Abstract

The radiation force of highly focused partially coherent and radially polarized vortex beams on a Rayleigh particle is theoretically studied. The dependence of the radiation force on coherence lengths, beam widths, topological charges of incident vortex beams, and numerical apertures of an objective is analyzed. The transverse scattering force is also investigated. It is found that the azimuthal scattering force can produce torques with respect to the optical axis if the optical tweezers are constructed by the vortex beams carrying orbit angular momentum. The direction of the torque depends on the sign of the topological charge of vortex beams, and the magnitude of the torque increases with the increase of the value of the topological charge. A Rayleigh particle can revolve around the optical axis driven by the vortex beams.

© 2013 Optical Society of America

Full Article  |  PDF Article
Related Articles
Holographic optical trapping

David G. Grier and Yael Roichman
Appl. Opt. 45(5) 880-887 (2006)

Theory of holographic optical trapping

Bo Sun, Yohai Roichman, and David G. Grier
Opt. Express 16(20) 15765-15776 (2008)

Trapping two types of particles using a focused partially coherent elegant Laguerre–Gaussian beam

Chengliang Zhao and Yangjian Cai
Opt. Lett. 36(12) 2251-2253 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (27)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription