Abstract

A stochastic theory of nonstationary light describing the random emission of elementary pulses is presented. The emission is governed by a nonhomogeneous Poisson point process determined by a time-varying emission rate. The model describes, in the appropriate limits, stationary, cyclostationary, locally stationary, and pulsed radiation, and reduces to a Gaussian theory in the limit of dense emission rate. The first- and second-order coherence theories are solved after the computation of second- and fourth-order correlation functions by use of the characteristic function. The ergodicity of second-order correlations under various types of detectors is explored and a number of observables, including optical spectrum, amplitude, and intensity correlations, are analyzed.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Role of primary excitation statistics in the generation of antibunched and sub-Poisson light

M. C. Teich, B. E. A. Saleh, and J. Peřina
J. Opt. Soc. Am. B 1(3) 366-389 (1984)

Elementary field representation of supercontinuum

Minna Korhonen, Ari T. Friberg, Jari Turunen, and Goëry Genty
J. Opt. Soc. Am. B 30(1) 21-26 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (68)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription