Abstract

Depth maps captured by range scanning devices or by using optical cameras often suffer from missing regions due to occlusions, reflectivity, limited scanning area, sensor imperfections, etc. In this paper, we propose a fast and reliable algorithm for depth map inpainting using the tensor voting (TV) framework. For less complex missing regions, local edge and depth information is utilized for synthesizing missing values. The depth variations are modeled by local planes using 3D TV, and missing values are estimated using plane equations. For large and complex missing regions, we collect and evaluate depth estimates from self-similar (training) datasets. We align the depth maps of the training set with the target (defective) depth map and evaluate the goodness of depth estimates among candidate values using 3D TV. We demonstrate the effectiveness of the proposed approaches on real as well as synthetic data.

© 2013 Optical Society of America

Full Article  |  PDF Article
Related Articles
Integration of stereo vision and optical flow by using an energy-minimization approach

Nasser M. Nasrabadi, Sandra P. Clifford, and Yi Liu
J. Opt. Soc. Am. A 6(6) 900-907 (1989)

Bayesian segmentation of range images of polyhedral objects using entropy-controlled quadratic Markov measure field models

Carlos Angulo, Jose L. Marroquin, and Mariano Rivera
Appl. Opt. 47(22) 4106-4115 (2008)

Saliency of color image derivatives: a comparison between computational models and human perception

Eduard Vazquez, Theo Gevers, Marcel Lucassen, Joost van de Weijer, and Ramon Baldrich
J. Opt. Soc. Am. A 27(3) 613-621 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription