Abstract

By the volume integral equation method, the metal-coated dielectric probes of tilted conical shape were investigated for nanofocusing of surface plasmon polaritons (SPPs). We consider the cases of incident radially polarized (RP) and linearly polarized (LP) Gaussian beams and found that the tilted SPP conical probe is valid for both incident linearly and RP beams. Compared to the other asymmetric structures reported so far that are valid for incident LP waves, the structure proposed in this paper is not only simple but also straightforward to obtain the nanofocused localized and enhanced optical field on the tip of incident LP beam.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 74041 (2004).
    [CrossRef]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef]
  3. K. Tanaka, K. Katayama, and M. Tanaka, “Optical field characteristics of nanofocusing by conical metal-coated dielectric probe,” Opt. Express 19, 21028–21037 (2011).
    [CrossRef]
  4. K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
    [CrossRef]
  5. K. Tanaka, G. W. Burr, T. Grosjean, T. Maletzky, and U. C. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes,” Appl. Phys. B 93, 257–266 (2008).
    [CrossRef]
  6. K. Tanaka, K. Katayama, and M. Tanaka, “Nanofocusing of surface plasmon polaritons by a pyramidal structure on an aperture,” Opt. Express 18, 787–798 (2010).
    [CrossRef]
  7. N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253, 118–124 (2005).
    [CrossRef]
  8. W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75, 063822 (2007).
    [CrossRef]
  9. W. Liu, D. N. Neshev, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Polychromatic nanofocusing of surface plasmon polaritons,” Phys. Rev. B 83, 073404 (2011).
    [CrossRef]
  10. W. Chen and Q. Zhan, “Numerical study of an apertureless near field scanning optical microscope probe under radial polarization illumination,” Opt. Express 15, 4106–4111 (2007).
    [CrossRef]
  11. A. V. Goncharenko, M. M. Dvoynenko, H. C. Chang, and J. K. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering type near field optical microscopy,” Appl. Phys. Lett. 88, 104101 (2006).
    [CrossRef]
  12. N. A. Issa and R. Guckenberger, “Fluorescence near metal tip: the roles of energy transfer and surface plasmon polaritons,” Opt. Express 15, 12131–12144 (2007).
    [CrossRef]
  13. V. Lotito, U. Sennhauser, and C. Hafner, “Effects of asymmetric surface corrugations on fully metal-coated scanning near field optical microscopy tips,” Opt. Express 18, 8722–8734 (2010).
    [CrossRef]
  14. W. Nakagawa, L. Vaccaro, H. P. Herzig, and C. Hafner, “Polarization mode coupling due to metal-layer modifications in apertureless near-field scanning optical microscopy probes,” J. Comput. Theor. Nanosci. 4, 692–703 (2007).
  15. M. C. Quong and A. Y. Elezzabi, “Offset-apertured near-field scanning optical microscope probes,” Opt. Express 15, 10163–10174 (2007).
    [CrossRef]
  16. V. Lotito, U. Sennhauser, and C. Hafner, “Finite element analysis of asymmetric scanning near field optical microscopy probes,” J. Comput. Theor. Nanosci. 7, 1596–1609 (2010).
    [CrossRef]
  17. T. J. Antosiewicz, P. Wróbel, and T. Szoplik, “Performance of scanning near-field optical microscope probes with single groove and various metal coatings,” Plasmonics 6, 11–18 (2011).
    [CrossRef]
  18. R. P. Zaccaria, F. De Angelis, A. Toma, L. Razzari, A. Alabastri, G. Das, C. Liberale, and E. Di Fabrizio, “Surface plasmon polariton compression through radially and linearly polarized source,” Opt. Lett. 37, 545–547 (2012).
    [CrossRef]
  19. L. W. Davis and G. Patsakos, “TM and TE electromagnetic beams in free space,” Opt. Lett. 6, 22–23 (1981).
    [CrossRef]
  20. L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979).
    [CrossRef]
  21. M. Mansuripur, Classical Optics and Its Applications (Cambridge University, 2009).

2012 (1)

2011 (3)

W. Liu, D. N. Neshev, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Polychromatic nanofocusing of surface plasmon polaritons,” Phys. Rev. B 83, 073404 (2011).
[CrossRef]

K. Tanaka, K. Katayama, and M. Tanaka, “Optical field characteristics of nanofocusing by conical metal-coated dielectric probe,” Opt. Express 19, 21028–21037 (2011).
[CrossRef]

T. J. Antosiewicz, P. Wróbel, and T. Szoplik, “Performance of scanning near-field optical microscope probes with single groove and various metal coatings,” Plasmonics 6, 11–18 (2011).
[CrossRef]

2010 (3)

2008 (1)

K. Tanaka, G. W. Burr, T. Grosjean, T. Maletzky, and U. C. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes,” Appl. Phys. B 93, 257–266 (2008).
[CrossRef]

2007 (5)

W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75, 063822 (2007).
[CrossRef]

N. A. Issa and R. Guckenberger, “Fluorescence near metal tip: the roles of energy transfer and surface plasmon polaritons,” Opt. Express 15, 12131–12144 (2007).
[CrossRef]

W. Nakagawa, L. Vaccaro, H. P. Herzig, and C. Hafner, “Polarization mode coupling due to metal-layer modifications in apertureless near-field scanning optical microscopy probes,” J. Comput. Theor. Nanosci. 4, 692–703 (2007).

M. C. Quong and A. Y. Elezzabi, “Offset-apertured near-field scanning optical microscope probes,” Opt. Express 15, 10163–10174 (2007).
[CrossRef]

W. Chen and Q. Zhan, “Numerical study of an apertureless near field scanning optical microscope probe under radial polarization illumination,” Opt. Express 15, 4106–4111 (2007).
[CrossRef]

2006 (1)

A. V. Goncharenko, M. M. Dvoynenko, H. C. Chang, and J. K. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering type near field optical microscopy,” Appl. Phys. Lett. 88, 104101 (2006).
[CrossRef]

2005 (1)

N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253, 118–124 (2005).
[CrossRef]

2004 (1)

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 74041 (2004).
[CrossRef]

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
[CrossRef]

1981 (1)

1979 (1)

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979).
[CrossRef]

Alabastri, A.

Andrews, S. R.

W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75, 063822 (2007).
[CrossRef]

Antosiewicz, T. J.

T. J. Antosiewicz, P. Wróbel, and T. Szoplik, “Performance of scanning near-field optical microscope probes with single groove and various metal coatings,” Plasmonics 6, 11–18 (2011).
[CrossRef]

Baghdasaryan, K. S.

N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253, 118–124 (2005).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Burr, G. W.

K. Tanaka, G. W. Burr, T. Grosjean, T. Maletzky, and U. C. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes,” Appl. Phys. B 93, 257–266 (2008).
[CrossRef]

Chang, H. C.

A. V. Goncharenko, M. M. Dvoynenko, H. C. Chang, and J. K. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering type near field optical microscopy,” Appl. Phys. Lett. 88, 104101 (2006).
[CrossRef]

Chen, W.

Das, G.

Davis, L. W.

L. W. Davis and G. Patsakos, “TM and TE electromagnetic beams in free space,” Opt. Lett. 6, 22–23 (1981).
[CrossRef]

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979).
[CrossRef]

De Angelis, F.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Di Fabrizio, E.

Ding, W.

W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75, 063822 (2007).
[CrossRef]

Dvoynenko, M. M.

A. V. Goncharenko, M. M. Dvoynenko, H. C. Chang, and J. K. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering type near field optical microscopy,” Appl. Phys. Lett. 88, 104101 (2006).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Elezzabi, A. Y.

Fischer, U. C.

K. Tanaka, G. W. Burr, T. Grosjean, T. Maletzky, and U. C. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes,” Appl. Phys. B 93, 257–266 (2008).
[CrossRef]

Goncharenko, A. V.

A. V. Goncharenko, M. M. Dvoynenko, H. C. Chang, and J. K. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering type near field optical microscopy,” Appl. Phys. Lett. 88, 104101 (2006).
[CrossRef]

Grosjean, T.

K. Tanaka, G. W. Burr, T. Grosjean, T. Maletzky, and U. C. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes,” Appl. Phys. B 93, 257–266 (2008).
[CrossRef]

Guckenberger, R.

Hafner, C.

V. Lotito, U. Sennhauser, and C. Hafner, “Effects of asymmetric surface corrugations on fully metal-coated scanning near field optical microscopy tips,” Opt. Express 18, 8722–8734 (2010).
[CrossRef]

V. Lotito, U. Sennhauser, and C. Hafner, “Finite element analysis of asymmetric scanning near field optical microscopy probes,” J. Comput. Theor. Nanosci. 7, 1596–1609 (2010).
[CrossRef]

W. Nakagawa, L. Vaccaro, H. P. Herzig, and C. Hafner, “Polarization mode coupling due to metal-layer modifications in apertureless near-field scanning optical microscopy probes,” J. Comput. Theor. Nanosci. 4, 692–703 (2007).

Hecht, B.

N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253, 118–124 (2005).
[CrossRef]

Herzig, H. P.

W. Nakagawa, L. Vaccaro, H. P. Herzig, and C. Hafner, “Polarization mode coupling due to metal-layer modifications in apertureless near-field scanning optical microscopy probes,” J. Comput. Theor. Nanosci. 4, 692–703 (2007).

Issa, N. A.

Janunts, N. A.

N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253, 118–124 (2005).
[CrossRef]

Katayama, K.

Kivshar, Y. S.

W. Liu, D. N. Neshev, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Polychromatic nanofocusing of surface plasmon polaritons,” Phys. Rev. B 83, 073404 (2011).
[CrossRef]

Liberale, C.

Liu, W.

W. Liu, D. N. Neshev, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Polychromatic nanofocusing of surface plasmon polaritons,” Phys. Rev. B 83, 073404 (2011).
[CrossRef]

Lotito, V.

V. Lotito, U. Sennhauser, and C. Hafner, “Effects of asymmetric surface corrugations on fully metal-coated scanning near field optical microscopy tips,” Opt. Express 18, 8722–8734 (2010).
[CrossRef]

V. Lotito, U. Sennhauser, and C. Hafner, “Finite element analysis of asymmetric scanning near field optical microscopy probes,” J. Comput. Theor. Nanosci. 7, 1596–1609 (2010).
[CrossRef]

Maier, S. A.

W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75, 063822 (2007).
[CrossRef]

Maletzky, T.

K. Tanaka, G. W. Burr, T. Grosjean, T. Maletzky, and U. C. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes,” Appl. Phys. B 93, 257–266 (2008).
[CrossRef]

Mansuripur, M.

M. Mansuripur, Classical Optics and Its Applications (Cambridge University, 2009).

Miroshnichenko, A. E.

W. Liu, D. N. Neshev, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Polychromatic nanofocusing of surface plasmon polaritons,” Phys. Rev. B 83, 073404 (2011).
[CrossRef]

Nakagawa, W.

W. Nakagawa, L. Vaccaro, H. P. Herzig, and C. Hafner, “Polarization mode coupling due to metal-layer modifications in apertureless near-field scanning optical microscopy probes,” J. Comput. Theor. Nanosci. 4, 692–703 (2007).

Nerkararyan, K. V.

N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253, 118–124 (2005).
[CrossRef]

Neshev, D. N.

W. Liu, D. N. Neshev, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Polychromatic nanofocusing of surface plasmon polaritons,” Phys. Rev. B 83, 073404 (2011).
[CrossRef]

Patsakos, G.

Quong, M. C.

Razzari, L.

Sennhauser, U.

V. Lotito, U. Sennhauser, and C. Hafner, “Finite element analysis of asymmetric scanning near field optical microscopy probes,” J. Comput. Theor. Nanosci. 7, 1596–1609 (2010).
[CrossRef]

V. Lotito, U. Sennhauser, and C. Hafner, “Effects of asymmetric surface corrugations on fully metal-coated scanning near field optical microscopy tips,” Opt. Express 18, 8722–8734 (2010).
[CrossRef]

Shadrivov, I. V.

W. Liu, D. N. Neshev, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Polychromatic nanofocusing of surface plasmon polaritons,” Phys. Rev. B 83, 073404 (2011).
[CrossRef]

Stockman, M. I.

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 74041 (2004).
[CrossRef]

Szoplik, T.

T. J. Antosiewicz, P. Wróbel, and T. Szoplik, “Performance of scanning near-field optical microscope probes with single groove and various metal coatings,” Plasmonics 6, 11–18 (2011).
[CrossRef]

Tanaka, K.

K. Tanaka, K. Katayama, and M. Tanaka, “Optical field characteristics of nanofocusing by conical metal-coated dielectric probe,” Opt. Express 19, 21028–21037 (2011).
[CrossRef]

K. Tanaka, K. Katayama, and M. Tanaka, “Nanofocusing of surface plasmon polaritons by a pyramidal structure on an aperture,” Opt. Express 18, 787–798 (2010).
[CrossRef]

K. Tanaka, G. W. Burr, T. Grosjean, T. Maletzky, and U. C. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes,” Appl. Phys. B 93, 257–266 (2008).
[CrossRef]

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
[CrossRef]

Tanaka, M.

Toma, A.

Vaccaro, L.

W. Nakagawa, L. Vaccaro, H. P. Herzig, and C. Hafner, “Polarization mode coupling due to metal-layer modifications in apertureless near-field scanning optical microscopy probes,” J. Comput. Theor. Nanosci. 4, 692–703 (2007).

Wang, J. K.

A. V. Goncharenko, M. M. Dvoynenko, H. C. Chang, and J. K. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering type near field optical microscopy,” Appl. Phys. Lett. 88, 104101 (2006).
[CrossRef]

Wróbel, P.

T. J. Antosiewicz, P. Wróbel, and T. Szoplik, “Performance of scanning near-field optical microscope probes with single groove and various metal coatings,” Plasmonics 6, 11–18 (2011).
[CrossRef]

Zaccaria, R. P.

Zhan, Q.

Appl. Phys. B (1)

K. Tanaka, G. W. Burr, T. Grosjean, T. Maletzky, and U. C. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes,” Appl. Phys. B 93, 257–266 (2008).
[CrossRef]

Appl. Phys. Lett. (2)

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
[CrossRef]

A. V. Goncharenko, M. M. Dvoynenko, H. C. Chang, and J. K. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering type near field optical microscopy,” Appl. Phys. Lett. 88, 104101 (2006).
[CrossRef]

J. Comput. Theor. Nanosci. (2)

W. Nakagawa, L. Vaccaro, H. P. Herzig, and C. Hafner, “Polarization mode coupling due to metal-layer modifications in apertureless near-field scanning optical microscopy probes,” J. Comput. Theor. Nanosci. 4, 692–703 (2007).

V. Lotito, U. Sennhauser, and C. Hafner, “Finite element analysis of asymmetric scanning near field optical microscopy probes,” J. Comput. Theor. Nanosci. 7, 1596–1609 (2010).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Opt. Commun. (1)

N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253, 118–124 (2005).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Phys. Rev. A (2)

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979).
[CrossRef]

W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75, 063822 (2007).
[CrossRef]

Phys. Rev. B (1)

W. Liu, D. N. Neshev, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Polychromatic nanofocusing of surface plasmon polaritons,” Phys. Rev. B 83, 073404 (2011).
[CrossRef]

Phys. Rev. Lett. (1)

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 74041 (2004).
[CrossRef]

Plasmonics (1)

T. J. Antosiewicz, P. Wróbel, and T. Szoplik, “Performance of scanning near-field optical microscope probes with single groove and various metal coatings,” Plasmonics 6, 11–18 (2011).
[CrossRef]

Other (1)

M. Mansuripur, Classical Optics and Its Applications (Cambridge University, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Geometry of the tilted metal-coated conical dielectric probe. The conical dielectric structure has a base radius R and a height h. The metal coating has a thickness d. The tip of the probe is located at (l,0,h) in the (x,y,z) coordinate system. Permittivities of the surrounding free space, the coating metal, and the dielectric of the conical structure are denoted by ε0, ε1, and ε2, respectively. The shape of the tilted conical structure is characterized by distance l between the z axis and the tip. Both RP and LP Gaussian beams are normally incident to the xy plane from negative z direction. The axis of Gaussian beam coincides with the z axis. RP and LP beams propagate along the z direction and polarization of the LP beam makes an angle of β with the x axis. (b) shows the discretized structure of only 28 layers near the tip of the probe. The whole structure is composed of 328 layers. The inset shows the tiny cube with δ×δ×δ dimensions.

Fig. 2.
Fig. 2.

Optical intensity distributions on the xz plane and yz plane for symmetric probe (l=0nm) and tilted probe (l=300nm) are shown in the logarithmic scale. The optical intensities of log(|E(x,0,z)|2) and log(|E(0,y,z)|2) for symmetric probe for incident LP and RP beams are shown in (a) and (b), respectively. The optical intensities of log(|E(x,0,z)|2) and log(|E(l,y,z)|2) for tilted probe for incident LP and RP beams are shown in (c) and (d), respectively. The coating metal is Au (ε2/ε0=13.8j1.08). The dielectric is glass (ε1/ε0=2.25). Other parameters keep constant (d27.4nm, R=712nm, h=1652nm).

Fig. 3.
Fig. 3.

Illustration of electric field vectors on the xz plane of symmetric probe for incident LP and RP beams are shown in (a) and (b), respectively.

Fig. 4.
Fig. 4.

Maximum of optical intensity at the tip |E|2 (a) and (b) for incident RP beam; (c) and (d) for incident LP beam. The coating metals are Au, Cu, Ni, and Al. The dielectric is glass (ε1/ε0=2.25). The distance l is varied from 0 to 600 nm under the condition that the other parameters of the shape are kept constant (d27.4nm, R=712nm, h=1652nm).

Fig. 5.
Fig. 5.

Maximum of optical intensity at the tip of Au-coating metal probe |E|2 for incident RP beam and incident LP beam in the same intensity scale. The distance l is varied from 0 to 600 nm under the condition that the other parameters of the shape are kept constant (d27.4nm, R=712nm, h=1652nm).

Fig. 6.
Fig. 6.

Maximum of optical intensity |E|2 located at 2.5 nm from the tip of the tilted probe (l=300nm, d27.4nm, R=712nm, h=1652nm) for incident LP beam with Au metal coating depends on the polarized angle β. In this simulation, the tilted probe has been kept constant while the polarized angle is changed from 0° to 90°.

Tables (2)

Tables Icon

Table 1. Largest Value of the Maximum Optical Intensity for Incident LP Beam

Tables Icon

Table 2. Maximum Optical Intensities |E|2 for Incident RP and LP Beams in the Region of 350nm<l<410nm

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Er(r,0)=2A(r/w)exp[(r/w)2],Ez(r,0)=j4A[1(rw)2]k0wexp[(r/w)2].
Ex(r,0)=Aexp[(r/w)2]cosβ,Ey(r,0)=Aexp[(r/w)2]sinβ,Ez(r,0)=jA(2x/k0w2)exp[(r/w)2].

Metrics