Abstract

Reflective ghost diffraction (GD) for objects with rough surfaces is investigated theoretically and numerically. Using a speckle model to describe the reflectivity of the object with variable rough surfaces, the incident and reflective angle-dependent diffraction condition is obtained, and the analytical expression of the reflective GD is derived. Numerical simulations are given to show how the height variance and correlation length of the object and the reflective angle in the experimental scheme can affect the quality of the reflective GD. Specifically, we find that the changes of diffraction patterns of both the simple objects and the complicated objects are sensitive to parameters such as the reflective angle and the surface fluctuation. Additionally, comparative studies on both reflective GD and ghost imaging (GI) have also been performed. We find that reflective GI is more robust against system parameters than reflective GD. These results may be useful for future experimental works.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ghost imaging: from quantum to classical to computational

Baris I. Erkmen and Jeffrey H. Shapiro
Adv. Opt. Photon. 2(4) 405-450 (2010)

Detailed quality analysis of ideal high-order thermal ghost imaging

Hu Li, Jianhong Shi, Zhipeng Chen, and Guihua Zeng
J. Opt. Soc. Am. A 29(11) 2256-2262 (2012)

Ghost imaging with nonuniform thermal light fields

Hu Li, Jianhong Shi, and Guihua Zeng
J. Opt. Soc. Am. A 30(9) 1854-1861 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription