Abstract

The range and stability of structural colors generated by Morpho-inspired color reflectors are investigated. We find that despite the internal randomness of such structures that gives rise to their Morpho-like angle-independent iridescence, their colors under ambient lighting condition can be predicted by simple transfer-matrix calculations of corresponding planar multilayer structures. By calculating the possible range of colors generated by multilayers of different structures and material combinations using such transfer-matrix methods, we find that low-refractive index multilayers with intrastructure absorption, such as the melanin-containing chitin/air multilayer structure from the Morpho butterflies, can provide not only the most pure structural colors with the largest color gamut, but also the highest stability of color against variations in multilayer structure.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Vigneron and P. Simonis, Advances in Insect Physiology (Academic, 2010), Chap. 5.
  2. C. W. Mason, “Structural colors in feathers,” J. Phys. Chem. 27, 202–251 (1923).
  3. C. W. Mason, “Structural colors in insects,” J. Phys. Chem. 30, 383–395 (1926).
    [CrossRef]
  4. P. Vukusic and J. R. Samble, “Photonic structures in biology,” Nature 424, 852–855 (2003).
    [CrossRef]
  5. S. Yoshioka and S. Kinoshita, “Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly,” Proc. R. Soc. B 271, 581–587 (2004).
    [CrossRef]
  6. S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. R. Soc. B 269, 1417–1421 (2002).
    [CrossRef]
  7. S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the Morpho butterflies,” Forma 17, 103–121 (2002).
  8. L. Plattner, “Optical properties of the scales of Morpho rhetenor butterflies: theoretical and experimental investigation of the back-scattering of light in the visible spectrum,” J. R. Soc. Interface 1, 49–59 (2004).
    [CrossRef]
  9. K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, and S. Matsui, “Optical measurement and fabrication from a Morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition,” J. Vac. Sci. Technol. B 23, 570–574 (2005).
    [CrossRef]
  10. D. Zhu, S. Kinoshita, D. Cai, and J. B. Cole, “Investigation of structural colors in Morpho butterflies using the nonstandard-finite-difference time-domain method: effects of alternately stacked shelves and ridge density,” Phys. Rev. E 80, 051924 (2009).
    [CrossRef]
  11. M. Kambe, D. Zhu, and S. Kinoshita, “Origin of retroreflection from a wing of the Morpho butterfly,” J. Phys. Soc. Jpn. 80, 054801 (2011).
    [CrossRef]
  12. A. Saito, M. Yonezawa, J. Murase, S. Juodkazis, V. Mizeikis, M. Akai-Kasaya, and Y. Kuwahara, “Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale,” J. Nanosci. Nanotechnol. 11, 2785–2792 (2011).
    [CrossRef]
  13. K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by Morpho butterfly wings,” Adv. Mater. 24, 2375–2379 (2012).
    [CrossRef]
  14. R. A. Potyrailo, H. T. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1, 123–128 (2007).
    [CrossRef]
  15. A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics 6, 195–200 (2012).
    [CrossRef]
  16. P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. B 266, 1403–1411 (1999).
    [CrossRef]
  17. S. Zhang, X. Zhao, H. Xu, R. Zhu, and Z. Gu, “Fabrication of photonic crystals with nigrosine-doped poly(MMA-co-DVB-co-MMA) particles,” J. Colloid Interface Sci. 316, 168–174 (2007).
    [CrossRef]
  18. D. E. Azofeifa, H. J. Arguedas, and W. E. Vargars, “Optical properties of chitin and chitosan biopolymers with application to structural color analysis,” Opt. Mater. 35, 175–183 (2012).
    [CrossRef]
  19. H. Ghiradella, “Light and color on the wing: structural colors in butterflies and moths,” Appl. Opt. 30, 3492–3500 (1991).
    [CrossRef]
  20. G. Sharma, Digital Color Imaging Handbook (CRC, 2003), Chap. 1.
  21. A. Saito, S. Yoshioka, and S. Kinoshita, “Reproduction of the Morpho butterfly’s blue: arbitration of contradicting factors,” Proc. SPIE 5526, 188–194 (2004).
    [CrossRef]
  22. J. Huang, X. Wang, and Z. L. Wang, “Controlled replication of butterfly wings for achieving tunable photonic properties,” Nano Lett. 6, 2325–2331 (2006).
    [CrossRef]

2012 (3)

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by Morpho butterfly wings,” Adv. Mater. 24, 2375–2379 (2012).
[CrossRef]

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics 6, 195–200 (2012).
[CrossRef]

D. E. Azofeifa, H. J. Arguedas, and W. E. Vargars, “Optical properties of chitin and chitosan biopolymers with application to structural color analysis,” Opt. Mater. 35, 175–183 (2012).
[CrossRef]

2011 (2)

M. Kambe, D. Zhu, and S. Kinoshita, “Origin of retroreflection from a wing of the Morpho butterfly,” J. Phys. Soc. Jpn. 80, 054801 (2011).
[CrossRef]

A. Saito, M. Yonezawa, J. Murase, S. Juodkazis, V. Mizeikis, M. Akai-Kasaya, and Y. Kuwahara, “Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale,” J. Nanosci. Nanotechnol. 11, 2785–2792 (2011).
[CrossRef]

2009 (1)

D. Zhu, S. Kinoshita, D. Cai, and J. B. Cole, “Investigation of structural colors in Morpho butterflies using the nonstandard-finite-difference time-domain method: effects of alternately stacked shelves and ridge density,” Phys. Rev. E 80, 051924 (2009).
[CrossRef]

2007 (2)

R. A. Potyrailo, H. T. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1, 123–128 (2007).
[CrossRef]

S. Zhang, X. Zhao, H. Xu, R. Zhu, and Z. Gu, “Fabrication of photonic crystals with nigrosine-doped poly(MMA-co-DVB-co-MMA) particles,” J. Colloid Interface Sci. 316, 168–174 (2007).
[CrossRef]

2006 (1)

J. Huang, X. Wang, and Z. L. Wang, “Controlled replication of butterfly wings for achieving tunable photonic properties,” Nano Lett. 6, 2325–2331 (2006).
[CrossRef]

2005 (1)

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, and S. Matsui, “Optical measurement and fabrication from a Morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition,” J. Vac. Sci. Technol. B 23, 570–574 (2005).
[CrossRef]

2004 (3)

L. Plattner, “Optical properties of the scales of Morpho rhetenor butterflies: theoretical and experimental investigation of the back-scattering of light in the visible spectrum,” J. R. Soc. Interface 1, 49–59 (2004).
[CrossRef]

S. Yoshioka and S. Kinoshita, “Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly,” Proc. R. Soc. B 271, 581–587 (2004).
[CrossRef]

A. Saito, S. Yoshioka, and S. Kinoshita, “Reproduction of the Morpho butterfly’s blue: arbitration of contradicting factors,” Proc. SPIE 5526, 188–194 (2004).
[CrossRef]

2003 (1)

P. Vukusic and J. R. Samble, “Photonic structures in biology,” Nature 424, 852–855 (2003).
[CrossRef]

2002 (2)

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. R. Soc. B 269, 1417–1421 (2002).
[CrossRef]

S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the Morpho butterflies,” Forma 17, 103–121 (2002).

1999 (1)

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. B 266, 1403–1411 (1999).
[CrossRef]

1991 (1)

1926 (1)

C. W. Mason, “Structural colors in insects,” J. Phys. Chem. 30, 383–395 (1926).
[CrossRef]

1923 (1)

C. W. Mason, “Structural colors in feathers,” J. Phys. Chem. 27, 202–251 (1923).

Akai-Kasaya, M.

A. Saito, M. Yonezawa, J. Murase, S. Juodkazis, V. Mizeikis, M. Akai-Kasaya, and Y. Kuwahara, “Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale,” J. Nanosci. Nanotechnol. 11, 2785–2792 (2011).
[CrossRef]

Arguedas, H. J.

D. E. Azofeifa, H. J. Arguedas, and W. E. Vargars, “Optical properties of chitin and chitosan biopolymers with application to structural color analysis,” Opt. Mater. 35, 175–183 (2012).
[CrossRef]

Azofeifa, D. E.

D. E. Azofeifa, H. J. Arguedas, and W. E. Vargars, “Optical properties of chitin and chitosan biopolymers with application to structural color analysis,” Opt. Mater. 35, 175–183 (2012).
[CrossRef]

Cai, D.

D. Zhu, S. Kinoshita, D. Cai, and J. B. Cole, “Investigation of structural colors in Morpho butterflies using the nonstandard-finite-difference time-domain method: effects of alternately stacked shelves and ridge density,” Phys. Rev. E 80, 051924 (2009).
[CrossRef]

Chung, K.

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by Morpho butterfly wings,” Adv. Mater. 24, 2375–2379 (2012).
[CrossRef]

Cole, J. B.

D. Zhu, S. Kinoshita, D. Cai, and J. B. Cole, “Investigation of structural colors in Morpho butterflies using the nonstandard-finite-difference time-domain method: effects of alternately stacked shelves and ridge density,” Phys. Rev. E 80, 051924 (2009).
[CrossRef]

Cournoyer, J. R.

R. A. Potyrailo, H. T. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1, 123–128 (2007).
[CrossRef]

Deng, T.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics 6, 195–200 (2012).
[CrossRef]

Dovidenko, K.

R. A. Potyrailo, H. T. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1, 123–128 (2007).
[CrossRef]

Fujii, Y.

S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the Morpho butterflies,” Forma 17, 103–121 (2002).

Ghiradella, H.

Ghiradella, H. T.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics 6, 195–200 (2012).
[CrossRef]

R. A. Potyrailo, H. T. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1, 123–128 (2007).
[CrossRef]

Gu, Z.

S. Zhang, X. Zhao, H. Xu, R. Zhu, and Z. Gu, “Fabrication of photonic crystals with nigrosine-doped poly(MMA-co-DVB-co-MMA) particles,” J. Colloid Interface Sci. 316, 168–174 (2007).
[CrossRef]

Han, M. G.

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by Morpho butterfly wings,” Adv. Mater. 24, 2375–2379 (2012).
[CrossRef]

Haruyama, Y.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, and S. Matsui, “Optical measurement and fabrication from a Morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition,” J. Vac. Sci. Technol. B 23, 570–574 (2005).
[CrossRef]

Heo, C.-J.

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by Morpho butterfly wings,” Adv. Mater. 24, 2375–2379 (2012).
[CrossRef]

Hoshino, T.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, and S. Matsui, “Optical measurement and fabrication from a Morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition,” J. Vac. Sci. Technol. B 23, 570–574 (2005).
[CrossRef]

Huang, J.

J. Huang, X. Wang, and Z. L. Wang, “Controlled replication of butterfly wings for achieving tunable photonic properties,” Nano Lett. 6, 2325–2331 (2006).
[CrossRef]

Jin, Y.

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by Morpho butterfly wings,” Adv. Mater. 24, 2375–2379 (2012).
[CrossRef]

Juodkazis, S.

A. Saito, M. Yonezawa, J. Murase, S. Juodkazis, V. Mizeikis, M. Akai-Kasaya, and Y. Kuwahara, “Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale,” J. Nanosci. Nanotechnol. 11, 2785–2792 (2011).
[CrossRef]

Kaito, T.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, and S. Matsui, “Optical measurement and fabrication from a Morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition,” J. Vac. Sci. Technol. B 23, 570–574 (2005).
[CrossRef]

Kambe, M.

M. Kambe, D. Zhu, and S. Kinoshita, “Origin of retroreflection from a wing of the Morpho butterfly,” J. Phys. Soc. Jpn. 80, 054801 (2011).
[CrossRef]

Kanda, K.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, and S. Matsui, “Optical measurement and fabrication from a Morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition,” J. Vac. Sci. Technol. B 23, 570–574 (2005).
[CrossRef]

Kawagoe, K.

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. R. Soc. B 269, 1417–1421 (2002).
[CrossRef]

Kinoshita, S.

M. Kambe, D. Zhu, and S. Kinoshita, “Origin of retroreflection from a wing of the Morpho butterfly,” J. Phys. Soc. Jpn. 80, 054801 (2011).
[CrossRef]

D. Zhu, S. Kinoshita, D. Cai, and J. B. Cole, “Investigation of structural colors in Morpho butterflies using the nonstandard-finite-difference time-domain method: effects of alternately stacked shelves and ridge density,” Phys. Rev. E 80, 051924 (2009).
[CrossRef]

A. Saito, S. Yoshioka, and S. Kinoshita, “Reproduction of the Morpho butterfly’s blue: arbitration of contradicting factors,” Proc. SPIE 5526, 188–194 (2004).
[CrossRef]

S. Yoshioka and S. Kinoshita, “Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly,” Proc. R. Soc. B 271, 581–587 (2004).
[CrossRef]

S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the Morpho butterflies,” Forma 17, 103–121 (2002).

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. R. Soc. B 269, 1417–1421 (2002).
[CrossRef]

Kuwahara, Y.

A. Saito, M. Yonezawa, J. Murase, S. Juodkazis, V. Mizeikis, M. Akai-Kasaya, and Y. Kuwahara, “Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale,” J. Nanosci. Nanotechnol. 11, 2785–2792 (2011).
[CrossRef]

Lawrence, C. R.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. B 266, 1403–1411 (1999).
[CrossRef]

Lee, H.-S.

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by Morpho butterfly wings,” Adv. Mater. 24, 2375–2379 (2012).
[CrossRef]

Lee, S. Y.

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by Morpho butterfly wings,” Adv. Mater. 24, 2375–2379 (2012).
[CrossRef]

Mason, C. W.

C. W. Mason, “Structural colors in insects,” J. Phys. Chem. 30, 383–395 (1926).
[CrossRef]

C. W. Mason, “Structural colors in feathers,” J. Phys. Chem. 27, 202–251 (1923).

Matsui, S.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, and S. Matsui, “Optical measurement and fabrication from a Morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition,” J. Vac. Sci. Technol. B 23, 570–574 (2005).
[CrossRef]

Mizeikis, V.

A. Saito, M. Yonezawa, J. Murase, S. Juodkazis, V. Mizeikis, M. Akai-Kasaya, and Y. Kuwahara, “Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale,” J. Nanosci. Nanotechnol. 11, 2785–2792 (2011).
[CrossRef]

Morris, W. G.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics 6, 195–200 (2012).
[CrossRef]

Murase, J.

A. Saito, M. Yonezawa, J. Murase, S. Juodkazis, V. Mizeikis, M. Akai-Kasaya, and Y. Kuwahara, “Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale,” J. Nanosci. Nanotechnol. 11, 2785–2792 (2011).
[CrossRef]

Okamoto, N.

S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the Morpho butterflies,” Forma 17, 103–121 (2002).

Olson, E.

R. A. Potyrailo, H. T. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1, 123–128 (2007).
[CrossRef]

Park, N.

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by Morpho butterfly wings,” Adv. Mater. 24, 2375–2379 (2012).
[CrossRef]

Plattner, L.

L. Plattner, “Optical properties of the scales of Morpho rhetenor butterflies: theoretical and experimental investigation of the back-scattering of light in the visible spectrum,” J. R. Soc. Interface 1, 49–59 (2004).
[CrossRef]

Potyrailo, R. A.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics 6, 195–200 (2012).
[CrossRef]

R. A. Potyrailo, H. T. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1, 123–128 (2007).
[CrossRef]

Pris, A. D.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics 6, 195–200 (2012).
[CrossRef]

Saito, A.

A. Saito, M. Yonezawa, J. Murase, S. Juodkazis, V. Mizeikis, M. Akai-Kasaya, and Y. Kuwahara, “Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale,” J. Nanosci. Nanotechnol. 11, 2785–2792 (2011).
[CrossRef]

A. Saito, S. Yoshioka, and S. Kinoshita, “Reproduction of the Morpho butterfly’s blue: arbitration of contradicting factors,” Proc. SPIE 5526, 188–194 (2004).
[CrossRef]

Samble, J. R.

P. Vukusic and J. R. Samble, “Photonic structures in biology,” Nature 424, 852–855 (2003).
[CrossRef]

Sambles, J. R.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. B 266, 1403–1411 (1999).
[CrossRef]

Sharma, G.

G. Sharma, Digital Color Imaging Handbook (CRC, 2003), Chap. 1.

Shim, J. W.

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by Morpho butterfly wings,” Adv. Mater. 24, 2375–2379 (2012).
[CrossRef]

Shin, J. H.

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by Morpho butterfly wings,” Adv. Mater. 24, 2375–2379 (2012).
[CrossRef]

Simonis, P.

J. P. Vigneron and P. Simonis, Advances in Insect Physiology (Academic, 2010), Chap. 5.

Surman, C.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics 6, 195–200 (2012).
[CrossRef]

Utturkar, Y.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics 6, 195–200 (2012).
[CrossRef]

Vargars, W. E.

D. E. Azofeifa, H. J. Arguedas, and W. E. Vargars, “Optical properties of chitin and chitosan biopolymers with application to structural color analysis,” Opt. Mater. 35, 175–183 (2012).
[CrossRef]

Vert, A.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics 6, 195–200 (2012).
[CrossRef]

Vertiatchikh, A.

R. A. Potyrailo, H. T. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1, 123–128 (2007).
[CrossRef]

Vigneron, J. P.

J. P. Vigneron and P. Simonis, Advances in Insect Physiology (Academic, 2010), Chap. 5.

Vukusic, P.

P. Vukusic and J. R. Samble, “Photonic structures in biology,” Nature 424, 852–855 (2003).
[CrossRef]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. B 266, 1403–1411 (1999).
[CrossRef]

Wang, X.

J. Huang, X. Wang, and Z. L. Wang, “Controlled replication of butterfly wings for achieving tunable photonic properties,” Nano Lett. 6, 2325–2331 (2006).
[CrossRef]

Wang, Z. L.

J. Huang, X. Wang, and Z. L. Wang, “Controlled replication of butterfly wings for achieving tunable photonic properties,” Nano Lett. 6, 2325–2331 (2006).
[CrossRef]

Watanabe, K.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, and S. Matsui, “Optical measurement and fabrication from a Morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition,” J. Vac. Sci. Technol. B 23, 570–574 (2005).
[CrossRef]

Wootton, R. J.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. B 266, 1403–1411 (1999).
[CrossRef]

Xu, H.

S. Zhang, X. Zhao, H. Xu, R. Zhu, and Z. Gu, “Fabrication of photonic crystals with nigrosine-doped poly(MMA-co-DVB-co-MMA) particles,” J. Colloid Interface Sci. 316, 168–174 (2007).
[CrossRef]

Yang, S.-M.

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by Morpho butterfly wings,” Adv. Mater. 24, 2375–2379 (2012).
[CrossRef]

Yonezawa, M.

A. Saito, M. Yonezawa, J. Murase, S. Juodkazis, V. Mizeikis, M. Akai-Kasaya, and Y. Kuwahara, “Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale,” J. Nanosci. Nanotechnol. 11, 2785–2792 (2011).
[CrossRef]

Yoshioka, S.

A. Saito, S. Yoshioka, and S. Kinoshita, “Reproduction of the Morpho butterfly’s blue: arbitration of contradicting factors,” Proc. SPIE 5526, 188–194 (2004).
[CrossRef]

S. Yoshioka and S. Kinoshita, “Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly,” Proc. R. Soc. B 271, 581–587 (2004).
[CrossRef]

S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the Morpho butterflies,” Forma 17, 103–121 (2002).

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. R. Soc. B 269, 1417–1421 (2002).
[CrossRef]

Yu, S.

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by Morpho butterfly wings,” Adv. Mater. 24, 2375–2379 (2012).
[CrossRef]

Zalyubovskiy, S.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics 6, 195–200 (2012).
[CrossRef]

Zhang, S.

S. Zhang, X. Zhao, H. Xu, R. Zhu, and Z. Gu, “Fabrication of photonic crystals with nigrosine-doped poly(MMA-co-DVB-co-MMA) particles,” J. Colloid Interface Sci. 316, 168–174 (2007).
[CrossRef]

Zhao, X.

S. Zhang, X. Zhao, H. Xu, R. Zhu, and Z. Gu, “Fabrication of photonic crystals with nigrosine-doped poly(MMA-co-DVB-co-MMA) particles,” J. Colloid Interface Sci. 316, 168–174 (2007).
[CrossRef]

Zhu, D.

M. Kambe, D. Zhu, and S. Kinoshita, “Origin of retroreflection from a wing of the Morpho butterfly,” J. Phys. Soc. Jpn. 80, 054801 (2011).
[CrossRef]

D. Zhu, S. Kinoshita, D. Cai, and J. B. Cole, “Investigation of structural colors in Morpho butterflies using the nonstandard-finite-difference time-domain method: effects of alternately stacked shelves and ridge density,” Phys. Rev. E 80, 051924 (2009).
[CrossRef]

Zhu, R.

S. Zhang, X. Zhao, H. Xu, R. Zhu, and Z. Gu, “Fabrication of photonic crystals with nigrosine-doped poly(MMA-co-DVB-co-MMA) particles,” J. Colloid Interface Sci. 316, 168–174 (2007).
[CrossRef]

Adv. Mater. (1)

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by Morpho butterfly wings,” Adv. Mater. 24, 2375–2379 (2012).
[CrossRef]

Appl. Opt. (1)

Forma (1)

S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the Morpho butterflies,” Forma 17, 103–121 (2002).

J. Colloid Interface Sci. (1)

S. Zhang, X. Zhao, H. Xu, R. Zhu, and Z. Gu, “Fabrication of photonic crystals with nigrosine-doped poly(MMA-co-DVB-co-MMA) particles,” J. Colloid Interface Sci. 316, 168–174 (2007).
[CrossRef]

J. Nanosci. Nanotechnol. (1)

A. Saito, M. Yonezawa, J. Murase, S. Juodkazis, V. Mizeikis, M. Akai-Kasaya, and Y. Kuwahara, “Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale,” J. Nanosci. Nanotechnol. 11, 2785–2792 (2011).
[CrossRef]

J. Phys. Chem. (2)

C. W. Mason, “Structural colors in feathers,” J. Phys. Chem. 27, 202–251 (1923).

C. W. Mason, “Structural colors in insects,” J. Phys. Chem. 30, 383–395 (1926).
[CrossRef]

J. Phys. Soc. Jpn. (1)

M. Kambe, D. Zhu, and S. Kinoshita, “Origin of retroreflection from a wing of the Morpho butterfly,” J. Phys. Soc. Jpn. 80, 054801 (2011).
[CrossRef]

J. R. Soc. Interface (1)

L. Plattner, “Optical properties of the scales of Morpho rhetenor butterflies: theoretical and experimental investigation of the back-scattering of light in the visible spectrum,” J. R. Soc. Interface 1, 49–59 (2004).
[CrossRef]

J. Vac. Sci. Technol. B (1)

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, and S. Matsui, “Optical measurement and fabrication from a Morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition,” J. Vac. Sci. Technol. B 23, 570–574 (2005).
[CrossRef]

Nano Lett. (1)

J. Huang, X. Wang, and Z. L. Wang, “Controlled replication of butterfly wings for achieving tunable photonic properties,” Nano Lett. 6, 2325–2331 (2006).
[CrossRef]

Nat. Photonics (2)

R. A. Potyrailo, H. T. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1, 123–128 (2007).
[CrossRef]

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics 6, 195–200 (2012).
[CrossRef]

Nature (1)

P. Vukusic and J. R. Samble, “Photonic structures in biology,” Nature 424, 852–855 (2003).
[CrossRef]

Opt. Mater. (1)

D. E. Azofeifa, H. J. Arguedas, and W. E. Vargars, “Optical properties of chitin and chitosan biopolymers with application to structural color analysis,” Opt. Mater. 35, 175–183 (2012).
[CrossRef]

Phys. Rev. E (1)

D. Zhu, S. Kinoshita, D. Cai, and J. B. Cole, “Investigation of structural colors in Morpho butterflies using the nonstandard-finite-difference time-domain method: effects of alternately stacked shelves and ridge density,” Phys. Rev. E 80, 051924 (2009).
[CrossRef]

Proc. R. Soc. B (3)

S. Yoshioka and S. Kinoshita, “Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly,” Proc. R. Soc. B 271, 581–587 (2004).
[CrossRef]

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. R. Soc. B 269, 1417–1421 (2002).
[CrossRef]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. B 266, 1403–1411 (1999).
[CrossRef]

Proc. SPIE (1)

A. Saito, S. Yoshioka, and S. Kinoshita, “Reproduction of the Morpho butterfly’s blue: arbitration of contradicting factors,” Proc. SPIE 5526, 188–194 (2004).
[CrossRef]

Other (2)

G. Sharma, Digital Color Imaging Handbook (CRC, 2003), Chap. 1.

J. P. Vigneron and P. Simonis, Advances in Insect Physiology (Academic, 2010), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) SEM images of Morpho-inspired film in cross-sectional view. The dark bands are TiO2 layers and the light bands are the SiO2 layers. SiO2 microspheres and the Cr absorption layers can be seen as well. Note the random wiggling of the layers that reflects the diameter variation of the underlying silica microspheres. (b) The same film seen in top view. The tile-like shape reflects the diameters of the underlying silica microspheres. (c) Lamella-structured ridges in dorsal scale of actual Morpho rhetenor butterfly in cross-sectional view. (d) Dorsal scale in top view. Scale bars in (c) and (d) are 1 μm.

Fig. 2.
Fig. 2.

(a) Real part and (b) imaginary part of refractive indices of materials used in TMM calculation. Absorption by Si3N4 and SiO2 is taken to be zero at all wavelength ranges. The values for chitin were taken from [16]. Note that chitin has nonzero absorption across the entire visible range.

Fig. 3.
Fig. 3.

Reflectance spectra of (a) blue, (b) green, and (c) red Morpho-inspired thin films, measured by DMS 505 under ambient lighting conditions, and reflectance spectra of corresponding flat, multilayer thin films, measured by a spectrometer under normal illumination. The inset shows the optical images of the films. In all cases, the one on the left is the flat multilayer thin film, and the one on the right is the Morpho-inspired thin film. Note that the measured reflectance from flat multilayer thin films exceeds 100% at some wavelengths. This is an artifact of the normalization process, and should be taken to indicate a very high reflectance of near 100%. (d) The colors corresponding to the measured and reflectance spectra, shown as coordinates on the 1931 CIE diagram. In inset, color space including measured data of actual Morpho butterfly shown in (f) is magnified. Icons are overlapped because two colors are too close. (e) Comparison of the measured and TMM-calculated reflectance spectra of a flat multilayer thin film. The inset indicates corresponding colors to the reflectance spectra. (f) Reflectance spectra of actual Morpho rhetenor butterfly measured by DMS 505, and reflectance spectra of chitin/air multilayer. The thickness of chitin/air multilayer is obtained and averaged from Fig. 1(c).

Fig. 4.
Fig. 4.

Range of colors possible from (a) SiO2/Si, (b) TiO2/SiO2, (c) TiO2/Si3N4, (d) Si3N4/SiO2, and (e) chitin/air multilayers, as predicted by TMM calculations. The largest possible color gamut from each multilayer combination is indicated by the triangle. (f)–(j) The calculated reflectance spectra from the selected blue, green, and red points that provide the largest color gamut. The layer thicknesses are shown in Table 1.

Fig. 5.
Fig. 5.

TMM calculated results of simulating errors of 5 nm in the layer thickness on the colors of the multilayers. White point indicates the optimal colors from Fig. 4, and black area is made of densely overlapped, 59 thousand points, resulting from 5 nm variation in each layer thicknesses. (a) Chitin/air, (b) TiO2/SiO2, and (c) Si3N4/SiO2 results. The insets show the colors of the three optimum points in the upper row, and the colors of points farthest away from the optimum points in the bottom row. (d) The result of simulating errors of 5 nm in the layer thickness for a Morpho rhetenor butterfly. White point is the color of real Morpho rhetenor butterfly, and red points show the measured color shift of Morpho rhetenor upon changing viewing angle under ambient light condition.

Tables (2)

Tables Icon

Table 1. Layer Thicknesses of the Red, Green, and Blue Points for Largest Color Gamuta

Tables Icon

Table 2. Calculated ΔE in Lab System between the Optimum Points and Farthest Points of Fig. 5

Metrics