P. A. Letnes, A. A. Maradudin, T. Nordam, and I. Simonsen, “Calculation of the Mueller matrix for scattering of light from two-dimensional rough surfaces,” Phys. Rev. A 86, 031803 (2012).

[CrossRef]

T. Nordam, P. A. Letnes, I. Simonsen, and A. A. Maradudin, “Satellite peaks in the scattering of light from the two-dimensional randomly rough surface of a dielectric film on a planar metal surface,” Opt. Express 20, 11336–11350 (2012).

[CrossRef]

I. Simonsen, J. B. Kryvi, A. A. Maradudin, and T. A. Leskova, “Light scattering from anisotropic, randomly rough, perfectly conducting surfaces,” Comput. Phys. Commun. 182, 1904 (2011).

[CrossRef]

I. Simonsen, A. A. Maradudin, and T. A. Leskova, “The scattering of electromagnetic waves from two-dimensional randomly rough penetrable surfaces,” Phys. Rev. Lett. 104, 223904 (2010).

[CrossRef]

I. Simonsen, A. A. Maradudin, and T. A. Leskova, “The scattering of electromagnetic waves from two-dimensional randomly rough perfectly conducting surfaces: the full angular intensity distribution,” Phys. Rev. A 81, 013806 (2010).

[CrossRef]

I. Simonsen, “Enhanced back and forward scattering in the reflection of light from weakly rough random metal surfaces,” Phys. Status Solidi B 247, 2075–2083 (2010).

[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).

[CrossRef]

I. Simonsen, “Optics of surface disordered systems: a random walk through rough surface scattering phenomena,” Eur. Phys. J. Spec. Top. 181, 1–103 (2010).

[CrossRef]

A. Savchenko, E. Kashuba, V. Kashuba, and B. Snopok, “Imaging of plasmid DNA microarrays by scattering light under surface plasmon resonance conditions,” Sens. Lett. 6, 705–713 (2008).

[CrossRef]

A. Savchenko, E. Kashuba, V. Kashuba, and B. Snopok, “Imaging technique for the screening of protein–protein interactions using scattered light under surface plasmon resonance conditions,” Anal. Chem. 79, 1349–1355 (2007).

[CrossRef]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).

[CrossRef]

K. A. O’Donnell, “High-order perturbation theory for light scattering from a rough metal surface,” J. Opt. Soc. Am. A 18, 1507–1518 (2001).

[CrossRef]

A. Soubret, G. Berginc, and C. Bourrely, “Backscattering enhancement of an electromagnetic wave scattered by two-dimensional rough layers,” J. Opt. Soc. Am. A 18, 2778–2788 (2001).

[CrossRef]

A. Soubret, G. Berginc, and C. Bourrely, “Application of reduced Rayleigh equations to electromagnetic wave scattering by two-dimensional randomly rough surfaces,” Phys. Rev. B 63, 245411 (2001).

[CrossRef]

A. R. McGurn and A. A. Maradudin, “Perturbation theory results for the diffuse scattering of light from two-dimensional randomly rough metal surfaces,” Waves Random Media 6, 251–267 (1996).

[CrossRef]

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez, “Enhanced backscattering of light from a random grating,” Ann. Phys. 203, 255–307 (1990).

[CrossRef]

A. R. McGurn, A. A. Maradudin, and V. Celli, “Localization effects in the scattering of light from a randomly rough grating,” Phys. Rev. B 31, 4866–4871 (1985).

[CrossRef]

G. C. Brown, V. Celli, M. Haller, and A. Marvin, “Vector theory of light scattering from a rough surface: unitary and reciprocal expansions,” Surf. Sci. 136, 381–397 (1984).

[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. 6, 4370–4379 (1972).

[CrossRef]

Lord Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. London, Ser. A 79, 399–416 (1907).

[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).

[CrossRef]

A. Soubret, G. Berginc, and C. Bourrely, “Backscattering enhancement of an electromagnetic wave scattered by two-dimensional rough layers,” J. Opt. Soc. Am. A 18, 2778–2788 (2001).

[CrossRef]

A. Soubret, G. Berginc, and C. Bourrely, “Application of reduced Rayleigh equations to electromagnetic wave scattering by two-dimensional randomly rough surfaces,” Phys. Rev. B 63, 245411 (2001).

[CrossRef]

A. Soubret, G. Berginc, and C. Bourrely, “Application of reduced Rayleigh equations to electromagnetic wave scattering by two-dimensional randomly rough surfaces,” Phys. Rev. B 63, 245411 (2001).

[CrossRef]

A. Soubret, G. Berginc, and C. Bourrely, “Backscattering enhancement of an electromagnetic wave scattered by two-dimensional rough layers,” J. Opt. Soc. Am. A 18, 2778–2788 (2001).

[CrossRef]

G. C. Brown, V. Celli, M. Haller, and A. Marvin, “Vector theory of light scattering from a rough surface: unitary and reciprocal expansions,” Surf. Sci. 136, 381–397 (1984).

[CrossRef]

A. R. McGurn, A. A. Maradudin, and V. Celli, “Localization effects in the scattering of light from a randomly rough grating,” Phys. Rev. B 31, 4866–4871 (1985).

[CrossRef]

G. C. Brown, V. Celli, M. Haller, and A. Marvin, “Vector theory of light scattering from a rough surface: unitary and reciprocal expansions,” Surf. Sci. 136, 381–397 (1984).

[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. 6, 4370–4379 (1972).

[CrossRef]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge University, 2007), pp. 605–608.

G. C. Brown, V. Celli, M. Haller, and A. Marvin, “Vector theory of light scattering from a rough surface: unitary and reciprocal expansions,” Surf. Sci. 136, 381–397 (1984).

[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. 6, 4370–4379 (1972).

[CrossRef]

A. Savchenko, E. Kashuba, V. Kashuba, and B. Snopok, “Imaging of plasmid DNA microarrays by scattering light under surface plasmon resonance conditions,” Sens. Lett. 6, 705–713 (2008).

[CrossRef]

A. Savchenko, E. Kashuba, V. Kashuba, and B. Snopok, “Imaging technique for the screening of protein–protein interactions using scattered light under surface plasmon resonance conditions,” Anal. Chem. 79, 1349–1355 (2007).

[CrossRef]

A. Savchenko, E. Kashuba, V. Kashuba, and B. Snopok, “Imaging of plasmid DNA microarrays by scattering light under surface plasmon resonance conditions,” Sens. Lett. 6, 705–713 (2008).

[CrossRef]

A. Savchenko, E. Kashuba, V. Kashuba, and B. Snopok, “Imaging technique for the screening of protein–protein interactions using scattered light under surface plasmon resonance conditions,” Anal. Chem. 79, 1349–1355 (2007).

[CrossRef]

I. Simonsen, J. B. Kryvi, A. A. Maradudin, and T. A. Leskova, “Light scattering from anisotropic, randomly rough, perfectly conducting surfaces,” Comput. Phys. Commun. 182, 1904 (2011).

[CrossRef]

I. Simonsen, J. B. Kryvi, A. A. Maradudin, and T. A. Leskova, “Light scattering from anisotropic, randomly rough, perfectly conducting surfaces,” Comput. Phys. Commun. 182, 1904 (2011).

[CrossRef]

I. Simonsen, A. A. Maradudin, and T. A. Leskova, “The scattering of electromagnetic waves from two-dimensional randomly rough penetrable surfaces,” Phys. Rev. Lett. 104, 223904 (2010).

[CrossRef]

I. Simonsen, A. A. Maradudin, and T. A. Leskova, “The scattering of electromagnetic waves from two-dimensional randomly rough perfectly conducting surfaces: the full angular intensity distribution,” Phys. Rev. A 81, 013806 (2010).

[CrossRef]

P. A. Letnes, A. A. Maradudin, T. Nordam, and I. Simonsen, “Calculation of the Mueller matrix for scattering of light from two-dimensional rough surfaces,” Phys. Rev. A 86, 031803 (2012).

[CrossRef]

T. Nordam, P. A. Letnes, I. Simonsen, and A. A. Maradudin, “Satellite peaks in the scattering of light from the two-dimensional randomly rough surface of a dielectric film on a planar metal surface,” Opt. Express 20, 11336–11350 (2012).

[CrossRef]

T. Nordam, P. A. Letnes, and I. Simonsen, “Numerical simulations of scattering of light from two-dimensional surfaces using the reduced Rayleigh equation,” ArXiv 1204.4984 (2012).

T. Nordam, P. A. Letnes, I. Simonsen, and A. A. Maradudin, “Satellite peaks in the scattering of light from the two-dimensional randomly rough surface of a dielectric film on a planar metal surface,” Opt. Express 20, 11336–11350 (2012).

[CrossRef]

P. A. Letnes, A. A. Maradudin, T. Nordam, and I. Simonsen, “Calculation of the Mueller matrix for scattering of light from two-dimensional rough surfaces,” Phys. Rev. A 86, 031803 (2012).

[CrossRef]

I. Simonsen, J. B. Kryvi, A. A. Maradudin, and T. A. Leskova, “Light scattering from anisotropic, randomly rough, perfectly conducting surfaces,” Comput. Phys. Commun. 182, 1904 (2011).

[CrossRef]

I. Simonsen, A. A. Maradudin, and T. A. Leskova, “The scattering of electromagnetic waves from two-dimensional randomly rough penetrable surfaces,” Phys. Rev. Lett. 104, 223904 (2010).

[CrossRef]

I. Simonsen, A. A. Maradudin, and T. A. Leskova, “The scattering of electromagnetic waves from two-dimensional randomly rough perfectly conducting surfaces: the full angular intensity distribution,” Phys. Rev. A 81, 013806 (2010).

[CrossRef]

A. R. McGurn and A. A. Maradudin, “Perturbation theory results for the diffuse scattering of light from two-dimensional randomly rough metal surfaces,” Waves Random Media 6, 251–267 (1996).

[CrossRef]

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez, “Enhanced backscattering of light from a random grating,” Ann. Phys. 203, 255–307 (1990).

[CrossRef]

A. R. McGurn, A. A. Maradudin, and V. Celli, “Localization effects in the scattering of light from a randomly rough grating,” Phys. Rev. B 31, 4866–4871 (1985).

[CrossRef]

G. C. Brown, V. Celli, M. Haller, and A. Marvin, “Vector theory of light scattering from a rough surface: unitary and reciprocal expansions,” Surf. Sci. 136, 381–397 (1984).

[CrossRef]

A. R. McGurn and A. A. Maradudin, “Perturbation theory results for the diffuse scattering of light from two-dimensional randomly rough metal surfaces,” Waves Random Media 6, 251–267 (1996).

[CrossRef]

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez, “Enhanced backscattering of light from a random grating,” Ann. Phys. 203, 255–307 (1990).

[CrossRef]

A. R. McGurn, A. A. Maradudin, and V. Celli, “Localization effects in the scattering of light from a randomly rough grating,” Phys. Rev. B 31, 4866–4871 (1985).

[CrossRef]

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez, “Enhanced backscattering of light from a random grating,” Ann. Phys. 203, 255–307 (1990).

[CrossRef]

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez, “Enhanced backscattering of light from a random grating,” Ann. Phys. 203, 255–307 (1990).

[CrossRef]

P. A. Letnes, A. A. Maradudin, T. Nordam, and I. Simonsen, “Calculation of the Mueller matrix for scattering of light from two-dimensional rough surfaces,” Phys. Rev. A 86, 031803 (2012).

[CrossRef]

T. Nordam, P. A. Letnes, I. Simonsen, and A. A. Maradudin, “Satellite peaks in the scattering of light from the two-dimensional randomly rough surface of a dielectric film on a planar metal surface,” Opt. Express 20, 11336–11350 (2012).

[CrossRef]

T. Nordam, P. A. Letnes, and I. Simonsen, “Numerical simulations of scattering of light from two-dimensional surfaces using the reduced Rayleigh equation,” ArXiv 1204.4984 (2012).

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).

[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).

[CrossRef]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge University, 2007), pp. 605–608.

Lord Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. London, Ser. A 79, 399–416 (1907).

[CrossRef]

A. Savchenko, E. Kashuba, V. Kashuba, and B. Snopok, “Imaging of plasmid DNA microarrays by scattering light under surface plasmon resonance conditions,” Sens. Lett. 6, 705–713 (2008).

[CrossRef]

A. Savchenko, E. Kashuba, V. Kashuba, and B. Snopok, “Imaging technique for the screening of protein–protein interactions using scattered light under surface plasmon resonance conditions,” Anal. Chem. 79, 1349–1355 (2007).

[CrossRef]

T. Nordam, P. A. Letnes, I. Simonsen, and A. A. Maradudin, “Satellite peaks in the scattering of light from the two-dimensional randomly rough surface of a dielectric film on a planar metal surface,” Opt. Express 20, 11336–11350 (2012).

[CrossRef]

P. A. Letnes, A. A. Maradudin, T. Nordam, and I. Simonsen, “Calculation of the Mueller matrix for scattering of light from two-dimensional rough surfaces,” Phys. Rev. A 86, 031803 (2012).

[CrossRef]

I. Simonsen, J. B. Kryvi, A. A. Maradudin, and T. A. Leskova, “Light scattering from anisotropic, randomly rough, perfectly conducting surfaces,” Comput. Phys. Commun. 182, 1904 (2011).

[CrossRef]

I. Simonsen, “Enhanced back and forward scattering in the reflection of light from weakly rough random metal surfaces,” Phys. Status Solidi B 247, 2075–2083 (2010).

[CrossRef]

I. Simonsen, “Optics of surface disordered systems: a random walk through rough surface scattering phenomena,” Eur. Phys. J. Spec. Top. 181, 1–103 (2010).

[CrossRef]

I. Simonsen, A. A. Maradudin, and T. A. Leskova, “The scattering of electromagnetic waves from two-dimensional randomly rough penetrable surfaces,” Phys. Rev. Lett. 104, 223904 (2010).

[CrossRef]

I. Simonsen, A. A. Maradudin, and T. A. Leskova, “The scattering of electromagnetic waves from two-dimensional randomly rough perfectly conducting surfaces: the full angular intensity distribution,” Phys. Rev. A 81, 013806 (2010).

[CrossRef]

T. Nordam, P. A. Letnes, and I. Simonsen, “Numerical simulations of scattering of light from two-dimensional surfaces using the reduced Rayleigh equation,” ArXiv 1204.4984 (2012).

A. Savchenko, E. Kashuba, V. Kashuba, and B. Snopok, “Imaging of plasmid DNA microarrays by scattering light under surface plasmon resonance conditions,” Sens. Lett. 6, 705–713 (2008).

[CrossRef]

A. Savchenko, E. Kashuba, V. Kashuba, and B. Snopok, “Imaging technique for the screening of protein–protein interactions using scattered light under surface plasmon resonance conditions,” Anal. Chem. 79, 1349–1355 (2007).

[CrossRef]

A. Soubret, G. Berginc, and C. Bourrely, “Backscattering enhancement of an electromagnetic wave scattered by two-dimensional rough layers,” J. Opt. Soc. Am. A 18, 2778–2788 (2001).

[CrossRef]

A. Soubret, G. Berginc, and C. Bourrely, “Application of reduced Rayleigh equations to electromagnetic wave scattering by two-dimensional randomly rough surfaces,” Phys. Rev. B 63, 245411 (2001).

[CrossRef]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge University, 2007), pp. 605–608.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge University, 2007), pp. 605–608.

A. G. Voronovich, Wave Scattering from Rough Surfaces, 2nd ed. (Springer-Verlag, 1999), pp. 54–63.

A. Savchenko, E. Kashuba, V. Kashuba, and B. Snopok, “Imaging technique for the screening of protein–protein interactions using scattered light under surface plasmon resonance conditions,” Anal. Chem. 79, 1349–1355 (2007).

[CrossRef]

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez, “Enhanced backscattering of light from a random grating,” Ann. Phys. 203, 255–307 (1990).

[CrossRef]

I. Simonsen, J. B. Kryvi, A. A. Maradudin, and T. A. Leskova, “Light scattering from anisotropic, randomly rough, perfectly conducting surfaces,” Comput. Phys. Commun. 182, 1904 (2011).

[CrossRef]

I. Simonsen, “Optics of surface disordered systems: a random walk through rough surface scattering phenomena,” Eur. Phys. J. Spec. Top. 181, 1–103 (2010).

[CrossRef]

C. S. West and K. A. O’Donnell, “Observations of backscattering enhancement from polaritons on a rough metal surface,” J. Opt. Soc. Am. A 12, 390–397 (1995).

[CrossRef]

K. A. O’Donnell, “High-order perturbation theory for light scattering from a rough metal surface,” J. Opt. Soc. Am. A 18, 1507–1518 (2001).

[CrossRef]

A. Soubret, G. Berginc, and C. Bourrely, “Backscattering enhancement of an electromagnetic wave scattered by two-dimensional rough layers,” J. Opt. Soc. Am. A 18, 2778–2788 (2001).

[CrossRef]

K. A. O’Donnell and E. R. Mendéz, “Enhanced specular peaks in diffuse light scattering from weakly rough metal surfaces,” J. Opt. Soc. Am. A 20, 2338–2346 (2003).

[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).

[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. 6, 4370–4379 (1972).

[CrossRef]

I. Simonsen, A. A. Maradudin, and T. A. Leskova, “The scattering of electromagnetic waves from two-dimensional randomly rough perfectly conducting surfaces: the full angular intensity distribution,” Phys. Rev. A 81, 013806 (2010).

[CrossRef]

P. A. Letnes, A. A. Maradudin, T. Nordam, and I. Simonsen, “Calculation of the Mueller matrix for scattering of light from two-dimensional rough surfaces,” Phys. Rev. A 86, 031803 (2012).

[CrossRef]

A. Soubret, G. Berginc, and C. Bourrely, “Application of reduced Rayleigh equations to electromagnetic wave scattering by two-dimensional randomly rough surfaces,” Phys. Rev. B 63, 245411 (2001).

[CrossRef]

A. R. McGurn, A. A. Maradudin, and V. Celli, “Localization effects in the scattering of light from a randomly rough grating,” Phys. Rev. B 31, 4866–4871 (1985).

[CrossRef]

I. Simonsen, A. A. Maradudin, and T. A. Leskova, “The scattering of electromagnetic waves from two-dimensional randomly rough penetrable surfaces,” Phys. Rev. Lett. 104, 223904 (2010).

[CrossRef]

I. Simonsen, “Enhanced back and forward scattering in the reflection of light from weakly rough random metal surfaces,” Phys. Status Solidi B 247, 2075–2083 (2010).

[CrossRef]

Lord Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. London, Ser. A 79, 399–416 (1907).

[CrossRef]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).

[CrossRef]

A. Savchenko, E. Kashuba, V. Kashuba, and B. Snopok, “Imaging of plasmid DNA microarrays by scattering light under surface plasmon resonance conditions,” Sens. Lett. 6, 705–713 (2008).

[CrossRef]

G. C. Brown, V. Celli, M. Haller, and A. Marvin, “Vector theory of light scattering from a rough surface: unitary and reciprocal expansions,” Surf. Sci. 136, 381–397 (1984).

[CrossRef]

A. R. McGurn and A. A. Maradudin, “Perturbation theory results for the diffuse scattering of light from two-dimensional randomly rough metal surfaces,” Waves Random Media 6, 251–267 (1996).

[CrossRef]

A. G. Voronovich, Wave Scattering from Rough Surfaces, 2nd ed. (Springer-Verlag, 1999), pp. 54–63.

V. Agranovich and D. Mills, eds., Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces (North-Holland, 1982), pp. 93–145.

A. A. Maradudin, ed., Light Scattering and Nanoscale Surface Roughness (Springer-Verlag, 2007), pp. 107–126.

T. Nordam, P. A. Letnes, and I. Simonsen, “Numerical simulations of scattering of light from two-dimensional surfaces using the reduced Rayleigh equation,” ArXiv 1204.4984 (2012).

We have chosen to use the term “enhanced forward scattering,” because it is an enhancement in the incoherently scattered light and because “specular scattering” is often understood to mean “coherent scattering.”

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge University, 2007), pp. 605–608.