
    [CrossRef]
  8. D. C. Hood and M. A. Finkelstein, “Sensitivity to light,” in Handbook of Perception and Human Performance: Sensory Processes and Perception, K. Boff and L. Kaufman, eds. Vol. 1 (Wiley, 1986) pp. 5-1–5-66.
  9. L. A. Issolio and E. M. Colombo, “Brightness for different surround conditions: the effect of transient glare,” Percept. Psychophys. 68, 702–709 (2006).
    [CrossRef]
  10. A. L. Gilchrist and A. Jacobsen, “Lightness constancy through a veiling luminance,” J. Exp. Psychol. Hum. Percept. Perform. 9, 936–944 (1983).
    [CrossRef]
  11. W. Geisler, “Adaptation, afterimages, and cone saturation,” Vis. Res. 18, 279–289 (1978).
    [CrossRef]
  12. D. C. Hood, T. Ilves, and E. Maurer, “Human cone saturation as a function of ambient intensity: a test of models of shifts in the dynamic range,” Vis. Res. 18, 983–993 (1978).
    [CrossRef]
  13. E. Adelson, “Saturation and adaptation in the rod system,” Vis. Res. 22, 1299–1312 (1982).
    [CrossRef]
  14. M. Hayhoe, N. Benimoff, and D. Hood, “The time-course of multiplicative and subtractive adaptation process,” Vis. Res. 27, 1981–1996 (1987).
    [CrossRef]
  15. K. Purpura, E. Kaplan, and R. M. Shapley, “Background light and the contrast gain of primate P and M retinal ganglion cells,” Proc. Natl. Acad. Sci. USA 85, 4534–4537 (1988).
    [CrossRef]
  16. P. Whittle and P. D. C. Challands, “The effect of background luminance on the brightness of flashes,” Vis. Res. 9, 1095–1110 (1969).
    [CrossRef]
  17. R. M. Boynton, W. Rush, and J. M. Enoch, “Rapid changes in foveal sensitivity resulting from direct and indirect adapting stimuli,” J. Opt. Soc. Am. 44, 56–60 (1954).
    [CrossRef]
  18. E. M. Colombo, S. A. Comastri, L. A. Issolio, and R. Echarri, “Pupil light reflex produced by glare under mesopic adaptation,” J. Light Visual Environ. 31, 70–79 (2007).
    [CrossRef]
  19. C. B. Blakemore and W. A. Rushton, “Dark adaptation and increment threshold in a rod monochromat,” J. Physiol. 181, 612–628 (1965).
  20. S. Raphael and D. I. A. MacLeod, “Mesopic luminance assessed with minimum motion photometry,” J. Vis. 11(9), 14 (2011).
    [CrossRef]
  21. R. Shapley and C. Enroth-Cugell, “Visual adaptation and retinal gain controls,” in Progress in Retinal Research, N. N. Osborne and G. J. Chader, eds., Vol. 3 (Pergamon, 1984), pp. 263–346.
  22. A. L. Gilchrist, Seeing Black and White (Oxford University, 2006), pp. 3–124.
  23. T. N. Cornsweet, Visual Perception. (Academic, 1970), p. 273.
  24. F. A. Dunn, M. J. Lankheet, and F. Rieke, “Light adaptation in cone vision involves switching between receptor and post-receptor sites,” Nature 449, 603–606 (2007).
    [CrossRef]
  25. B. B. Lee, V. C. Smith, J. Pokorny, and J. Kremers, “Rod inputs to macaque ganglion cells,” Vis. Res. 37, 2813–2828 (1997).
    [CrossRef]
  26. D. Cao, B. B. Lee, and H. Sun, “Combination of rod and cone inputs in parasol ganglion cells of the magnocellular pathway,” J. Vis. 10(11), 4 (2010).
    [CrossRef]
  27. B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, and A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990).
    [CrossRef]
  28. K. I. Naka and W. A. H. Rushton, “S-potentials from colour units in the retina of fish (cyprinidae),” J. Physiol. 185, 536–555 (1966).
  29. F. A. Dunn, T. Doan, A. P. Sampath, and F. Rieke, “Controlling the gain of rod-mediated signals in the mammalian retina,” J. Neurosci. 26, 3959–3970 (2006).
    [CrossRef]
  30. M. M. Hayhoe, M. E. Levin, and R. J. Koshel, “Subtractive processes in light adaptation,” Vis. Res. 32, 323–333 (1992).
    [CrossRef]
  31. H. R. Wilson, “A neural model of foveal light adaptation and afterimage formation,” Vis. Neurosci. 14, 403–423 (1997).
    [CrossRef]
  32. D. P. Piñero, D. Ortiz, and J. L. Alio, “Ocular scattering,” Optom. Vis. Sci. 87, E682–E696 (2010).
    [CrossRef]
  33. J. J. Vos, B. L. Cole, H. W. Bodmann, E. M. Colombo, T. Taekuchi, and T. J. T. P. Van Den Berg, CIE 146:2002 CIE equations for disability glare, Technical Report (Commission Internationale de L’Eclairage, 2002).
  34. M. Eloholma, J. Ketomäki, P. Orreveteläinen, and L. Halonen, “Visual performance in night‐time driving conditions,” Ophthalmic Physiolog. Opt. 26, 254–263 (2006).
    [CrossRef]
  35. D. Cao, A. J. Zele, and J. Pokorny, “Linking impulse response functions to reaction time: rod and cone reaction time data and a computational model,” Vis. Res. 47, 1060–1074 (2007).
    [CrossRef]
  36. R. C. Aguirre, E. M. Colombo, and J. F. Barraza, “Effect of glare on simple reaction time,” J. Opt. Soc. Am. A 25, 1790–1798 (2008).
    [CrossRef]
  37. A. Radonjić, S. R. Allred, A. L. Gilchrist, and D. H. Brainard, “The dynamic range of human lightness perception,” Curr. Biol. 21, 1931–1936 (2011).
    [CrossRef]
  38. W. A. Rushton and R. W. Gubisch, “Glare: its measurement by cone thresholds and by the bleaching of cone pigments,” J. Opt. Soc. Am. 56, 104–110 (1966).
    [CrossRef]
  39. S. Shah and M. D. Levine, “Visual information processing in primate cone pathways. I. A model,” IEEE Trans. Syst. Man Cybern. B 26, 259–274 (1996).
    [CrossRef]
  40. H. P. Snippe, L. Poot, and J. H. van Hateren, “A temporal model for early vision that explains detection thresholds for light pulses on flickering backgrounds,” Vis. Neurosci. 17, 449–462 (2000).
    [CrossRef]
  41. G. Westheimer, “Directional sensitivity of the retina: 75 years of Stiles–Crawford effect,” Proc. Biol. Sci. 275, 2777–2786 (2008).
    [CrossRef]
  42. M. Kinoshita and H. Komatsu, “Neural representation of the luminance and brightness of a uniform surface in the macaque primary visual cortex,” J. Neurophysiol. 86, 2559–2570 (2001).
  43. A. F. Rossi and M. A. Paradiso, “Temporal limits of brightness induction and mechanisms of brightness perception,” Vis. Res. 36, 1391–1398 (1996).
    [CrossRef]
  44. B. Blakeslee and M. E. McCourt, “A multiscale spatial filtering account of the White effect, simultaneous brightness contrast and grating induction,” Vis. Res. 39, 4361–4377 (1999).
    [CrossRef]
  45. X. Otazu, M. Vanrell, and C. Alejandro Párraga, “Multiresolution wavelet framework models brightness induction effects,” Vis. Res. 48, 733–751 (2008).
    [CrossRef]
  46. A. E. Robinson, P. S. Hammon, and V. R. de Sa, “Explaining brightness illusions using spatial filtering and local response normalization,” Vis. Res. 47, 1631–1644 (2007).
    [CrossRef]
  47. L. A. Issolio, J. F. Barraza, and E. M. Colombo, “Time course of brightness under transient glare condition,” J. Opt. Soc. Am. A 23, 233–238 (2006).
    [CrossRef]
  48. P. A. Barrionuevo, E. M. Colombo, M. Vilaseca, J. Pujol, and L. A. Issolio, “Comparison between an objective and a psychophysical method for the evaluation of intraocular light scattering,” J. Opt. Soc. Am. A 29, 1293–1299 (2012).
    [CrossRef]
  49. L. A. Issolio, P. A. Barrionuevo, S. A. Comastri, and E. M. Colombo, “Veiling luminance as a descriptor of brightness reduction caused by transient glare,” J. Opt. Soc. Am. A 29, 2230–2236 (2012).
    [CrossRef]
  50. J. Schouten and L. Ornstein, “Measurements on direct and indirect adaptation by means of binocular vision,” J. Opt. Soc. Am. 29, 168–192 (1939).
    [CrossRef]
  51. D. Schreuder, Outdoor Lighting: Physics, Vision, and Perception. (Springer, 2008), pp. 286–311.
  52. G. Osterberg, Topography of the Layer of Rods and Cones in the Human Retina (Nyt Nordisk Forlag, 1935), pp. 1–103.
  53. K. Sagawa, “Toward a CIE supplementary system of photometry: brightness at any level including mesopic vision,” Ophthalmic Physiolog. Opt. 26, 240–245 (2006).
    [CrossRef]
  54. K. J. Kim and F. Rieke, “Temporal contrast adaptation in the input and output signals of salamander retinal ganglion cells,” J. Neurosci. 21, 287–299 (2001).

2012 (2)

2011 (3)

B. M. Matesanz, L. A. Issolio, I. Arranz, C. de la Rosa, J. A. Menéndez, S. Mar, and J. A. Aparicio, “Temporal retinal sensitivity in mesopic adaptation,” Ophthalmic Physiolog. Opt. 31, 615–624 (2011).
[CrossRef]

S. Raphael and D. I. A. MacLeod, “Mesopic luminance assessed with minimum motion photometry,” J. Vis. 11(9), 14 (2011).
[CrossRef]

A. Radonjić, S. R. Allred, A. L. Gilchrist, and D. H. Brainard, “The dynamic range of human lightness perception,” Curr. Biol. 21, 1931–1936 (2011).
[CrossRef]

2010 (2)

D. P. Piñero, D. Ortiz, and J. L. Alio, “Ocular scattering,” Optom. Vis. Sci. 87, E682–E696 (2010).
[CrossRef]

D. Cao, B. B. Lee, and H. Sun, “Combination of rod and cone inputs in parasol ganglion cells of the magnocellular pathway,” J. Vis. 10(11), 4 (2010).
[CrossRef]

2008 (3)

G. Westheimer, “Directional sensitivity of the retina: 75 years of Stiles–Crawford effect,” Proc. Biol. Sci. 275, 2777–2786 (2008).
[CrossRef]

X. Otazu, M. Vanrell, and C. Alejandro Párraga, “Multiresolution wavelet framework models brightness induction effects,” Vis. Res. 48, 733–751 (2008).
[CrossRef]

R. C. Aguirre, E. M. Colombo, and J. F. Barraza, “Effect of glare on simple reaction time,” J. Opt. Soc. Am. A 25, 1790–1798 (2008).
[CrossRef]

2007 (4)

A. E. Robinson, P. S. Hammon, and V. R. de Sa, “Explaining brightness illusions using spatial filtering and local response normalization,” Vis. Res. 47, 1631–1644 (2007).
[CrossRef]

D. Cao, A. J. Zele, and J. Pokorny, “Linking impulse response functions to reaction time: rod and cone reaction time data and a computational model,” Vis. Res. 47, 1060–1074 (2007).
[CrossRef]

F. A. Dunn, M. J. Lankheet, and F. Rieke, “Light adaptation in cone vision involves switching between receptor and post-receptor sites,” Nature 449, 603–606 (2007).
[CrossRef]

E. M. Colombo, S. A. Comastri, L. A. Issolio, and R. Echarri, “Pupil light reflex produced by glare under mesopic adaptation,” J. Light Visual Environ. 31, 70–79 (2007).
[CrossRef]

2006 (6)

A. Stockman and L. T. Sharpe, “Into the twilight zone: the complexities of mesopic vision and luminous efficiency,” Ophthalmic Physiolog. Opt. 26, 225–239 (2006).
[CrossRef]

L. A. Issolio and E. M. Colombo, “Brightness for different surround conditions: the effect of transient glare,” Percept. Psychophys. 68, 702–709 (2006).
[CrossRef]

M. Eloholma, J. Ketomäki, P. Orreveteläinen, and L. Halonen, “Visual performance in night‐time driving conditions,” Ophthalmic Physiolog. Opt. 26, 254–263 (2006).
[CrossRef]

F. A. Dunn, T. Doan, A. P. Sampath, and F. Rieke, “Controlling the gain of rod-mediated signals in the mammalian retina,” J. Neurosci. 26, 3959–3970 (2006).
[CrossRef]

K. Sagawa, “Toward a CIE supplementary system of photometry: brightness at any level including mesopic vision,” Ophthalmic Physiolog. Opt. 26, 240–245 (2006).
[CrossRef]

L. A. Issolio, J. F. Barraza, and E. M. Colombo, “Time course of brightness under transient glare condition,” J. Opt. Soc. Am. A 23, 233–238 (2006).
[CrossRef]

2001 (2)

K. J. Kim and F. Rieke, “Temporal contrast adaptation in the input and output signals of salamander retinal ganglion cells,” J. Neurosci. 21, 287–299 (2001).

M. Kinoshita and H. Komatsu, “Neural representation of the luminance and brightness of a uniform surface in the macaque primary visual cortex,” J. Neurophysiol. 86, 2559–2570 (2001).

2000 (2)

E. M. Colombo, J. F. Barraza, and L. A. Issolio, “Effect of brief exposure to glare on brightness perception in the scotopic–mesopic range,” Light. Res. Technol. 32, 65–69 (2000).
[CrossRef]

H. P. Snippe, L. Poot, and J. H. van Hateren, “A temporal model for early vision that explains detection thresholds for light pulses on flickering backgrounds,” Vis. Neurosci. 17, 449–462 (2000).
[CrossRef]

1999 (1)

B. Blakeslee and M. E. McCourt, “A multiscale spatial filtering account of the White effect, simultaneous brightness contrast and grating induction,” Vis. Res. 39, 4361–4377 (1999).
[CrossRef]

1997 (2)

H. R. Wilson, “A neural model of foveal light adaptation and afterimage formation,” Vis. Neurosci. 14, 403–423 (1997).
[CrossRef]

B. B. Lee, V. C. Smith, J. Pokorny, and J. Kremers, “Rod inputs to macaque ganglion cells,” Vis. Res. 37, 2813–2828 (1997).
[CrossRef]

1996 (2)

S. Shah and M. D. Levine, “Visual information processing in primate cone pathways. I. A model,” IEEE Trans. Syst. Man Cybern. B 26, 259–274 (1996).
[CrossRef]

A. F. Rossi and M. A. Paradiso, “Temporal limits of brightness induction and mechanisms of brightness perception,” Vis. Res. 36, 1391–1398 (1996).
[CrossRef]

1995 (1)

1992 (1)

M. M. Hayhoe, M. E. Levin, and R. J. Koshel, “Subtractive processes in light adaptation,” Vis. Res. 32, 323–333 (1992).
[CrossRef]

1990 (1)

1988 (1)

K. Purpura, E. Kaplan, and R. M. Shapley, “Background light and the contrast gain of primate P and M retinal ganglion cells,” Proc. Natl. Acad. Sci. USA 85, 4534–4537 (1988).
[CrossRef]

1987 (1)

M. Hayhoe, N. Benimoff, and D. Hood, “The time-course of multiplicative and subtractive adaptation process,” Vis. Res. 27, 1981–1996 (1987).
[CrossRef]

1983 (1)

A. L. Gilchrist and A. Jacobsen, “Lightness constancy through a veiling luminance,” J. Exp. Psychol. Hum. Percept. Perform. 9, 936–944 (1983).
[CrossRef]

1982 (1)

E. Adelson, “Saturation and adaptation in the rod system,” Vis. Res. 22, 1299–1312 (1982).
[CrossRef]

1978 (2)

W. Geisler, “Adaptation, afterimages, and cone saturation,” Vis. Res. 18, 279–289 (1978).
[CrossRef]

D. C. Hood, T. Ilves, and E. Maurer, “Human cone saturation as a function of ambient intensity: a test of models of shifts in the dynamic range,” Vis. Res. 18, 983–993 (1978).
[CrossRef]

1969 (1)

P. Whittle and P. D. C. Challands, “The effect of background luminance on the brightness of flashes,” Vis. Res. 9, 1095–1110 (1969).
[CrossRef]

1966 (2)

K. I. Naka and W. A. H. Rushton, “S-potentials from colour units in the retina of fish (cyprinidae),” J. Physiol. 185, 536–555 (1966).

W. A. Rushton and R. W. Gubisch, “Glare: its measurement by cone thresholds and by the bleaching of cone pigments,” J. Opt. Soc. Am. 56, 104–110 (1966).
[CrossRef]

1965 (1)

C. B. Blakemore and W. A. Rushton, “Dark adaptation and increment threshold in a rod monochromat,” J. Physiol. 181, 612–628 (1965).

1954 (1)

1953 (1)

1939 (1)

1927 (1)

Adelson, E.

E. Adelson, “Saturation and adaptation in the rod system,” Vis. Res. 22, 1299–1312 (1982).
[CrossRef]

Aguirre, R. C.

Alejandro Párraga, C.

X. Otazu, M. Vanrell, and C. Alejandro Párraga, “Multiresolution wavelet framework models brightness induction effects,” Vis. Res. 48, 733–751 (2008).
[CrossRef]

Alio, J. L.

D. P. Piñero, D. Ortiz, and J. L. Alio, “Ocular scattering,” Optom. Vis. Sci. 87, E682–E696 (2010).
[CrossRef]

Allred, S. R.

A. Radonjić, S. R. Allred, A. L. Gilchrist, and D. H. Brainard, “The dynamic range of human lightness perception,” Curr. Biol. 21, 1931–1936 (2011).
[CrossRef]

Alpern, M.

Aparicio, J. A.

B. M. Matesanz, L. A. Issolio, I. Arranz, C. de la Rosa, J. A. Menéndez, S. Mar, and J. A. Aparicio, “Temporal retinal sensitivity in mesopic adaptation,” Ophthalmic Physiolog. Opt. 31, 615–624 (2011).
[CrossRef]

Arranz, I.

B. M. Matesanz, L. A. Issolio, I. Arranz, C. de la Rosa, J. A. Menéndez, S. Mar, and J. A. Aparicio, “Temporal retinal sensitivity in mesopic adaptation,” Ophthalmic Physiolog. Opt. 31, 615–624 (2011).
[CrossRef]

Barraza, J. F.

Barrionuevo, P. A.

Benimoff, N.

M. Hayhoe, N. Benimoff, and D. Hood, “The time-course of multiplicative and subtractive adaptation process,” Vis. Res. 27, 1981–1996 (1987).
[CrossRef]

Bichao, I. C.

Blakemore, C. B.

C. B. Blakemore and W. A. Rushton, “Dark adaptation and increment threshold in a rod monochromat,” J. Physiol. 181, 612–628 (1965).

Blakeslee, B.

B. Blakeslee and M. E. McCourt, “A multiscale spatial filtering account of the White effect, simultaneous brightness contrast and grating induction,” Vis. Res. 39, 4361–4377 (1999).
[CrossRef]

Bodmann, H. W.

J. J. Vos, B. L. Cole, H. W. Bodmann, E. M. Colombo, T. Taekuchi, and T. J. T. P. Van Den Berg, CIE 146:2002 CIE equations for disability glare, Technical Report (Commission Internationale de L’Eclairage, 2002).

Boynton, R. M.

Brainard, D. H.

A. Radonjić, S. R. Allred, A. L. Gilchrist, and D. H. Brainard, “The dynamic range of human lightness perception,” Curr. Biol. 21, 1931–1936 (2011).
[CrossRef]

Cao, D.

D. Cao, B. B. Lee, and H. Sun, “Combination of rod and cone inputs in parasol ganglion cells of the magnocellular pathway,” J. Vis. 10(11), 4 (2010).
[CrossRef]

D. Cao, A. J. Zele, and J. Pokorny, “Linking impulse response functions to reaction time: rod and cone reaction time data and a computational model,” Vis. Res. 47, 1060–1074 (2007).
[CrossRef]

Challands, P. D. C.

P. Whittle and P. D. C. Challands, “The effect of background luminance on the brightness of flashes,” Vis. Res. 9, 1095–1110 (1969).
[CrossRef]

Cole, B. L.

J. J. Vos, B. L. Cole, H. W. Bodmann, E. M. Colombo, T. Taekuchi, and T. J. T. P. Van Den Berg, CIE 146:2002 CIE equations for disability glare, Technical Report (Commission Internationale de L’Eclairage, 2002).

Colombo, E. M.

L. A. Issolio, P. A. Barrionuevo, S. A. Comastri, and E. M. Colombo, “Veiling luminance as a descriptor of brightness reduction caused by transient glare,” J. Opt. Soc. Am. A 29, 2230–2236 (2012).
[CrossRef]

P. A. Barrionuevo, E. M. Colombo, M. Vilaseca, J. Pujol, and L. A. Issolio, “Comparison between an objective and a psychophysical method for the evaluation of intraocular light scattering,” J. Opt. Soc. Am. A 29, 1293–1299 (2012).
[CrossRef]

R. C. Aguirre, E. M. Colombo, and J. F. Barraza, “Effect of glare on simple reaction time,” J. Opt. Soc. Am. A 25, 1790–1798 (2008).
[CrossRef]

E. M. Colombo, S. A. Comastri, L. A. Issolio, and R. Echarri, “Pupil light reflex produced by glare under mesopic adaptation,” J. Light Visual Environ. 31, 70–79 (2007).
[CrossRef]

L. A. Issolio and E. M. Colombo, “Brightness for different surround conditions: the effect of transient glare,” Percept. Psychophys. 68, 702–709 (2006).
[CrossRef]

L. A. Issolio, J. F. Barraza, and E. M. Colombo, “Time course of brightness under transient glare condition,” J. Opt. Soc. Am. A 23, 233–238 (2006).
[CrossRef]

E. M. Colombo, J. F. Barraza, and L. A. Issolio, “Effect of brief exposure to glare on brightness perception in the scotopic–mesopic range,” Light. Res. Technol. 32, 65–69 (2000).
[CrossRef]

J. J. Vos, B. L. Cole, H. W. Bodmann, E. M. Colombo, T. Taekuchi, and T. J. T. P. Van Den Berg, CIE 146:2002 CIE equations for disability glare, Technical Report (Commission Internationale de L’Eclairage, 2002).

Comastri, S. A.

L. A. Issolio, P. A. Barrionuevo, S. A. Comastri, and E. M. Colombo, “Veiling luminance as a descriptor of brightness reduction caused by transient glare,” J. Opt. Soc. Am. A 29, 2230–2236 (2012).
[CrossRef]

E. M. Colombo, S. A. Comastri, L. A. Issolio, and R. Echarri, “Pupil light reflex produced by glare under mesopic adaptation,” J. Light Visual Environ. 31, 70–79 (2007).
[CrossRef]

Cornsweet, T. N.

T. N. Cornsweet, Visual Perception. (Academic, 1970), p. 273.

de la Rosa, C.

B. M. Matesanz, L. A. Issolio, I. Arranz, C. de la Rosa, J. A. Menéndez, S. Mar, and J. A. Aparicio, “Temporal retinal sensitivity in mesopic adaptation,” Ophthalmic Physiolog. Opt. 31, 615–624 (2011).
[CrossRef]

de Sa, V. R.

A. E. Robinson, P. S. Hammon, and V. R. de Sa, “Explaining brightness illusions using spatial filtering and local response normalization,” Vis. Res. 47, 1631–1644 (2007).
[CrossRef]

Doan, T.

F. A. Dunn, T. Doan, A. P. Sampath, and F. Rieke, “Controlling the gain of rod-mediated signals in the mammalian retina,” J. Neurosci. 26, 3959–3970 (2006).
[CrossRef]

Dunn, F. A.

F. A. Dunn, M. J. Lankheet, and F. Rieke, “Light adaptation in cone vision involves switching between receptor and post-receptor sites,” Nature 449, 603–606 (2007).
[CrossRef]

F. A. Dunn, T. Doan, A. P. Sampath, and F. Rieke, “Controlling the gain of rod-mediated signals in the mammalian retina,” J. Neurosci. 26, 3959–3970 (2006).
[CrossRef]

Echarri, R.

E. M. Colombo, S. A. Comastri, L. A. Issolio, and R. Echarri, “Pupil light reflex produced by glare under mesopic adaptation,” J. Light Visual Environ. 31, 70–79 (2007).
[CrossRef]

Eloholma, M.

M. Eloholma, J. Ketomäki, P. Orreveteläinen, and L. Halonen, “Visual performance in night‐time driving conditions,” Ophthalmic Physiolog. Opt. 26, 254–263 (2006).
[CrossRef]

Enoch, J. M.

Enroth-Cugell, C.

R. Shapley and C. Enroth-Cugell, “Visual adaptation and retinal gain controls,” in Progress in Retinal Research, N. N. Osborne and G. J. Chader, eds., Vol. 3 (Pergamon, 1984), pp. 263–346.

Finkelstein, M. A.

D. C. Hood and M. A. Finkelstein, “Sensitivity to light,” in Handbook of Perception and Human Performance: Sensory Processes and Perception, K. Boff and L. Kaufman, eds. Vol. 1 (Wiley, 1986) pp. 5-1–5-66.

Fry, G. A.

Geisler, W.

W. Geisler, “Adaptation, afterimages, and cone saturation,” Vis. Res. 18, 279–289 (1978).
[CrossRef]

Gilchrist, A. L.

A. Radonjić, S. R. Allred, A. L. Gilchrist, and D. H. Brainard, “The dynamic range of human lightness perception,” Curr. Biol. 21, 1931–1936 (2011).
[CrossRef]

A. L. Gilchrist and A. Jacobsen, “Lightness constancy through a veiling luminance,” J. Exp. Psychol. Hum. Percept. Perform. 9, 936–944 (1983).
[CrossRef]

A. L. Gilchrist, Seeing Black and White (Oxford University, 2006), pp. 3–124.

Gubisch, R. W.

Halonen, L.

M. Eloholma, J. Ketomäki, P. Orreveteläinen, and L. Halonen, “Visual performance in night‐time driving conditions,” Ophthalmic Physiolog. Opt. 26, 254–263 (2006).
[CrossRef]

Hammon, P. S.

A. E. Robinson, P. S. Hammon, and V. R. de Sa, “Explaining brightness illusions using spatial filtering and local response normalization,” Vis. Res. 47, 1631–1644 (2007).
[CrossRef]

Hayhoe, M.

M. Hayhoe, N. Benimoff, and D. Hood, “The time-course of multiplicative and subtractive adaptation process,” Vis. Res. 27, 1981–1996 (1987).
[CrossRef]

Hayhoe, M. M.

M. M. Hayhoe, M. E. Levin, and R. J. Koshel, “Subtractive processes in light adaptation,” Vis. Res. 32, 323–333 (1992).
[CrossRef]

Holladay, L. L.

Hood, D.

M. Hayhoe, N. Benimoff, and D. Hood, “The time-course of multiplicative and subtractive adaptation process,” Vis. Res. 27, 1981–1996 (1987).
[CrossRef]

Hood, D. C.

D. C. Hood, T. Ilves, and E. Maurer, “Human cone saturation as a function of ambient intensity: a test of models of shifts in the dynamic range,” Vis. Res. 18, 983–993 (1978).
[CrossRef]

D. C. Hood and M. A. Finkelstein, “Sensitivity to light,” in Handbook of Perception and Human Performance: Sensory Processes and Perception, K. Boff and L. Kaufman, eds. Vol. 1 (Wiley, 1986) pp. 5-1–5-66.

Ilves, T.

D. C. Hood, T. Ilves, and E. Maurer, “Human cone saturation as a function of ambient intensity: a test of models of shifts in the dynamic range,” Vis. Res. 18, 983–993 (1978).
[CrossRef]

Issolio, L. A.

P. A. Barrionuevo, E. M. Colombo, M. Vilaseca, J. Pujol, and L. A. Issolio, “Comparison between an objective and a psychophysical method for the evaluation of intraocular light scattering,” J. Opt. Soc. Am. A 29, 1293–1299 (2012).
[CrossRef]

L. A. Issolio, P. A. Barrionuevo, S. A. Comastri, and E. M. Colombo, “Veiling luminance as a descriptor of brightness reduction caused by transient glare,” J. Opt. Soc. Am. A 29, 2230–2236 (2012).
[CrossRef]

B. M. Matesanz, L. A. Issolio, I. Arranz, C. de la Rosa, J. A. Menéndez, S. Mar, and J. A. Aparicio, “Temporal retinal sensitivity in mesopic adaptation,” Ophthalmic Physiolog. Opt. 31, 615–624 (2011).
[CrossRef]

E. M. Colombo, S. A. Comastri, L. A. Issolio, and R. Echarri, “Pupil light reflex produced by glare under mesopic adaptation,” J. Light Visual Environ. 31, 70–79 (2007).
[CrossRef]

L. A. Issolio and E. M. Colombo, “Brightness for different surround conditions: the effect of transient glare,” Percept. Psychophys. 68, 702–709 (2006).
[CrossRef]

L. A. Issolio, J. F. Barraza, and E. M. Colombo, “Time course of brightness under transient glare condition,” J. Opt. Soc. Am. A 23, 233–238 (2006).
[CrossRef]

E. M. Colombo, J. F. Barraza, and L. A. Issolio, “Effect of brief exposure to glare on brightness perception in the scotopic–mesopic range,” Light. Res. Technol. 32, 65–69 (2000).
[CrossRef]

Jacobsen, A.

A. L. Gilchrist and A. Jacobsen, “Lightness constancy through a veiling luminance,” J. Exp. Psychol. Hum. Percept. Perform. 9, 936–944 (1983).
[CrossRef]

Kaplan, E.

K. Purpura, E. Kaplan, and R. M. Shapley, “Background light and the contrast gain of primate P and M retinal ganglion cells,” Proc. Natl. Acad. Sci. USA 85, 4534–4537 (1988).
[CrossRef]

Ketomäki, J.

M. Eloholma, J. Ketomäki, P. Orreveteläinen, and L. Halonen, “Visual performance in night‐time driving conditions,” Ophthalmic Physiolog. Opt. 26, 254–263 (2006).
[CrossRef]

Kim, K. J.

K. J. Kim and F. Rieke, “Temporal contrast adaptation in the input and output signals of salamander retinal ganglion cells,” J. Neurosci. 21, 287–299 (2001).

Kinoshita, M.

M. Kinoshita and H. Komatsu, “Neural representation of the luminance and brightness of a uniform surface in the macaque primary visual cortex,” J. Neurophysiol. 86, 2559–2570 (2001).

Komatsu, H.

M. Kinoshita and H. Komatsu, “Neural representation of the luminance and brightness of a uniform surface in the macaque primary visual cortex,” J. Neurophysiol. 86, 2559–2570 (2001).

Koshel, R. J.

M. M. Hayhoe, M. E. Levin, and R. J. Koshel, “Subtractive processes in light adaptation,” Vis. Res. 32, 323–333 (1992).
[CrossRef]

Kremers, J.

B. B. Lee, V. C. Smith, J. Pokorny, and J. Kremers, “Rod inputs to macaque ganglion cells,” Vis. Res. 37, 2813–2828 (1997).
[CrossRef]

Lankheet, M. J.

F. A. Dunn, M. J. Lankheet, and F. Rieke, “Light adaptation in cone vision involves switching between receptor and post-receptor sites,” Nature 449, 603–606 (2007).
[CrossRef]

Lee, B. B.

D. Cao, B. B. Lee, and H. Sun, “Combination of rod and cone inputs in parasol ganglion cells of the magnocellular pathway,” J. Vis. 10(11), 4 (2010).
[CrossRef]

B. B. Lee, V. C. Smith, J. Pokorny, and J. Kremers, “Rod inputs to macaque ganglion cells,” Vis. Res. 37, 2813–2828 (1997).
[CrossRef]

B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, and A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990).
[CrossRef]

Levin, M. E.

M. M. Hayhoe, M. E. Levin, and R. J. Koshel, “Subtractive processes in light adaptation,” Vis. Res. 32, 323–333 (1992).
[CrossRef]

Levine, M. D.

S. Shah and M. D. Levine, “Visual information processing in primate cone pathways. I. A model,” IEEE Trans. Syst. Man Cybern. B 26, 259–274 (1996).
[CrossRef]

MacLeod, D. I. A.

S. Raphael and D. I. A. MacLeod, “Mesopic luminance assessed with minimum motion photometry,” J. Vis. 11(9), 14 (2011).
[CrossRef]

Mar, S.

B. M. Matesanz, L. A. Issolio, I. Arranz, C. de la Rosa, J. A. Menéndez, S. Mar, and J. A. Aparicio, “Temporal retinal sensitivity in mesopic adaptation,” Ophthalmic Physiolog. Opt. 31, 615–624 (2011).
[CrossRef]

Martin, P. R.

Matesanz, B. M.

B. M. Matesanz, L. A. Issolio, I. Arranz, C. de la Rosa, J. A. Menéndez, S. Mar, and J. A. Aparicio, “Temporal retinal sensitivity in mesopic adaptation,” Ophthalmic Physiolog. Opt. 31, 615–624 (2011).
[CrossRef]

Maurer, E.

D. C. Hood, T. Ilves, and E. Maurer, “Human cone saturation as a function of ambient intensity: a test of models of shifts in the dynamic range,” Vis. Res. 18, 983–993 (1978).
[CrossRef]

McCourt, M. E.

B. Blakeslee and M. E. McCourt, “A multiscale spatial filtering account of the White effect, simultaneous brightness contrast and grating induction,” Vis. Res. 39, 4361–4377 (1999).
[CrossRef]

Menéndez, J. A.

B. M. Matesanz, L. A. Issolio, I. Arranz, C. de la Rosa, J. A. Menéndez, S. Mar, and J. A. Aparicio, “Temporal retinal sensitivity in mesopic adaptation,” Ophthalmic Physiolog. Opt. 31, 615–624 (2011).
[CrossRef]

Meng, J.

Naka, K. I.

K. I. Naka and W. A. H. Rushton, “S-potentials from colour units in the retina of fish (cyprinidae),” J. Physiol. 185, 536–555 (1966).

Ornstein, L.

Orreveteläinen, P.

M. Eloholma, J. Ketomäki, P. Orreveteläinen, and L. Halonen, “Visual performance in night‐time driving conditions,” Ophthalmic Physiolog. Opt. 26, 254–263 (2006).
[CrossRef]

Ortiz, D.

D. P. Piñero, D. Ortiz, and J. L. Alio, “Ocular scattering,” Optom. Vis. Sci. 87, E682–E696 (2010).
[CrossRef]

Osterberg, G.

G. Osterberg, Topography of the Layer of Rods and Cones in the Human Retina (Nyt Nordisk Forlag, 1935), pp. 1–103.

Otazu, X.

X. Otazu, M. Vanrell, and C. Alejandro Párraga, “Multiresolution wavelet framework models brightness induction effects,” Vis. Res. 48, 733–751 (2008).
[CrossRef]

Paradiso, M. A.

A. F. Rossi and M. A. Paradiso, “Temporal limits of brightness induction and mechanisms of brightness perception,” Vis. Res. 36, 1391–1398 (1996).
[CrossRef]

Piñero, D. P.

D. P. Piñero, D. Ortiz, and J. L. Alio, “Ocular scattering,” Optom. Vis. Sci. 87, E682–E696 (2010).
[CrossRef]

Pokorny, J.

D. Cao, A. J. Zele, and J. Pokorny, “Linking impulse response functions to reaction time: rod and cone reaction time data and a computational model,” Vis. Res. 47, 1060–1074 (2007).
[CrossRef]

B. B. Lee, V. C. Smith, J. Pokorny, and J. Kremers, “Rod inputs to macaque ganglion cells,” Vis. Res. 37, 2813–2828 (1997).
[CrossRef]

B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, and A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990).
[CrossRef]

Poot, L.

H. P. Snippe, L. Poot, and J. H. van Hateren, “A temporal model for early vision that explains detection thresholds for light pulses on flickering backgrounds,” Vis. Neurosci. 17, 449–462 (2000).
[CrossRef]

Pujol, J.

Purpura, K.

K. Purpura, E. Kaplan, and R. M. Shapley, “Background light and the contrast gain of primate P and M retinal ganglion cells,” Proc. Natl. Acad. Sci. USA 85, 4534–4537 (1988).
[CrossRef]

Radonjic, A.

A. Radonjić, S. R. Allred, A. L. Gilchrist, and D. H. Brainard, “The dynamic range of human lightness perception,” Curr. Biol. 21, 1931–1936 (2011).
[CrossRef]

Raphael, S.

S. Raphael and D. I. A. MacLeod, “Mesopic luminance assessed with minimum motion photometry,” J. Vis. 11(9), 14 (2011).
[CrossRef]

Reeves, A.

A. Reeves, “Visual adaptation,” in The Visual Neurosciences, L. Chalupa and J. Werner, eds. (MIT, 2004) pp. 851–862.

Rieke, F.

F. A. Dunn, M. J. Lankheet, and F. Rieke, “Light adaptation in cone vision involves switching between receptor and post-receptor sites,” Nature 449, 603–606 (2007).
[CrossRef]

F. A. Dunn, T. Doan, A. P. Sampath, and F. Rieke, “Controlling the gain of rod-mediated signals in the mammalian retina,” J. Neurosci. 26, 3959–3970 (2006).
[CrossRef]

K. J. Kim and F. Rieke, “Temporal contrast adaptation in the input and output signals of salamander retinal ganglion cells,” J. Neurosci. 21, 287–299 (2001).

Robinson, A. E.

A. E. Robinson, P. S. Hammon, and V. R. de Sa, “Explaining brightness illusions using spatial filtering and local response normalization,” Vis. Res. 47, 1631–1644 (2007).
[CrossRef]

Rossi, A. F.

A. F. Rossi and M. A. Paradiso, “Temporal limits of brightness induction and mechanisms of brightness perception,” Vis. Res. 36, 1391–1398 (1996).
[CrossRef]

Rush, W.

Rushton, W. A.

W. A. Rushton and R. W. Gubisch, “Glare: its measurement by cone thresholds and by the bleaching of cone pigments,” J. Opt. Soc. Am. 56, 104–110 (1966).
[CrossRef]

C. B. Blakemore and W. A. Rushton, “Dark adaptation and increment threshold in a rod monochromat,” J. Physiol. 181, 612–628 (1965).

Rushton, W. A. H.

K. I. Naka and W. A. H. Rushton, “S-potentials from colour units in the retina of fish (cyprinidae),” J. Physiol. 185, 536–555 (1966).

Sagawa, K.

K. Sagawa, “Toward a CIE supplementary system of photometry: brightness at any level including mesopic vision,” Ophthalmic Physiolog. Opt. 26, 240–245 (2006).
[CrossRef]

Sampath, A. P.

F. A. Dunn, T. Doan, A. P. Sampath, and F. Rieke, “Controlling the gain of rod-mediated signals in the mammalian retina,” J. Neurosci. 26, 3959–3970 (2006).
[CrossRef]

Schouten, J.

Schreuder, D.

D. Schreuder, Outdoor Lighting: Physics, Vision, and Perception. (Springer, 2008), pp. 286–311.

Shah, S.

S. Shah and M. D. Levine, “Visual information processing in primate cone pathways. I. A model,” IEEE Trans. Syst. Man Cybern. B 26, 259–274 (1996).
[CrossRef]

Shapley, R.

R. Shapley and C. Enroth-Cugell, “Visual adaptation and retinal gain controls,” in Progress in Retinal Research, N. N. Osborne and G. J. Chader, eds., Vol. 3 (Pergamon, 1984), pp. 263–346.

Shapley, R. M.

K. Purpura, E. Kaplan, and R. M. Shapley, “Background light and the contrast gain of primate P and M retinal ganglion cells,” Proc. Natl. Acad. Sci. USA 85, 4534–4537 (1988).
[CrossRef]

Sharpe, L. T.

A. Stockman and L. T. Sharpe, “Into the twilight zone: the complexities of mesopic vision and luminous efficiency,” Ophthalmic Physiolog. Opt. 26, 225–239 (2006).
[CrossRef]

Smith, V. C.

Snippe, H. P.

H. P. Snippe, L. Poot, and J. H. van Hateren, “A temporal model for early vision that explains detection thresholds for light pulses on flickering backgrounds,” Vis. Neurosci. 17, 449–462 (2000).
[CrossRef]

Stockman, A.

A. Stockman and L. T. Sharpe, “Into the twilight zone: the complexities of mesopic vision and luminous efficiency,” Ophthalmic Physiolog. Opt. 26, 225–239 (2006).
[CrossRef]

Sun, H.

D. Cao, B. B. Lee, and H. Sun, “Combination of rod and cone inputs in parasol ganglion cells of the magnocellular pathway,” J. Vis. 10(11), 4 (2010).
[CrossRef]

Taekuchi, T.

J. J. Vos, B. L. Cole, H. W. Bodmann, E. M. Colombo, T. Taekuchi, and T. J. T. P. Van Den Berg, CIE 146:2002 CIE equations for disability glare, Technical Report (Commission Internationale de L’Eclairage, 2002).

Valberg, A.

Van Den Berg, T. J. T. P.

J. J. Vos, B. L. Cole, H. W. Bodmann, E. M. Colombo, T. Taekuchi, and T. J. T. P. Van Den Berg, CIE 146:2002 CIE equations for disability glare, Technical Report (Commission Internationale de L’Eclairage, 2002).

van Hateren, J. H.

H. P. Snippe, L. Poot, and J. H. van Hateren, “A temporal model for early vision that explains detection thresholds for light pulses on flickering backgrounds,” Vis. Neurosci. 17, 449–462 (2000).
[CrossRef]

Vanrell, M.

X. Otazu, M. Vanrell, and C. Alejandro Párraga, “Multiresolution wavelet framework models brightness induction effects,” Vis. Res. 48, 733–751 (2008).
[CrossRef]

Vilaseca, M.

Vos, J. J.

J. J. Vos, B. L. Cole, H. W. Bodmann, E. M. Colombo, T. Taekuchi, and T. J. T. P. Van Den Berg, CIE 146:2002 CIE equations for disability glare, Technical Report (Commission Internationale de L’Eclairage, 2002).

Westheimer, G.

G. Westheimer, “Directional sensitivity of the retina: 75 years of Stiles–Crawford effect,” Proc. Biol. Sci. 275, 2777–2786 (2008).
[CrossRef]

Whittle, P.

P. Whittle and P. D. C. Challands, “The effect of background luminance on the brightness of flashes,” Vis. Res. 9, 1095–1110 (1969).
[CrossRef]

Wilson, H. R.

H. R. Wilson, “A neural model of foveal light adaptation and afterimage formation,” Vis. Neurosci. 14, 403–423 (1997).
[CrossRef]

Yager, D.

Zele, A. J.

D. Cao, A. J. Zele, and J. Pokorny, “Linking impulse response functions to reaction time: rod and cone reaction time data and a computational model,” Vis. Res. 47, 1060–1074 (2007).
[CrossRef]

Curr. Biol. (1)

A. Radonjić, S. R. Allred, A. L. Gilchrist, and D. H. Brainard, “The dynamic range of human lightness perception,” Curr. Biol. 21, 1931–1936 (2011).
[CrossRef]

IEEE Trans. Syst. Man Cybern. B (1)

S. Shah and M. D. Levine, “Visual information processing in primate cone pathways. I. A model,” IEEE Trans. Syst. Man Cybern. B 26, 259–274 (1996).
[CrossRef]

J. Exp. Psychol. Hum. Percept. Perform. (1)

A. L. Gilchrist and A. Jacobsen, “Lightness constancy through a veiling luminance,” J. Exp. Psychol. Hum. Percept. Perform. 9, 936–944 (1983).
[CrossRef]

J. Light Visual Environ. (1)

E. M. Colombo, S. A. Comastri, L. A. Issolio, and R. Echarri, “Pupil light reflex produced by glare under mesopic adaptation,” J. Light Visual Environ. 31, 70–79 (2007).
[CrossRef]

J. Neurophysiol. (1)

M. Kinoshita and H. Komatsu, “Neural representation of the luminance and brightness of a uniform surface in the macaque primary visual cortex,” J. Neurophysiol. 86, 2559–2570 (2001).

J. Neurosci. (2)

F. A. Dunn, T. Doan, A. P. Sampath, and F. Rieke, “Controlling the gain of rod-mediated signals in the mammalian retina,” J. Neurosci. 26, 3959–3970 (2006).
[CrossRef]

K. J. Kim and F. Rieke, “Temporal contrast adaptation in the input and output signals of salamander retinal ganglion cells,” J. Neurosci. 21, 287–299 (2001).

J. Opt. Soc. Am. (5)

J. Opt. Soc. Am. A (6)

J. Physiol. (2)

C. B. Blakemore and W. A. Rushton, “Dark adaptation and increment threshold in a rod monochromat,” J. Physiol. 181, 612–628 (1965).

K. I. Naka and W. A. H. Rushton, “S-potentials from colour units in the retina of fish (cyprinidae),” J. Physiol. 185, 536–555 (1966).

J. Vis. (2)

D. Cao, B. B. Lee, and H. Sun, “Combination of rod and cone inputs in parasol ganglion cells of the magnocellular pathway,” J. Vis. 10(11), 4 (2010).
[CrossRef]

S. Raphael and D. I. A. MacLeod, “Mesopic luminance assessed with minimum motion photometry,” J. Vis. 11(9), 14 (2011).
[CrossRef]

Light. Res. Technol. (1)

E. M. Colombo, J. F. Barraza, and L. A. Issolio, “Effect of brief exposure to glare on brightness perception in the scotopic–mesopic range,” Light. Res. Technol. 32, 65–69 (2000).
[CrossRef]

Nature (1)

F. A. Dunn, M. J. Lankheet, and F. Rieke, “Light adaptation in cone vision involves switching between receptor and post-receptor sites,” Nature 449, 603–606 (2007).
[CrossRef]

Ophthalmic Physiolog. Opt. (4)

M. Eloholma, J. Ketomäki, P. Orreveteläinen, and L. Halonen, “Visual performance in night‐time driving conditions,” Ophthalmic Physiolog. Opt. 26, 254–263 (2006).
[CrossRef]

B. M. Matesanz, L. A. Issolio, I. Arranz, C. de la Rosa, J. A. Menéndez, S. Mar, and J. A. Aparicio, “Temporal retinal sensitivity in mesopic adaptation,” Ophthalmic Physiolog. Opt. 31, 615–624 (2011).
[CrossRef]

A. Stockman and L. T. Sharpe, “Into the twilight zone: the complexities of mesopic vision and luminous efficiency,” Ophthalmic Physiolog. Opt. 26, 225–239 (2006).
[CrossRef]

K. Sagawa, “Toward a CIE supplementary system of photometry: brightness at any level including mesopic vision,” Ophthalmic Physiolog. Opt. 26, 240–245 (2006).
[CrossRef]

Optom. Vis. Sci. (1)

D. P. Piñero, D. Ortiz, and J. L. Alio, “Ocular scattering,” Optom. Vis. Sci. 87, E682–E696 (2010).
[CrossRef]

Percept. Psychophys. (1)

L. A. Issolio and E. M. Colombo, “Brightness for different surround conditions: the effect of transient glare,” Percept. Psychophys. 68, 702–709 (2006).
[CrossRef]

Proc. Biol. Sci. (1)

G. Westheimer, “Directional sensitivity of the retina: 75 years of Stiles–Crawford effect,” Proc. Biol. Sci. 275, 2777–2786 (2008).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

K. Purpura, E. Kaplan, and R. M. Shapley, “Background light and the contrast gain of primate P and M retinal ganglion cells,” Proc. Natl. Acad. Sci. USA 85, 4534–4537 (1988).
[CrossRef]

Vis. Neurosci. (2)

H. R. Wilson, “A neural model of foveal light adaptation and afterimage formation,” Vis. Neurosci. 14, 403–423 (1997).
[CrossRef]

H. P. Snippe, L. Poot, and J. H. van Hateren, “A temporal model for early vision that explains detection thresholds for light pulses on flickering backgrounds,” Vis. Neurosci. 17, 449–462 (2000).
[CrossRef]

Vis. Res. (12)

A. F. Rossi and M. A. Paradiso, “Temporal limits of brightness induction and mechanisms of brightness perception,” Vis. Res. 36, 1391–1398 (1996).
[CrossRef]

B. Blakeslee and M. E. McCourt, “A multiscale spatial filtering account of the White effect, simultaneous brightness contrast and grating induction,” Vis. Res. 39, 4361–4377 (1999).
[CrossRef]

X. Otazu, M. Vanrell, and C. Alejandro Párraga, “Multiresolution wavelet framework models brightness induction effects,” Vis. Res. 48, 733–751 (2008).
[CrossRef]

A. E. Robinson, P. S. Hammon, and V. R. de Sa, “Explaining brightness illusions using spatial filtering and local response normalization,” Vis. Res. 47, 1631–1644 (2007).
[CrossRef]

M. M. Hayhoe, M. E. Levin, and R. J. Koshel, “Subtractive processes in light adaptation,” Vis. Res. 32, 323–333 (1992).
[CrossRef]

D. Cao, A. J. Zele, and J. Pokorny, “Linking impulse response functions to reaction time: rod and cone reaction time data and a computational model,” Vis. Res. 47, 1060–1074 (2007).
[CrossRef]

P. Whittle and P. D. C. Challands, “The effect of background luminance on the brightness of flashes,” Vis. Res. 9, 1095–1110 (1969).
[CrossRef]

W. Geisler, “Adaptation, afterimages, and cone saturation,” Vis. Res. 18, 279–289 (1978).
[CrossRef]

D. C. Hood, T. Ilves, and E. Maurer, “Human cone saturation as a function of ambient intensity: a test of models of shifts in the dynamic range,” Vis. Res. 18, 983–993 (1978).
[CrossRef]

E. Adelson, “Saturation and adaptation in the rod system,” Vis. Res. 22, 1299–1312 (1982).
[CrossRef]

M. Hayhoe, N. Benimoff, and D. Hood, “The time-course of multiplicative and subtractive adaptation process,” Vis. Res. 27, 1981–1996 (1987).
[CrossRef]

B. B. Lee, V. C. Smith, J. Pokorny, and J. Kremers, “Rod inputs to macaque ganglion cells,” Vis. Res. 37, 2813–2828 (1997).
[CrossRef]

Other (8)

R. Shapley and C. Enroth-Cugell, “Visual adaptation and retinal gain controls,” in Progress in Retinal Research, N. N. Osborne and G. J. Chader, eds., Vol. 3 (Pergamon, 1984), pp. 263–346.

A. L. Gilchrist, Seeing Black and White (Oxford University, 2006), pp. 3–124.

T. N. Cornsweet, Visual Perception. (Academic, 1970), p. 273.

D. C. Hood and M. A. Finkelstein, “Sensitivity to light,” in Handbook of Perception and Human Performance: Sensory Processes and Perception, K. Boff and L. Kaufman, eds. Vol. 1 (Wiley, 1986) pp. 5-1–5-66.

A. Reeves, “Visual adaptation,” in The Visual Neurosciences, L. Chalupa and J. Werner, eds. (MIT, 2004) pp. 851–862.

J. J. Vos, B. L. Cole, H. W. Bodmann, E. M. Colombo, T. Taekuchi, and T. J. T. P. Van Den Berg, CIE 146:2002 CIE equations for disability glare, Technical Report (Commission Internationale de L’Eclairage, 2002).

D. Schreuder, Outdoor Lighting: Physics, Vision, and Perception. (Springer, 2008), pp. 286–311.

G. Osterberg, Topography of the Layer of Rods and Cones in the Human Retina (Nyt Nordisk Forlag, 1935), pp. 1–103.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Layout of the experimental design.

Fig. 2.
Fig. 2.

Sequence of the stimuli for each trial.

Fig. 3.
Fig. 3.

Schematic diagram of the stimuli conditions for both experiments.

Fig. 4.
Fig. 4.

Lms of the first experiment considering Lbs lower than Lt=0.5cd/m2. The psychophysical results are represented by black circles for 60 lx of glare illuminance and by gray squares for 30 lx of glare illuminance. Solid lines represent the prediction of the model (light green for 30 lx and dark green for 60 lx). Dashed lines represent the contrast prediction (light blue for 30 lx and dark blue for 60 lx). A dash–dot line represents the Lt prediction. The results and predictions for each subject are shown in each panel.

Fig. 5.
Fig. 5.

Figure illustrates Lms for the first experiment considering Lts higher than 0.5cd/m2 (Lt=4cd/m2). All the other considerations are similar to those of Fig. 4.

Fig. 6.
Fig. 6.

Normalized mean results for the first experiment. The error bar is the standard error. The horizontal axis is in logarithmic scale for better appreciation.

Fig. 7.
Fig. 7.

Figure illustrates Lms for the second experiment considering Lts lower than 0.5cd/m2 with Lb=0.01cd/m2. All the other considerations were similar to those of Fig. 4.

Fig. 8.
Fig. 8.

Figure illustrates Lms of the second experiment considering Lts higher than the value of Lb (0.5cd/m2). All the other considerations were similar to those of Fig. 4.

Fig. 9.
Fig. 9.

Diagram of the model structure.

Fig. 10.
Fig. 10.

Model fits for the data of Issolio and Colombo (2006), considering incremental (Lb<0.5cd/m2) and decremental (Lb>0.5cd/m2) stimuli.

Tables (3)

Tables Icon

Table 1. Values of Luminance for the First Experiment

Tables Icon

Table 2. Values of Luminance for the Second Experiment

Tables Icon

Table 3. Values of the Veiling Luminance (Lv) Computed for Each Glare Level and Each Subjecta

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

Lm=Lt.
LmLbLb=LtLbLb+Lv,
Lv=kEθ2,
Lm=((LtLb)Lb+Lv+1)Lb.
R[I]=InIn+σnRmax,
R[Lm]R[Lb]R[Lb]=R[Lt+Lv]R[Lb+Lv]R[Lb+Lv].
R[gLm]R[gLb]R[gLb]=R[gLt+gLv]R[gLb+gLv]R[gLb+gLv],
R[gLm]R[gLb]R[gLb]=R[gLt+gLvgs]R[gLb+gLvgs]R[gLb+gLvgs],
G(R[gLm]R[gLb]R[gLb])=G(R[gLt+gLv]R[gLb+gLv]R[gLb+gLv]),
Lm=σ/g(1Rm1)1/n;Rm=(GG(R[gLt+gLvgs]R[gLb+gLvgs]1)+1)R[gLb].
Icomb=Icx+Ir(1x),
x=LbmLbm+α,
dsdt+gmτs=Cgmτ,
C=ksLv,
gm=0.5+0.0664IP.
IP=kfI,
gm=0.5+0.0664kfgLv.
G[Lb]=0.97+0.72ln[Lb+4.25],
G=kGG[Lb+Lv].

Metrics