Abstract

Refraction estimates from eccentric infrared (IR) photorefraction depend critically on the calibration of luminance slopes in the pupil. While the intersubject variability of this calibration has been estimated, there is no systematic evaluation of its intrasubject variability. This study determined the within subject inter- and intra-session repeatability of this calibration factor and the optimum range of lenses needed to derive this value. Relative calibrations for the MCS PowerRefractor and a customized photorefractor were estimated twice within one session or across two sessions by placing trial lenses before one eye covered with an IR transmitting filter. The data were subsequently resampled with various lens combinations to determine the impact of lens power range on the calibration estimates. Mean (±1.96 SD) calibration slopes were 0.99±0.39 for North Americans with the MCS PowerRefractor (relative to its built-in value) and 0.65±0.25Ls/D and 0.40±0.09Ls/D for Indians and North Americans with the custom photorefractor, respectively. The ±95% limits of agreement of intrasubject variability ranged from ±0.39 to ±0.56 for the MCS PowerRefractor and ±0.03Ls/D to ±0.04Ls/D for the custom photorefractor. The mean differences within and across sessions were not significantly different from zero (p>0.38 for all). The combined intersubject and intrasubject variability of calibration is therefore about ±40% of the mean value, implying that significant errors in individual refraction/accommodation estimates may arise if a group-average calibration is used. Protocols containing both plus and minus lenses had calibration slopes closest to the gold-standard protocol, suggesting that they may provide the best estimate of the calibration factor compared to those containing either plus or minus lenses.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. C. Howland, “Photorefraction of eyes: history and future prospects,” Optom. Vis. Sci. 86, 603–606 (2009).
    [CrossRef]
  2. H. A. Anderson, R. E. Manny, A. Glasser, and K. K. Stuebing, “Static and dynamic measurements of accommodation in individuals with Down syndrome,” Invest. Ophthalmol. Visual Sci. 52, 310–317 (2011).
    [CrossRef]
  3. S. R. Bharadwaj and T. R. Candy, “Cues for the control of ocular accommodation and vergence during postnatal human development,” J. Vis. 8(16):14, 1–16 (2008).
    [CrossRef]
  4. J. E. Turner, A. M. Horwood, S. M. Houston, and P. M. Riddell, “Development of the response AC/A ratio over the first year of life,” Vis. Res. 42, 2521–2532 (2002).
    [CrossRef]
  5. H. A. Anderson, A. Glasser, R. E. Manny, and K. K. Stuebing, “Age-related changes in accommodative dynamics from preschool to adulthood,” Invest. Ophthalmol. Visual Sci. 51, 614–622 (2010).
    [CrossRef]
  6. E. Harb, F. Thorn, and D. Troilo, “Characteristics of accommodative behavior during sustained reading in emmetropes and myopes,” Vis. Res. 46, 2581–2592 (2006).
    [CrossRef]
  7. R. Suryakumar, J. P. Meyers, E. L. Irving, and W. R. Bobier, “Application of video-based technology for the simultaneous measurement of accommodation and vergence,” Vis. Res. 47, 260–268 (2007).
    [CrossRef]
  8. M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vis. Sci. 77, 537–548 (2000).
    [CrossRef]
  9. W. R. Bobier and O. J. Braddick, “Eccentric photorefraction: optical analysis and empirical measures,” Am. J. Optom. Physiol. Opt. 62, 614–620 (1985).
  10. H. C. Howland, “Optics of photoretinoscopy: results from ray tracing,” Am. J. Optom. Physiol. Opt. 62, 621–625 (1985).
  11. A. Roorda, M. C. Campbell, and W. R. Bobier, “Slope-based eccentric photorefraction: theoretical analysis of different light source configurations and effects of ocular aberrations,” J. Opt. Soc. Am. A 14, 2547–2556 (1997).
    [CrossRef]
  12. S. R. Bharadwaj, J. Wang, and T. R. Candy, “Pupil responses to near visual demand during human visual development,” J. Vis. 11(4):6, 1–14 (2011).
    [CrossRef]
  13. A. Roorda, M. C. Campbell, and W. R. Bobier, “Geometrical theory to predict eccentric photorefraction intensity profiles in the human eye,” J. Opt. Soc. Am. A 12, 1647–1656 (1995).
    [CrossRef]
  14. F. Schaeffel, H. Wilhelm, and E. Zrenner, “Inter-individual variability in the dynamics of natural accommodation in humans: relation to age and refractive errors,” J. Physiol. 461, 301–320 (1993).
  15. F. C. Delori, and K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061–1077 (1989).
    [CrossRef]
  16. A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vis. Res. 36, 191–205 (1996).
    [CrossRef]
  17. M. Glickstein, and M. Millodot, “Retinoscopy and eye size,” Science 168, 605–606 (1970).
    [CrossRef]
  18. P. J. Blade and T. R. Candy, “Validation of the PowerRefractor for measuring human infant refraction,” Optom. Vis. Sci. 83, 346–353 (2006).
    [CrossRef]
  19. A. Seidemann, and F. Schaeffel, “An evaluation of the lag of accommodation using photorefraction,” Vis. Res. 43, 419–430 (2003).
    [CrossRef]
  20. G. M. Gabriel and D. O. Mutti, “Evaluation of infant accommodation using retinoscopy and photoretinoscopy,” Optom. Vis. Sci. 86, 208–215 (2009).
    [CrossRef]
  21. E. A. Ball, “A study of consensual accommodation,” Am. J. Optom. Arch. Am. Acad. Optom. 29, 561–574 (1952).
  22. P. E. Shrout and J. L. Fleiss, “Intraclass correlations: uses in assessing rater reliability,” Psychol. Bull. 86, 420–428(1979).
    [CrossRef]
  23. N. L. Himebaugh, A. R. Wright, A. Bradley, C. G. Begley, and L. N. Thibos, “Use of retroillumination to visualize optical aberrations caused by tear film break-up,” Optom. Vis. Sci. 80, 69–78 (2003).
    [CrossRef]
  24. H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4):3, 272–280 (2004).
    [CrossRef]
  25. M. J. Hirsch, “The variability of retinoscopic measurements when applied to large groups of children under visual screening conditions,” Am. J. Optom. Arch. Am. Acad. Optom. 33, 410–416 (1956).

2011 (2)

H. A. Anderson, R. E. Manny, A. Glasser, and K. K. Stuebing, “Static and dynamic measurements of accommodation in individuals with Down syndrome,” Invest. Ophthalmol. Visual Sci. 52, 310–317 (2011).
[CrossRef]

S. R. Bharadwaj, J. Wang, and T. R. Candy, “Pupil responses to near visual demand during human visual development,” J. Vis. 11(4):6, 1–14 (2011).
[CrossRef]

2010 (1)

H. A. Anderson, A. Glasser, R. E. Manny, and K. K. Stuebing, “Age-related changes in accommodative dynamics from preschool to adulthood,” Invest. Ophthalmol. Visual Sci. 51, 614–622 (2010).
[CrossRef]

2009 (2)

H. C. Howland, “Photorefraction of eyes: history and future prospects,” Optom. Vis. Sci. 86, 603–606 (2009).
[CrossRef]

G. M. Gabriel and D. O. Mutti, “Evaluation of infant accommodation using retinoscopy and photoretinoscopy,” Optom. Vis. Sci. 86, 208–215 (2009).
[CrossRef]

2008 (1)

S. R. Bharadwaj and T. R. Candy, “Cues for the control of ocular accommodation and vergence during postnatal human development,” J. Vis. 8(16):14, 1–16 (2008).
[CrossRef]

2007 (1)

R. Suryakumar, J. P. Meyers, E. L. Irving, and W. R. Bobier, “Application of video-based technology for the simultaneous measurement of accommodation and vergence,” Vis. Res. 47, 260–268 (2007).
[CrossRef]

2006 (2)

E. Harb, F. Thorn, and D. Troilo, “Characteristics of accommodative behavior during sustained reading in emmetropes and myopes,” Vis. Res. 46, 2581–2592 (2006).
[CrossRef]

P. J. Blade and T. R. Candy, “Validation of the PowerRefractor for measuring human infant refraction,” Optom. Vis. Sci. 83, 346–353 (2006).
[CrossRef]

2004 (1)

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4):3, 272–280 (2004).
[CrossRef]

2003 (2)

N. L. Himebaugh, A. R. Wright, A. Bradley, C. G. Begley, and L. N. Thibos, “Use of retroillumination to visualize optical aberrations caused by tear film break-up,” Optom. Vis. Sci. 80, 69–78 (2003).
[CrossRef]

A. Seidemann, and F. Schaeffel, “An evaluation of the lag of accommodation using photorefraction,” Vis. Res. 43, 419–430 (2003).
[CrossRef]

2002 (1)

J. E. Turner, A. M. Horwood, S. M. Houston, and P. M. Riddell, “Development of the response AC/A ratio over the first year of life,” Vis. Res. 42, 2521–2532 (2002).
[CrossRef]

2000 (1)

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vis. Sci. 77, 537–548 (2000).
[CrossRef]

1997 (1)

1996 (1)

A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vis. Res. 36, 191–205 (1996).
[CrossRef]

1995 (1)

1993 (1)

F. Schaeffel, H. Wilhelm, and E. Zrenner, “Inter-individual variability in the dynamics of natural accommodation in humans: relation to age and refractive errors,” J. Physiol. 461, 301–320 (1993).

1989 (1)

1985 (2)

W. R. Bobier and O. J. Braddick, “Eccentric photorefraction: optical analysis and empirical measures,” Am. J. Optom. Physiol. Opt. 62, 614–620 (1985).

H. C. Howland, “Optics of photoretinoscopy: results from ray tracing,” Am. J. Optom. Physiol. Opt. 62, 621–625 (1985).

1979 (1)

P. E. Shrout and J. L. Fleiss, “Intraclass correlations: uses in assessing rater reliability,” Psychol. Bull. 86, 420–428(1979).
[CrossRef]

1970 (1)

M. Glickstein, and M. Millodot, “Retinoscopy and eye size,” Science 168, 605–606 (1970).
[CrossRef]

1956 (1)

M. J. Hirsch, “The variability of retinoscopic measurements when applied to large groups of children under visual screening conditions,” Am. J. Optom. Arch. Am. Acad. Optom. 33, 410–416 (1956).

1952 (1)

E. A. Ball, “A study of consensual accommodation,” Am. J. Optom. Arch. Am. Acad. Optom. 29, 561–574 (1952).

Anderson, H. A.

H. A. Anderson, R. E. Manny, A. Glasser, and K. K. Stuebing, “Static and dynamic measurements of accommodation in individuals with Down syndrome,” Invest. Ophthalmol. Visual Sci. 52, 310–317 (2011).
[CrossRef]

H. A. Anderson, A. Glasser, R. E. Manny, and K. K. Stuebing, “Age-related changes in accommodative dynamics from preschool to adulthood,” Invest. Ophthalmol. Visual Sci. 51, 614–622 (2010).
[CrossRef]

Applegate, R. A.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4):3, 272–280 (2004).
[CrossRef]

Ball, E. A.

E. A. Ball, “A study of consensual accommodation,” Am. J. Optom. Arch. Am. Acad. Optom. 29, 561–574 (1952).

Barnett, J. K.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4):3, 272–280 (2004).
[CrossRef]

Begley, C. G.

N. L. Himebaugh, A. R. Wright, A. Bradley, C. G. Begley, and L. N. Thibos, “Use of retroillumination to visualize optical aberrations caused by tear film break-up,” Optom. Vis. Sci. 80, 69–78 (2003).
[CrossRef]

Bharadwaj, S. R.

S. R. Bharadwaj, J. Wang, and T. R. Candy, “Pupil responses to near visual demand during human visual development,” J. Vis. 11(4):6, 1–14 (2011).
[CrossRef]

S. R. Bharadwaj and T. R. Candy, “Cues for the control of ocular accommodation and vergence during postnatal human development,” J. Vis. 8(16):14, 1–16 (2008).
[CrossRef]

Blade, P. J.

P. J. Blade and T. R. Candy, “Validation of the PowerRefractor for measuring human infant refraction,” Optom. Vis. Sci. 83, 346–353 (2006).
[CrossRef]

Bobier, W. R.

R. Suryakumar, J. P. Meyers, E. L. Irving, and W. R. Bobier, “Application of video-based technology for the simultaneous measurement of accommodation and vergence,” Vis. Res. 47, 260–268 (2007).
[CrossRef]

A. Roorda, M. C. Campbell, and W. R. Bobier, “Slope-based eccentric photorefraction: theoretical analysis of different light source configurations and effects of ocular aberrations,” J. Opt. Soc. Am. A 14, 2547–2556 (1997).
[CrossRef]

A. Roorda, M. C. Campbell, and W. R. Bobier, “Geometrical theory to predict eccentric photorefraction intensity profiles in the human eye,” J. Opt. Soc. Am. A 12, 1647–1656 (1995).
[CrossRef]

W. R. Bobier and O. J. Braddick, “Eccentric photorefraction: optical analysis and empirical measures,” Am. J. Optom. Physiol. Opt. 62, 614–620 (1985).

Braddick, O. J.

W. R. Bobier and O. J. Braddick, “Eccentric photorefraction: optical analysis and empirical measures,” Am. J. Optom. Physiol. Opt. 62, 614–620 (1985).

Bradley, A.

N. L. Himebaugh, A. R. Wright, A. Bradley, C. G. Begley, and L. N. Thibos, “Use of retroillumination to visualize optical aberrations caused by tear film break-up,” Optom. Vis. Sci. 80, 69–78 (2003).
[CrossRef]

Burns, S. A.

A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vis. Res. 36, 191–205 (1996).
[CrossRef]

Campbell, M. C.

Candy, T. R.

S. R. Bharadwaj, J. Wang, and T. R. Candy, “Pupil responses to near visual demand during human visual development,” J. Vis. 11(4):6, 1–14 (2011).
[CrossRef]

S. R. Bharadwaj and T. R. Candy, “Cues for the control of ocular accommodation and vergence during postnatal human development,” J. Vis. 8(16):14, 1–16 (2008).
[CrossRef]

P. J. Blade and T. R. Candy, “Validation of the PowerRefractor for measuring human infant refraction,” Optom. Vis. Sci. 83, 346–353 (2006).
[CrossRef]

Cheng, H.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4):3, 272–280 (2004).
[CrossRef]

Choi, M.

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vis. Sci. 77, 537–548 (2000).
[CrossRef]

Delori, F. C.

A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vis. Res. 36, 191–205 (1996).
[CrossRef]

F. C. Delori, and K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061–1077 (1989).
[CrossRef]

Elsner, A. E.

A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vis. Res. 36, 191–205 (1996).
[CrossRef]

Fleiss, J. L.

P. E. Shrout and J. L. Fleiss, “Intraclass correlations: uses in assessing rater reliability,” Psychol. Bull. 86, 420–428(1979).
[CrossRef]

Gabriel, G. M.

G. M. Gabriel and D. O. Mutti, “Evaluation of infant accommodation using retinoscopy and photoretinoscopy,” Optom. Vis. Sci. 86, 208–215 (2009).
[CrossRef]

Glasser, A.

H. A. Anderson, R. E. Manny, A. Glasser, and K. K. Stuebing, “Static and dynamic measurements of accommodation in individuals with Down syndrome,” Invest. Ophthalmol. Visual Sci. 52, 310–317 (2011).
[CrossRef]

H. A. Anderson, A. Glasser, R. E. Manny, and K. K. Stuebing, “Age-related changes in accommodative dynamics from preschool to adulthood,” Invest. Ophthalmol. Visual Sci. 51, 614–622 (2010).
[CrossRef]

Glickstein, M.

M. Glickstein, and M. Millodot, “Retinoscopy and eye size,” Science 168, 605–606 (1970).
[CrossRef]

Harb, E.

E. Harb, F. Thorn, and D. Troilo, “Characteristics of accommodative behavior during sustained reading in emmetropes and myopes,” Vis. Res. 46, 2581–2592 (2006).
[CrossRef]

Himebaugh, N. L.

N. L. Himebaugh, A. R. Wright, A. Bradley, C. G. Begley, and L. N. Thibos, “Use of retroillumination to visualize optical aberrations caused by tear film break-up,” Optom. Vis. Sci. 80, 69–78 (2003).
[CrossRef]

Hirsch, M. J.

M. J. Hirsch, “The variability of retinoscopic measurements when applied to large groups of children under visual screening conditions,” Am. J. Optom. Arch. Am. Acad. Optom. 33, 410–416 (1956).

Horwood, A. M.

J. E. Turner, A. M. Horwood, S. M. Houston, and P. M. Riddell, “Development of the response AC/A ratio over the first year of life,” Vis. Res. 42, 2521–2532 (2002).
[CrossRef]

Houston, S. M.

J. E. Turner, A. M. Horwood, S. M. Houston, and P. M. Riddell, “Development of the response AC/A ratio over the first year of life,” Vis. Res. 42, 2521–2532 (2002).
[CrossRef]

Howland, H. C.

H. C. Howland, “Photorefraction of eyes: history and future prospects,” Optom. Vis. Sci. 86, 603–606 (2009).
[CrossRef]

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vis. Sci. 77, 537–548 (2000).
[CrossRef]

H. C. Howland, “Optics of photoretinoscopy: results from ray tracing,” Am. J. Optom. Physiol. Opt. 62, 621–625 (1985).

Irving, E. L.

R. Suryakumar, J. P. Meyers, E. L. Irving, and W. R. Bobier, “Application of video-based technology for the simultaneous measurement of accommodation and vergence,” Vis. Res. 47, 260–268 (2007).
[CrossRef]

Kasthurirangan, S.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4):3, 272–280 (2004).
[CrossRef]

Manny, R. E.

H. A. Anderson, R. E. Manny, A. Glasser, and K. K. Stuebing, “Static and dynamic measurements of accommodation in individuals with Down syndrome,” Invest. Ophthalmol. Visual Sci. 52, 310–317 (2011).
[CrossRef]

H. A. Anderson, A. Glasser, R. E. Manny, and K. K. Stuebing, “Age-related changes in accommodative dynamics from preschool to adulthood,” Invest. Ophthalmol. Visual Sci. 51, 614–622 (2010).
[CrossRef]

Marsack, J. D.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4):3, 272–280 (2004).
[CrossRef]

Meyers, J. P.

R. Suryakumar, J. P. Meyers, E. L. Irving, and W. R. Bobier, “Application of video-based technology for the simultaneous measurement of accommodation and vergence,” Vis. Res. 47, 260–268 (2007).
[CrossRef]

Millodot, M.

M. Glickstein, and M. Millodot, “Retinoscopy and eye size,” Science 168, 605–606 (1970).
[CrossRef]

Mutti, D. O.

G. M. Gabriel and D. O. Mutti, “Evaluation of infant accommodation using retinoscopy and photoretinoscopy,” Optom. Vis. Sci. 86, 208–215 (2009).
[CrossRef]

Pflibsen, K. P.

Riddell, P. M.

J. E. Turner, A. M. Horwood, S. M. Houston, and P. M. Riddell, “Development of the response AC/A ratio over the first year of life,” Vis. Res. 42, 2521–2532 (2002).
[CrossRef]

Roorda, A.

Schaeffel, F.

A. Seidemann, and F. Schaeffel, “An evaluation of the lag of accommodation using photorefraction,” Vis. Res. 43, 419–430 (2003).
[CrossRef]

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vis. Sci. 77, 537–548 (2000).
[CrossRef]

F. Schaeffel, H. Wilhelm, and E. Zrenner, “Inter-individual variability in the dynamics of natural accommodation in humans: relation to age and refractive errors,” J. Physiol. 461, 301–320 (1993).

Seidemann, A.

A. Seidemann, and F. Schaeffel, “An evaluation of the lag of accommodation using photorefraction,” Vis. Res. 43, 419–430 (2003).
[CrossRef]

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vis. Sci. 77, 537–548 (2000).
[CrossRef]

Shrout, P. E.

P. E. Shrout and J. L. Fleiss, “Intraclass correlations: uses in assessing rater reliability,” Psychol. Bull. 86, 420–428(1979).
[CrossRef]

Stuebing, K. K.

H. A. Anderson, R. E. Manny, A. Glasser, and K. K. Stuebing, “Static and dynamic measurements of accommodation in individuals with Down syndrome,” Invest. Ophthalmol. Visual Sci. 52, 310–317 (2011).
[CrossRef]

H. A. Anderson, A. Glasser, R. E. Manny, and K. K. Stuebing, “Age-related changes in accommodative dynamics from preschool to adulthood,” Invest. Ophthalmol. Visual Sci. 51, 614–622 (2010).
[CrossRef]

Suryakumar, R.

R. Suryakumar, J. P. Meyers, E. L. Irving, and W. R. Bobier, “Application of video-based technology for the simultaneous measurement of accommodation and vergence,” Vis. Res. 47, 260–268 (2007).
[CrossRef]

Thibos, L. N.

N. L. Himebaugh, A. R. Wright, A. Bradley, C. G. Begley, and L. N. Thibos, “Use of retroillumination to visualize optical aberrations caused by tear film break-up,” Optom. Vis. Sci. 80, 69–78 (2003).
[CrossRef]

Thorn, F.

E. Harb, F. Thorn, and D. Troilo, “Characteristics of accommodative behavior during sustained reading in emmetropes and myopes,” Vis. Res. 46, 2581–2592 (2006).
[CrossRef]

Troilo, D.

E. Harb, F. Thorn, and D. Troilo, “Characteristics of accommodative behavior during sustained reading in emmetropes and myopes,” Vis. Res. 46, 2581–2592 (2006).
[CrossRef]

Turner, J. E.

J. E. Turner, A. M. Horwood, S. M. Houston, and P. M. Riddell, “Development of the response AC/A ratio over the first year of life,” Vis. Res. 42, 2521–2532 (2002).
[CrossRef]

Vilupuru, A. S.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4):3, 272–280 (2004).
[CrossRef]

Wang, J.

S. R. Bharadwaj, J. Wang, and T. R. Candy, “Pupil responses to near visual demand during human visual development,” J. Vis. 11(4):6, 1–14 (2011).
[CrossRef]

Weiss, S.

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vis. Sci. 77, 537–548 (2000).
[CrossRef]

Weiter, J. J.

A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vis. Res. 36, 191–205 (1996).
[CrossRef]

Wilhelm, B.

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vis. Sci. 77, 537–548 (2000).
[CrossRef]

Wilhelm, H.

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vis. Sci. 77, 537–548 (2000).
[CrossRef]

F. Schaeffel, H. Wilhelm, and E. Zrenner, “Inter-individual variability in the dynamics of natural accommodation in humans: relation to age and refractive errors,” J. Physiol. 461, 301–320 (1993).

Wright, A. R.

N. L. Himebaugh, A. R. Wright, A. Bradley, C. G. Begley, and L. N. Thibos, “Use of retroillumination to visualize optical aberrations caused by tear film break-up,” Optom. Vis. Sci. 80, 69–78 (2003).
[CrossRef]

Zrenner, E.

F. Schaeffel, H. Wilhelm, and E. Zrenner, “Inter-individual variability in the dynamics of natural accommodation in humans: relation to age and refractive errors,” J. Physiol. 461, 301–320 (1993).

Am. J. Optom. Arch. Am. Acad. Optom. (2)

E. A. Ball, “A study of consensual accommodation,” Am. J. Optom. Arch. Am. Acad. Optom. 29, 561–574 (1952).

M. J. Hirsch, “The variability of retinoscopic measurements when applied to large groups of children under visual screening conditions,” Am. J. Optom. Arch. Am. Acad. Optom. 33, 410–416 (1956).

Am. J. Optom. Physiol. Opt. (2)

W. R. Bobier and O. J. Braddick, “Eccentric photorefraction: optical analysis and empirical measures,” Am. J. Optom. Physiol. Opt. 62, 614–620 (1985).

H. C. Howland, “Optics of photoretinoscopy: results from ray tracing,” Am. J. Optom. Physiol. Opt. 62, 621–625 (1985).

Appl. Opt. (1)

Invest. Ophthalmol. Visual Sci. (2)

H. A. Anderson, R. E. Manny, A. Glasser, and K. K. Stuebing, “Static and dynamic measurements of accommodation in individuals with Down syndrome,” Invest. Ophthalmol. Visual Sci. 52, 310–317 (2011).
[CrossRef]

H. A. Anderson, A. Glasser, R. E. Manny, and K. K. Stuebing, “Age-related changes in accommodative dynamics from preschool to adulthood,” Invest. Ophthalmol. Visual Sci. 51, 614–622 (2010).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Physiol. (1)

F. Schaeffel, H. Wilhelm, and E. Zrenner, “Inter-individual variability in the dynamics of natural accommodation in humans: relation to age and refractive errors,” J. Physiol. 461, 301–320 (1993).

J. Vis. (3)

S. R. Bharadwaj, J. Wang, and T. R. Candy, “Pupil responses to near visual demand during human visual development,” J. Vis. 11(4):6, 1–14 (2011).
[CrossRef]

S. R. Bharadwaj and T. R. Candy, “Cues for the control of ocular accommodation and vergence during postnatal human development,” J. Vis. 8(16):14, 1–16 (2008).
[CrossRef]

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4):3, 272–280 (2004).
[CrossRef]

Optom. Vis. Sci. (5)

N. L. Himebaugh, A. R. Wright, A. Bradley, C. G. Begley, and L. N. Thibos, “Use of retroillumination to visualize optical aberrations caused by tear film break-up,” Optom. Vis. Sci. 80, 69–78 (2003).
[CrossRef]

G. M. Gabriel and D. O. Mutti, “Evaluation of infant accommodation using retinoscopy and photoretinoscopy,” Optom. Vis. Sci. 86, 208–215 (2009).
[CrossRef]

H. C. Howland, “Photorefraction of eyes: history and future prospects,” Optom. Vis. Sci. 86, 603–606 (2009).
[CrossRef]

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vis. Sci. 77, 537–548 (2000).
[CrossRef]

P. J. Blade and T. R. Candy, “Validation of the PowerRefractor for measuring human infant refraction,” Optom. Vis. Sci. 83, 346–353 (2006).
[CrossRef]

Psychol. Bull. (1)

P. E. Shrout and J. L. Fleiss, “Intraclass correlations: uses in assessing rater reliability,” Psychol. Bull. 86, 420–428(1979).
[CrossRef]

Science (1)

M. Glickstein, and M. Millodot, “Retinoscopy and eye size,” Science 168, 605–606 (1970).
[CrossRef]

Vis. Res. (5)

A. Seidemann, and F. Schaeffel, “An evaluation of the lag of accommodation using photorefraction,” Vis. Res. 43, 419–430 (2003).
[CrossRef]

A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vis. Res. 36, 191–205 (1996).
[CrossRef]

J. E. Turner, A. M. Horwood, S. M. Houston, and P. M. Riddell, “Development of the response AC/A ratio over the first year of life,” Vis. Res. 42, 2521–2532 (2002).
[CrossRef]

E. Harb, F. Thorn, and D. Troilo, “Characteristics of accommodative behavior during sustained reading in emmetropes and myopes,” Vis. Res. 46, 2581–2592 (2006).
[CrossRef]

R. Suryakumar, J. P. Meyers, E. L. Irving, and W. R. Bobier, “Application of video-based technology for the simultaneous measurement of accommodation and vergence,” Vis. Res. 47, 260–268 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Raw datasets collected from one representative subject using the MCS PowerRefractor (panel a ) and for another subject using the custom photorefractor (panel b ). Data collected from the right and left eyes are plotted as a function of the lens placed over the right eye. Data collected from two sessions are shown to demonstrate repeatability of the measurements.

Fig. 2.
Fig. 2.

Difference in calibration factors obtained using the MCS PowerRefractor between the first and second sessions (intrasession repeatability) and the third and fourth sessions (intersession repeatability) plotted as a function of the mean calibration factor. Solid and dashed lines indicate 95% LOA.

Fig. 3.
Fig. 3.

Frequency histograms of the calibration factor obtained using the custom photorefractor for all (a) Indian and (b) North American subjects.

Fig. 4.
Fig. 4.

(a) Intrasession and (b) intersession repeatability of the calibration factor for Indians, and (c) the intersession repeatability of the calibration factor for North Americans obtained using the custom photorefractors. All other details are the same as Fig. 2.

Fig. 5.
Fig. 5.

Difference in defocus calibration factor between the gold standard and a resampling protocol plotted for each subject. (a)–(f) Data obtained using the MCS PowerRefractor, (f)–(j) data obtained from Indians, and (k)–(o) data obtained from North Americans, both using the custom photorefractor. Subjects are arranged in ascending order of their calibration slope obtained in the gold standard protocol. Positive numbers on the ordinate indicate that the calibration slope obtained from the resampled protocol was larger than that in the gold standard protocol.

Tables (2)

Tables Icon

Table 1. Design Specifications, Experimental Details and the Data Collection Protocols Followed with the MCS PowerRefractor at IUSO and with the Custom Photorefractors at IUSO and LVPEI

Tables Icon

Table 2. Mean ± 95 % LOA and Minimum to Maximum Range of the Calibration Slopes Obtained in the Gold Standard and in Each of the Five Resampling Protocols for the MCS PowerRefractor and for Indians and North Americans Using the Custom Photorefractora

Metrics