Abstract

We investigate the behavior of full-vector electromagnetic Bessel beams obliquely incident at an interface between two electrically different media. We employ a Fourier transform domain representation of Bessel beams to determine their behavior upon reflection and transmission. This transform, which is geometric in nature, consists of elliptical support curves with complex weighting associated with them. The behavior of the scattered field at an interface is highly complex, owing to its full-vector nature; nevertheless, this behavior has a straightforward representation in the transform domain geometry. The analysis shows that the reflected field forms a different vector Bessel beam, but in general, the transmitted field cannot be represented as a Bessel beam. Nevertheless, using this approach, we demonstrate a method to propagate a Bessel beam in the refractive medium by launching a non-Bessel beam at the interface. Several interesting phenomena related to the behavior of Bessel beams are illustrated, such as polarized reflection at Brewster’s angle incidence, and the Goos–Hänchen and Imbert–Federov shifts in the case of total reflection.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription