Abstract

Rapid and fine control over the phase of light is demonstrated by transferring digitally generated phase jumps from radio-frequency electrical signals onto light by means of acousto-optic interaction, and the underlying mechanism elucidated. This technique was used to engineer optical phase noise by tailoring the statistics of phase jumps in the electrical signal, which was then quantified using visibility measurements of the interference fringes. Such controlled dephasing finds applications in modern experiments involving the spread or diffusion of light in optical networks. In addition, the zero-delay intensity-intensity correlation [G2(0)] values of light emerging from different ports of a well-stabilized Mach–Zehnder interferometer in the presence of engineered partial phase noise are calculated, and it is shown analytically how the dark port of the interferometer nontrivially becomes a weak source of highly correlated or bunched photons.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-Guzik, “Environment-assisted quantum walks in photosynthetic energy transfer,” J. Chem. Phys. 129, 174106 (2008).
    [CrossRef]
  2. M. B. Plenio and S. F. Huelga, “Dephasing-assisted transport: quantum networks and biomolecules,” New J. Phys. 10, 113019 (2008).
    [CrossRef]
  3. F. Caruso, A. W. Chin, A. Datta, S. F. Huelga, and M. B. Plenio, “Highly efficient energy excitation transfer in light-harvesting complexes: the fundamental role of noise-assisted transport,” J. Chem. Phys. 131, 105106 (2009).
    [CrossRef]
  4. F. Caruso, S. F. Huelga, and M. B. Plenio, “Noise-enhanced classical and quantum capacities in communication networks,” Phys. Rev. Lett. 105, 190501 (2010).
    [CrossRef]
  5. V. Kendon, “Decoherence in quantum walks: a review,” Math. Struct. Comp. Sci. 17, 1169–1220 (2007).
    [CrossRef]
  6. V. Kendon and B. Tregenna, “Decoherence can be useful in quantum walks,” Phys. Rev. A 67, 042315 (2003).
    [CrossRef]
  7. M. A. Broome, A. Fedrizzi, B. P. Lanyon, I. Kassal, A. Aspuru-Guzik, and A. G. White, “Discrete single-photon quantum walks with tunable decoherence,” Phys. Rev. Lett. 104, 153602 (2010).
    [CrossRef]
  8. A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gàbris, I. Jex, and C. Silberhorn, “Decoherence and disorder in quantum walks: from ballistic spread to localization,” Phys. Rev. Lett. 106, 180403 (2011).
    [CrossRef]
  9. D. Pandey, N. Satapathy, M. S. Meena, and H. Ramachandran, “Quantum walk of light in frequency space and its controlled dephasing,” Phys. Rev. A 84, 042322 (2011).
    [CrossRef]
  10. F. Caruso, N. Spagnolo, C. Vitelli, F. Sciarrino, and M. B. Plenio, “Simulation of noise-assisted transport via optical cavity networks,” Phys. Rev. A 83, 013811 (2011).
    [CrossRef]
  11. E. Li, J. Yao, D. Yu, J. Xi, and J. Chicharo, “Optical phase shifting with acousto-optic devices,” Opt. Lett. 30, 189–191 (2005).
    [CrossRef]
  12. M. Sadgrove, and K. Nakagawa, “Fast, externally triggered, digital phase controller for an optical lattice,” Rev. Sci. Instrum. 82, 113104 (2011).
    [CrossRef]
  13. M. Sadgrove, S. Kumar, and K. Nakagawa, “Enhanced factoring with a Bose-Einstein condensate,” Phys. Rev. Lett. 101, 180502 (2008).
    [CrossRef]
  14. M. Sadgrove, S. Kumar, and K. Nakagawa, “Noise-induced energy resonance for atoms in a periodic potential,” Phys. Rev. Lett. 103, 010403 (2009).
    [CrossRef]
  15. A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
    [CrossRef]
  16. D. Zhang, Y.-H. Zhai, L.-A. Wu, and X.-H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30, 2354–2356 (2005).
    [CrossRef]
  17. F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
    [CrossRef]
  18. A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
    [CrossRef]
  19. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, 2007) Chap. 19.
  20. This phase resolution pertains to rf. Direct measurement of phase shift of 0.01° on optical fringes requires the interferometer to be ultrastable.
  21. G. Baym, “The physics of Hanbury Brown–Twiss intensity interferometry: from stars to nuclear collisions,” Acta Phys. Polonica B 29, 1839–1884 (1998).
  22. N. Satapathy, D. Pandey, P. Mehta, S. Sinha, J. Samuel, and H. Ramachandran, “Classical light analogue of the non-local Aharonov-Bohm effect,” Europhys. Lett. 97, 50011 (2012).
    [CrossRef]
  23. M. B. Plenio and S. F. Huelga, “Entangled light from white noise,” Phys. Rev. Lett. 88, 197901 (2002).
    [CrossRef]
  24. A. Beige, S. Bose, D. Braun, S. F. Huelga, P. L. Knight, M. B. Plenio, and V. Vedral, “Entangling atoms and ions in dissipative environments,” J. Mod. Opt. 47, 2583–2598 (2000).
    [CrossRef]
  25. V. Parigi, A. Zavatta, M. Kim, and M. Bellini, “Probing quantum commutation rules by addition and subtraction of single photons to/from a light field,” Science 317, 1890–1893 (2007).
    [CrossRef]
  26. L.-H. Ou and L.-M. Kuang, “Ghost Imaging with third-order correlated thermal light,” J. Phys. B 40, 1833–1844 (2007).
    [CrossRef]
  27. Y. Bai and S. Han, “Ghost imaging with thermal light by third-order correlation,” Phys. Rev. A 76, 043828 (2007).
    [CrossRef]
  28. I. N. Agafonov, M. V. Chekhova, T. S. Iskhakov, and A. N. Penin, “High-visibility multiphoton interference of Hanbury Brown–Twiss type for classical light,” Phys. Rev. A 77, 053801 (2008).
    [CrossRef]
  29. D.-Z. Cao, J. Xiong, S.-H. Zhang, L.-F. Lin, L. Gao, and K. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008).
    [CrossRef]
  30. P. Hong, J. Liu, and G. Zhang, “Two-photon superbunching of thermal light via multiple two-photon path interference,” Phys. Rev. A 86, 013807 (2012).
    [CrossRef]
  31. D. Pandey, N. Satapathy, B. Suryabrahmam, J. Ivan, and H. Ramachandran, “Classical light sources with tunable temporal coherence and tailored photon number distributions,” arXiv preprint, arXiv:1210.1403 (2012).

2012 (2)

N. Satapathy, D. Pandey, P. Mehta, S. Sinha, J. Samuel, and H. Ramachandran, “Classical light analogue of the non-local Aharonov-Bohm effect,” Europhys. Lett. 97, 50011 (2012).
[CrossRef]

P. Hong, J. Liu, and G. Zhang, “Two-photon superbunching of thermal light via multiple two-photon path interference,” Phys. Rev. A 86, 013807 (2012).
[CrossRef]

2011 (4)

M. Sadgrove, and K. Nakagawa, “Fast, externally triggered, digital phase controller for an optical lattice,” Rev. Sci. Instrum. 82, 113104 (2011).
[CrossRef]

A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gàbris, I. Jex, and C. Silberhorn, “Decoherence and disorder in quantum walks: from ballistic spread to localization,” Phys. Rev. Lett. 106, 180403 (2011).
[CrossRef]

D. Pandey, N. Satapathy, M. S. Meena, and H. Ramachandran, “Quantum walk of light in frequency space and its controlled dephasing,” Phys. Rev. A 84, 042322 (2011).
[CrossRef]

F. Caruso, N. Spagnolo, C. Vitelli, F. Sciarrino, and M. B. Plenio, “Simulation of noise-assisted transport via optical cavity networks,” Phys. Rev. A 83, 013811 (2011).
[CrossRef]

2010 (2)

F. Caruso, S. F. Huelga, and M. B. Plenio, “Noise-enhanced classical and quantum capacities in communication networks,” Phys. Rev. Lett. 105, 190501 (2010).
[CrossRef]

M. A. Broome, A. Fedrizzi, B. P. Lanyon, I. Kassal, A. Aspuru-Guzik, and A. G. White, “Discrete single-photon quantum walks with tunable decoherence,” Phys. Rev. Lett. 104, 153602 (2010).
[CrossRef]

2009 (2)

F. Caruso, A. W. Chin, A. Datta, S. F. Huelga, and M. B. Plenio, “Highly efficient energy excitation transfer in light-harvesting complexes: the fundamental role of noise-assisted transport,” J. Chem. Phys. 131, 105106 (2009).
[CrossRef]

M. Sadgrove, S. Kumar, and K. Nakagawa, “Noise-induced energy resonance for atoms in a periodic potential,” Phys. Rev. Lett. 103, 010403 (2009).
[CrossRef]

2008 (5)

M. Sadgrove, S. Kumar, and K. Nakagawa, “Enhanced factoring with a Bose-Einstein condensate,” Phys. Rev. Lett. 101, 180502 (2008).
[CrossRef]

I. N. Agafonov, M. V. Chekhova, T. S. Iskhakov, and A. N. Penin, “High-visibility multiphoton interference of Hanbury Brown–Twiss type for classical light,” Phys. Rev. A 77, 053801 (2008).
[CrossRef]

D.-Z. Cao, J. Xiong, S.-H. Zhang, L.-F. Lin, L. Gao, and K. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008).
[CrossRef]

M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-Guzik, “Environment-assisted quantum walks in photosynthetic energy transfer,” J. Chem. Phys. 129, 174106 (2008).
[CrossRef]

M. B. Plenio and S. F. Huelga, “Dephasing-assisted transport: quantum networks and biomolecules,” New J. Phys. 10, 113019 (2008).
[CrossRef]

2007 (4)

V. Kendon, “Decoherence in quantum walks: a review,” Math. Struct. Comp. Sci. 17, 1169–1220 (2007).
[CrossRef]

V. Parigi, A. Zavatta, M. Kim, and M. Bellini, “Probing quantum commutation rules by addition and subtraction of single photons to/from a light field,” Science 317, 1890–1893 (2007).
[CrossRef]

L.-H. Ou and L.-M. Kuang, “Ghost Imaging with third-order correlated thermal light,” J. Phys. B 40, 1833–1844 (2007).
[CrossRef]

Y. Bai and S. Han, “Ghost imaging with thermal light by third-order correlation,” Phys. Rev. A 76, 043828 (2007).
[CrossRef]

2006 (1)

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[CrossRef]

2005 (4)

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef]

E. Li, J. Yao, D. Yu, J. Xi, and J. Chicharo, “Optical phase shifting with acousto-optic devices,” Opt. Lett. 30, 189–191 (2005).
[CrossRef]

D. Zhang, Y.-H. Zhai, L.-A. Wu, and X.-H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30, 2354–2356 (2005).
[CrossRef]

2003 (1)

V. Kendon and B. Tregenna, “Decoherence can be useful in quantum walks,” Phys. Rev. A 67, 042315 (2003).
[CrossRef]

2002 (1)

M. B. Plenio and S. F. Huelga, “Entangled light from white noise,” Phys. Rev. Lett. 88, 197901 (2002).
[CrossRef]

2000 (1)

A. Beige, S. Bose, D. Braun, S. F. Huelga, P. L. Knight, M. B. Plenio, and V. Vedral, “Entangling atoms and ions in dissipative environments,” J. Mod. Opt. 47, 2583–2598 (2000).
[CrossRef]

1998 (1)

G. Baym, “The physics of Hanbury Brown–Twiss intensity interferometry: from stars to nuclear collisions,” Acta Phys. Polonica B 29, 1839–1884 (1998).

Agafonov, I. N.

I. N. Agafonov, M. V. Chekhova, T. S. Iskhakov, and A. N. Penin, “High-visibility multiphoton interference of Hanbury Brown–Twiss type for classical light,” Phys. Rev. A 77, 053801 (2008).
[CrossRef]

Aspuru-Guzik, A.

M. A. Broome, A. Fedrizzi, B. P. Lanyon, I. Kassal, A. Aspuru-Guzik, and A. G. White, “Discrete single-photon quantum walks with tunable decoherence,” Phys. Rev. Lett. 104, 153602 (2010).
[CrossRef]

M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-Guzik, “Environment-assisted quantum walks in photosynthetic energy transfer,” J. Chem. Phys. 129, 174106 (2008).
[CrossRef]

Bache, M.

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[CrossRef]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef]

Bai, Y.

Y. Bai and S. Han, “Ghost imaging with thermal light by third-order correlation,” Phys. Rev. A 76, 043828 (2007).
[CrossRef]

Baym, G.

G. Baym, “The physics of Hanbury Brown–Twiss intensity interferometry: from stars to nuclear collisions,” Acta Phys. Polonica B 29, 1839–1884 (1998).

Beige, A.

A. Beige, S. Bose, D. Braun, S. F. Huelga, P. L. Knight, M. B. Plenio, and V. Vedral, “Entangling atoms and ions in dissipative environments,” J. Mod. Opt. 47, 2583–2598 (2000).
[CrossRef]

Bellini, M.

V. Parigi, A. Zavatta, M. Kim, and M. Bellini, “Probing quantum commutation rules by addition and subtraction of single photons to/from a light field,” Science 317, 1890–1893 (2007).
[CrossRef]

Bose, S.

A. Beige, S. Bose, D. Braun, S. F. Huelga, P. L. Knight, M. B. Plenio, and V. Vedral, “Entangling atoms and ions in dissipative environments,” J. Mod. Opt. 47, 2583–2598 (2000).
[CrossRef]

Brambilla, E.

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[CrossRef]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef]

Braun, D.

A. Beige, S. Bose, D. Braun, S. F. Huelga, P. L. Knight, M. B. Plenio, and V. Vedral, “Entangling atoms and ions in dissipative environments,” J. Mod. Opt. 47, 2583–2598 (2000).
[CrossRef]

Broome, M. A.

M. A. Broome, A. Fedrizzi, B. P. Lanyon, I. Kassal, A. Aspuru-Guzik, and A. G. White, “Discrete single-photon quantum walks with tunable decoherence,” Phys. Rev. Lett. 104, 153602 (2010).
[CrossRef]

Cao, D.-Z.

D.-Z. Cao, J. Xiong, S.-H. Zhang, L.-F. Lin, L. Gao, and K. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008).
[CrossRef]

Caruso, F.

F. Caruso, N. Spagnolo, C. Vitelli, F. Sciarrino, and M. B. Plenio, “Simulation of noise-assisted transport via optical cavity networks,” Phys. Rev. A 83, 013811 (2011).
[CrossRef]

F. Caruso, S. F. Huelga, and M. B. Plenio, “Noise-enhanced classical and quantum capacities in communication networks,” Phys. Rev. Lett. 105, 190501 (2010).
[CrossRef]

F. Caruso, A. W. Chin, A. Datta, S. F. Huelga, and M. B. Plenio, “Highly efficient energy excitation transfer in light-harvesting complexes: the fundamental role of noise-assisted transport,” J. Chem. Phys. 131, 105106 (2009).
[CrossRef]

Cassemiro, K. N.

A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gàbris, I. Jex, and C. Silberhorn, “Decoherence and disorder in quantum walks: from ballistic spread to localization,” Phys. Rev. Lett. 106, 180403 (2011).
[CrossRef]

Chekhova, M. V.

I. N. Agafonov, M. V. Chekhova, T. S. Iskhakov, and A. N. Penin, “High-visibility multiphoton interference of Hanbury Brown–Twiss type for classical light,” Phys. Rev. A 77, 053801 (2008).
[CrossRef]

Chen, X.-H.

Chicharo, J.

Chin, A. W.

F. Caruso, A. W. Chin, A. Datta, S. F. Huelga, and M. B. Plenio, “Highly efficient energy excitation transfer in light-harvesting complexes: the fundamental role of noise-assisted transport,” J. Chem. Phys. 131, 105106 (2009).
[CrossRef]

D’Angelo, M.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef]

Datta, A.

F. Caruso, A. W. Chin, A. Datta, S. F. Huelga, and M. B. Plenio, “Highly efficient energy excitation transfer in light-harvesting complexes: the fundamental role of noise-assisted transport,” J. Chem. Phys. 131, 105106 (2009).
[CrossRef]

Fedrizzi, A.

M. A. Broome, A. Fedrizzi, B. P. Lanyon, I. Kassal, A. Aspuru-Guzik, and A. G. White, “Discrete single-photon quantum walks with tunable decoherence,” Phys. Rev. Lett. 104, 153602 (2010).
[CrossRef]

Ferri, F.

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[CrossRef]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef]

Gàbris, A.

A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gàbris, I. Jex, and C. Silberhorn, “Decoherence and disorder in quantum walks: from ballistic spread to localization,” Phys. Rev. Lett. 106, 180403 (2011).
[CrossRef]

Gao, L.

D.-Z. Cao, J. Xiong, S.-H. Zhang, L.-F. Lin, L. Gao, and K. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008).
[CrossRef]

Gatti, A.

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[CrossRef]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef]

Han, S.

Y. Bai and S. Han, “Ghost imaging with thermal light by third-order correlation,” Phys. Rev. A 76, 043828 (2007).
[CrossRef]

Hong, P.

P. Hong, J. Liu, and G. Zhang, “Two-photon superbunching of thermal light via multiple two-photon path interference,” Phys. Rev. A 86, 013807 (2012).
[CrossRef]

Huelga, S. F.

F. Caruso, S. F. Huelga, and M. B. Plenio, “Noise-enhanced classical and quantum capacities in communication networks,” Phys. Rev. Lett. 105, 190501 (2010).
[CrossRef]

F. Caruso, A. W. Chin, A. Datta, S. F. Huelga, and M. B. Plenio, “Highly efficient energy excitation transfer in light-harvesting complexes: the fundamental role of noise-assisted transport,” J. Chem. Phys. 131, 105106 (2009).
[CrossRef]

M. B. Plenio and S. F. Huelga, “Dephasing-assisted transport: quantum networks and biomolecules,” New J. Phys. 10, 113019 (2008).
[CrossRef]

M. B. Plenio and S. F. Huelga, “Entangled light from white noise,” Phys. Rev. Lett. 88, 197901 (2002).
[CrossRef]

A. Beige, S. Bose, D. Braun, S. F. Huelga, P. L. Knight, M. B. Plenio, and V. Vedral, “Entangling atoms and ions in dissipative environments,” J. Mod. Opt. 47, 2583–2598 (2000).
[CrossRef]

Iskhakov, T. S.

I. N. Agafonov, M. V. Chekhova, T. S. Iskhakov, and A. N. Penin, “High-visibility multiphoton interference of Hanbury Brown–Twiss type for classical light,” Phys. Rev. A 77, 053801 (2008).
[CrossRef]

Ivan, J.

D. Pandey, N. Satapathy, B. Suryabrahmam, J. Ivan, and H. Ramachandran, “Classical light sources with tunable temporal coherence and tailored photon number distributions,” arXiv preprint, arXiv:1210.1403 (2012).

Jex, I.

A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gàbris, I. Jex, and C. Silberhorn, “Decoherence and disorder in quantum walks: from ballistic spread to localization,” Phys. Rev. Lett. 106, 180403 (2011).
[CrossRef]

Kassal, I.

M. A. Broome, A. Fedrizzi, B. P. Lanyon, I. Kassal, A. Aspuru-Guzik, and A. G. White, “Discrete single-photon quantum walks with tunable decoherence,” Phys. Rev. Lett. 104, 153602 (2010).
[CrossRef]

Kendon, V.

V. Kendon, “Decoherence in quantum walks: a review,” Math. Struct. Comp. Sci. 17, 1169–1220 (2007).
[CrossRef]

V. Kendon and B. Tregenna, “Decoherence can be useful in quantum walks,” Phys. Rev. A 67, 042315 (2003).
[CrossRef]

Kim, M.

V. Parigi, A. Zavatta, M. Kim, and M. Bellini, “Probing quantum commutation rules by addition and subtraction of single photons to/from a light field,” Science 317, 1890–1893 (2007).
[CrossRef]

Knight, P. L.

A. Beige, S. Bose, D. Braun, S. F. Huelga, P. L. Knight, M. B. Plenio, and V. Vedral, “Entangling atoms and ions in dissipative environments,” J. Mod. Opt. 47, 2583–2598 (2000).
[CrossRef]

Kuang, L.-M.

L.-H. Ou and L.-M. Kuang, “Ghost Imaging with third-order correlated thermal light,” J. Phys. B 40, 1833–1844 (2007).
[CrossRef]

Kumar, S.

M. Sadgrove, S. Kumar, and K. Nakagawa, “Noise-induced energy resonance for atoms in a periodic potential,” Phys. Rev. Lett. 103, 010403 (2009).
[CrossRef]

M. Sadgrove, S. Kumar, and K. Nakagawa, “Enhanced factoring with a Bose-Einstein condensate,” Phys. Rev. Lett. 101, 180502 (2008).
[CrossRef]

Lanyon, B. P.

M. A. Broome, A. Fedrizzi, B. P. Lanyon, I. Kassal, A. Aspuru-Guzik, and A. G. White, “Discrete single-photon quantum walks with tunable decoherence,” Phys. Rev. Lett. 104, 153602 (2010).
[CrossRef]

Li, E.

Lin, L.-F.

D.-Z. Cao, J. Xiong, S.-H. Zhang, L.-F. Lin, L. Gao, and K. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008).
[CrossRef]

Liu, J.

P. Hong, J. Liu, and G. Zhang, “Two-photon superbunching of thermal light via multiple two-photon path interference,” Phys. Rev. A 86, 013807 (2012).
[CrossRef]

Lloyd, S.

M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-Guzik, “Environment-assisted quantum walks in photosynthetic energy transfer,” J. Chem. Phys. 129, 174106 (2008).
[CrossRef]

Lugiato, L. A.

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[CrossRef]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef]

Magatti, D.

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[CrossRef]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef]

Meena, M. S.

D. Pandey, N. Satapathy, M. S. Meena, and H. Ramachandran, “Quantum walk of light in frequency space and its controlled dephasing,” Phys. Rev. A 84, 042322 (2011).
[CrossRef]

Mehta, P.

N. Satapathy, D. Pandey, P. Mehta, S. Sinha, J. Samuel, and H. Ramachandran, “Classical light analogue of the non-local Aharonov-Bohm effect,” Europhys. Lett. 97, 50011 (2012).
[CrossRef]

Mohseni, M.

M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-Guzik, “Environment-assisted quantum walks in photosynthetic energy transfer,” J. Chem. Phys. 129, 174106 (2008).
[CrossRef]

Nakagawa, K.

M. Sadgrove, and K. Nakagawa, “Fast, externally triggered, digital phase controller for an optical lattice,” Rev. Sci. Instrum. 82, 113104 (2011).
[CrossRef]

M. Sadgrove, S. Kumar, and K. Nakagawa, “Noise-induced energy resonance for atoms in a periodic potential,” Phys. Rev. Lett. 103, 010403 (2009).
[CrossRef]

M. Sadgrove, S. Kumar, and K. Nakagawa, “Enhanced factoring with a Bose-Einstein condensate,” Phys. Rev. Lett. 101, 180502 (2008).
[CrossRef]

Ou, L.-H.

L.-H. Ou and L.-M. Kuang, “Ghost Imaging with third-order correlated thermal light,” J. Phys. B 40, 1833–1844 (2007).
[CrossRef]

Pandey, D.

N. Satapathy, D. Pandey, P. Mehta, S. Sinha, J. Samuel, and H. Ramachandran, “Classical light analogue of the non-local Aharonov-Bohm effect,” Europhys. Lett. 97, 50011 (2012).
[CrossRef]

D. Pandey, N. Satapathy, M. S. Meena, and H. Ramachandran, “Quantum walk of light in frequency space and its controlled dephasing,” Phys. Rev. A 84, 042322 (2011).
[CrossRef]

D. Pandey, N. Satapathy, B. Suryabrahmam, J. Ivan, and H. Ramachandran, “Classical light sources with tunable temporal coherence and tailored photon number distributions,” arXiv preprint, arXiv:1210.1403 (2012).

Parigi, V.

V. Parigi, A. Zavatta, M. Kim, and M. Bellini, “Probing quantum commutation rules by addition and subtraction of single photons to/from a light field,” Science 317, 1890–1893 (2007).
[CrossRef]

Penin, A. N.

I. N. Agafonov, M. V. Chekhova, T. S. Iskhakov, and A. N. Penin, “High-visibility multiphoton interference of Hanbury Brown–Twiss type for classical light,” Phys. Rev. A 77, 053801 (2008).
[CrossRef]

Plenio, M. B.

F. Caruso, N. Spagnolo, C. Vitelli, F. Sciarrino, and M. B. Plenio, “Simulation of noise-assisted transport via optical cavity networks,” Phys. Rev. A 83, 013811 (2011).
[CrossRef]

F. Caruso, S. F. Huelga, and M. B. Plenio, “Noise-enhanced classical and quantum capacities in communication networks,” Phys. Rev. Lett. 105, 190501 (2010).
[CrossRef]

F. Caruso, A. W. Chin, A. Datta, S. F. Huelga, and M. B. Plenio, “Highly efficient energy excitation transfer in light-harvesting complexes: the fundamental role of noise-assisted transport,” J. Chem. Phys. 131, 105106 (2009).
[CrossRef]

M. B. Plenio and S. F. Huelga, “Dephasing-assisted transport: quantum networks and biomolecules,” New J. Phys. 10, 113019 (2008).
[CrossRef]

M. B. Plenio and S. F. Huelga, “Entangled light from white noise,” Phys. Rev. Lett. 88, 197901 (2002).
[CrossRef]

A. Beige, S. Bose, D. Braun, S. F. Huelga, P. L. Knight, M. B. Plenio, and V. Vedral, “Entangling atoms and ions in dissipative environments,” J. Mod. Opt. 47, 2583–2598 (2000).
[CrossRef]

Potocek, V.

A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gàbris, I. Jex, and C. Silberhorn, “Decoherence and disorder in quantum walks: from ballistic spread to localization,” Phys. Rev. Lett. 106, 180403 (2011).
[CrossRef]

Ramachandran, H.

N. Satapathy, D. Pandey, P. Mehta, S. Sinha, J. Samuel, and H. Ramachandran, “Classical light analogue of the non-local Aharonov-Bohm effect,” Europhys. Lett. 97, 50011 (2012).
[CrossRef]

D. Pandey, N. Satapathy, M. S. Meena, and H. Ramachandran, “Quantum walk of light in frequency space and its controlled dephasing,” Phys. Rev. A 84, 042322 (2011).
[CrossRef]

D. Pandey, N. Satapathy, B. Suryabrahmam, J. Ivan, and H. Ramachandran, “Classical light sources with tunable temporal coherence and tailored photon number distributions,” arXiv preprint, arXiv:1210.1403 (2012).

Rebentrost, P.

M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-Guzik, “Environment-assisted quantum walks in photosynthetic energy transfer,” J. Chem. Phys. 129, 174106 (2008).
[CrossRef]

Sadgrove, M.

M. Sadgrove, and K. Nakagawa, “Fast, externally triggered, digital phase controller for an optical lattice,” Rev. Sci. Instrum. 82, 113104 (2011).
[CrossRef]

M. Sadgrove, S. Kumar, and K. Nakagawa, “Noise-induced energy resonance for atoms in a periodic potential,” Phys. Rev. Lett. 103, 010403 (2009).
[CrossRef]

M. Sadgrove, S. Kumar, and K. Nakagawa, “Enhanced factoring with a Bose-Einstein condensate,” Phys. Rev. Lett. 101, 180502 (2008).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, 2007) Chap. 19.

Samuel, J.

N. Satapathy, D. Pandey, P. Mehta, S. Sinha, J. Samuel, and H. Ramachandran, “Classical light analogue of the non-local Aharonov-Bohm effect,” Europhys. Lett. 97, 50011 (2012).
[CrossRef]

Satapathy, N.

N. Satapathy, D. Pandey, P. Mehta, S. Sinha, J. Samuel, and H. Ramachandran, “Classical light analogue of the non-local Aharonov-Bohm effect,” Europhys. Lett. 97, 50011 (2012).
[CrossRef]

D. Pandey, N. Satapathy, M. S. Meena, and H. Ramachandran, “Quantum walk of light in frequency space and its controlled dephasing,” Phys. Rev. A 84, 042322 (2011).
[CrossRef]

D. Pandey, N. Satapathy, B. Suryabrahmam, J. Ivan, and H. Ramachandran, “Classical light sources with tunable temporal coherence and tailored photon number distributions,” arXiv preprint, arXiv:1210.1403 (2012).

Scarcelli, G.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef]

Schreiber, A.

A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gàbris, I. Jex, and C. Silberhorn, “Decoherence and disorder in quantum walks: from ballistic spread to localization,” Phys. Rev. Lett. 106, 180403 (2011).
[CrossRef]

Sciarrino, F.

F. Caruso, N. Spagnolo, C. Vitelli, F. Sciarrino, and M. B. Plenio, “Simulation of noise-assisted transport via optical cavity networks,” Phys. Rev. A 83, 013811 (2011).
[CrossRef]

Shih, Y.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef]

Silberhorn, C.

A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gàbris, I. Jex, and C. Silberhorn, “Decoherence and disorder in quantum walks: from ballistic spread to localization,” Phys. Rev. Lett. 106, 180403 (2011).
[CrossRef]

Sinha, S.

N. Satapathy, D. Pandey, P. Mehta, S. Sinha, J. Samuel, and H. Ramachandran, “Classical light analogue of the non-local Aharonov-Bohm effect,” Europhys. Lett. 97, 50011 (2012).
[CrossRef]

Spagnolo, N.

F. Caruso, N. Spagnolo, C. Vitelli, F. Sciarrino, and M. B. Plenio, “Simulation of noise-assisted transport via optical cavity networks,” Phys. Rev. A 83, 013811 (2011).
[CrossRef]

Suryabrahmam, B.

D. Pandey, N. Satapathy, B. Suryabrahmam, J. Ivan, and H. Ramachandran, “Classical light sources with tunable temporal coherence and tailored photon number distributions,” arXiv preprint, arXiv:1210.1403 (2012).

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, 2007) Chap. 19.

Tregenna, B.

V. Kendon and B. Tregenna, “Decoherence can be useful in quantum walks,” Phys. Rev. A 67, 042315 (2003).
[CrossRef]

Valencia, A.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef]

Vedral, V.

A. Beige, S. Bose, D. Braun, S. F. Huelga, P. L. Knight, M. B. Plenio, and V. Vedral, “Entangling atoms and ions in dissipative environments,” J. Mod. Opt. 47, 2583–2598 (2000).
[CrossRef]

Vitelli, C.

F. Caruso, N. Spagnolo, C. Vitelli, F. Sciarrino, and M. B. Plenio, “Simulation of noise-assisted transport via optical cavity networks,” Phys. Rev. A 83, 013811 (2011).
[CrossRef]

Wang, K.

D.-Z. Cao, J. Xiong, S.-H. Zhang, L.-F. Lin, L. Gao, and K. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008).
[CrossRef]

White, A. G.

M. A. Broome, A. Fedrizzi, B. P. Lanyon, I. Kassal, A. Aspuru-Guzik, and A. G. White, “Discrete single-photon quantum walks with tunable decoherence,” Phys. Rev. Lett. 104, 153602 (2010).
[CrossRef]

Wu, L.-A.

Xi, J.

Xiong, J.

D.-Z. Cao, J. Xiong, S.-H. Zhang, L.-F. Lin, L. Gao, and K. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008).
[CrossRef]

Yao, J.

Yu, D.

Zavatta, A.

V. Parigi, A. Zavatta, M. Kim, and M. Bellini, “Probing quantum commutation rules by addition and subtraction of single photons to/from a light field,” Science 317, 1890–1893 (2007).
[CrossRef]

Zhai, Y.-H.

Zhang, D.

Zhang, G.

P. Hong, J. Liu, and G. Zhang, “Two-photon superbunching of thermal light via multiple two-photon path interference,” Phys. Rev. A 86, 013807 (2012).
[CrossRef]

Zhang, S.-H.

D.-Z. Cao, J. Xiong, S.-H. Zhang, L.-F. Lin, L. Gao, and K. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008).
[CrossRef]

Acta Phys. Polonica B (1)

G. Baym, “The physics of Hanbury Brown–Twiss intensity interferometry: from stars to nuclear collisions,” Acta Phys. Polonica B 29, 1839–1884 (1998).

Appl. Phys. Lett. (1)

D.-Z. Cao, J. Xiong, S.-H. Zhang, L.-F. Lin, L. Gao, and K. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008).
[CrossRef]

Europhys. Lett. (1)

N. Satapathy, D. Pandey, P. Mehta, S. Sinha, J. Samuel, and H. Ramachandran, “Classical light analogue of the non-local Aharonov-Bohm effect,” Europhys. Lett. 97, 50011 (2012).
[CrossRef]

J. Chem. Phys. (2)

M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-Guzik, “Environment-assisted quantum walks in photosynthetic energy transfer,” J. Chem. Phys. 129, 174106 (2008).
[CrossRef]

F. Caruso, A. W. Chin, A. Datta, S. F. Huelga, and M. B. Plenio, “Highly efficient energy excitation transfer in light-harvesting complexes: the fundamental role of noise-assisted transport,” J. Chem. Phys. 131, 105106 (2009).
[CrossRef]

J. Mod. Opt. (2)

A. Beige, S. Bose, D. Braun, S. F. Huelga, P. L. Knight, M. B. Plenio, and V. Vedral, “Entangling atoms and ions in dissipative environments,” J. Mod. Opt. 47, 2583–2598 (2000).
[CrossRef]

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[CrossRef]

J. Phys. B (1)

L.-H. Ou and L.-M. Kuang, “Ghost Imaging with third-order correlated thermal light,” J. Phys. B 40, 1833–1844 (2007).
[CrossRef]

Math. Struct. Comp. Sci. (1)

V. Kendon, “Decoherence in quantum walks: a review,” Math. Struct. Comp. Sci. 17, 1169–1220 (2007).
[CrossRef]

New J. Phys. (1)

M. B. Plenio and S. F. Huelga, “Dephasing-assisted transport: quantum networks and biomolecules,” New J. Phys. 10, 113019 (2008).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (6)

Y. Bai and S. Han, “Ghost imaging with thermal light by third-order correlation,” Phys. Rev. A 76, 043828 (2007).
[CrossRef]

I. N. Agafonov, M. V. Chekhova, T. S. Iskhakov, and A. N. Penin, “High-visibility multiphoton interference of Hanbury Brown–Twiss type for classical light,” Phys. Rev. A 77, 053801 (2008).
[CrossRef]

P. Hong, J. Liu, and G. Zhang, “Two-photon superbunching of thermal light via multiple two-photon path interference,” Phys. Rev. A 86, 013807 (2012).
[CrossRef]

V. Kendon and B. Tregenna, “Decoherence can be useful in quantum walks,” Phys. Rev. A 67, 042315 (2003).
[CrossRef]

D. Pandey, N. Satapathy, M. S. Meena, and H. Ramachandran, “Quantum walk of light in frequency space and its controlled dephasing,” Phys. Rev. A 84, 042322 (2011).
[CrossRef]

F. Caruso, N. Spagnolo, C. Vitelli, F. Sciarrino, and M. B. Plenio, “Simulation of noise-assisted transport via optical cavity networks,” Phys. Rev. A 83, 013811 (2011).
[CrossRef]

Phys. Rev. Lett. (8)

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef]

M. B. Plenio and S. F. Huelga, “Entangled light from white noise,” Phys. Rev. Lett. 88, 197901 (2002).
[CrossRef]

M. A. Broome, A. Fedrizzi, B. P. Lanyon, I. Kassal, A. Aspuru-Guzik, and A. G. White, “Discrete single-photon quantum walks with tunable decoherence,” Phys. Rev. Lett. 104, 153602 (2010).
[CrossRef]

A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gàbris, I. Jex, and C. Silberhorn, “Decoherence and disorder in quantum walks: from ballistic spread to localization,” Phys. Rev. Lett. 106, 180403 (2011).
[CrossRef]

F. Caruso, S. F. Huelga, and M. B. Plenio, “Noise-enhanced classical and quantum capacities in communication networks,” Phys. Rev. Lett. 105, 190501 (2010).
[CrossRef]

M. Sadgrove, S. Kumar, and K. Nakagawa, “Enhanced factoring with a Bose-Einstein condensate,” Phys. Rev. Lett. 101, 180502 (2008).
[CrossRef]

M. Sadgrove, S. Kumar, and K. Nakagawa, “Noise-induced energy resonance for atoms in a periodic potential,” Phys. Rev. Lett. 103, 010403 (2009).
[CrossRef]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef]

Rev. Sci. Instrum. (1)

M. Sadgrove, and K. Nakagawa, “Fast, externally triggered, digital phase controller for an optical lattice,” Rev. Sci. Instrum. 82, 113104 (2011).
[CrossRef]

Science (1)

V. Parigi, A. Zavatta, M. Kim, and M. Bellini, “Probing quantum commutation rules by addition and subtraction of single photons to/from a light field,” Science 317, 1890–1893 (2007).
[CrossRef]

Other (3)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, 2007) Chap. 19.

This phase resolution pertains to rf. Direct measurement of phase shift of 0.01° on optical fringes requires the interferometer to be ultrastable.

D. Pandey, N. Satapathy, B. Suryabrahmam, J. Ivan, and H. Ramachandran, “Classical light sources with tunable temporal coherence and tailored photon number distributions,” arXiv preprint, arXiv:1210.1403 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of phase transfer from acoustic grating to nth-order diffracted light.

Fig. 2.
Fig. 2.

Experimental setup (schematic).

Fig. 3.
Fig. 3.

Detector recordings of the interference for various orders of diffracted light when (a) PZM2 is oscillated and (b) the phase of the rf driving AOM1 is ramped from 0° to 360° at 2.5 Hz.

Fig. 4.
Fig. 4.

(a) Rf signal with abrupt phase jumps, which was fed to AOM, (b) interference signal recorded using the 1st-order diffracted light (D1), and (c) intensity of a weak pick-off beam from the 1st-order diffracted light (D5) prior to the interference.

Fig. 5.
Fig. 5.

Fringes recorded for the first- and second-order diffracted light for various parameters of (a) uniform, and (b) Gaussian phase noise; experimentally extracted relative visibilities (circles) and theoretical curves are shown in (c) and (d). Error bars (standard deviation) are mostly within the circles.

Fig. 6.
Fig. 6.

Theoretically obtained G+2(0) and G2(0) for various values of θ (in radians) as functions of noise parameter α of uniform phase noise for (a) the dark port and (b) the bright port of a stabilized MZI, the same for noise parameter σ of Gaussian phase noise for (c) the dark port and (d) the bright port, and the same for noise parameter γ of Lorentzian phase noise for (e) the dark port and (f) the bright port. It must be noted that the minimum value of the Y axis is 1 in all panels. The light horizontal line in all panels is drawn as a guide to the eye, and it represents the asymptotic value of G±2(0)=1.5 for the complete phase noise limit. Insets show the expanded view of the plots for α, σ, and γ close to zero.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Λs(sinθi+sinθn)=nλ,
ωn=ω(1+n(Vs/Λs)(λ/c))=ω+nΩrf.
δλn=(sinθi+sinθn)δs=nλϕrf/2π.
V(n)=2E1nE2nE1n2+E2n2cos(nϕrf(t))t,
VR(n)=V(n)V(n)max=cos(nϕrf(t))t=|cos(nϕrf)P(ϕrf)dϕrf|,
VR(n,α)=|12αααcos(nϕrf)dϕrf|=|sin(nα)nα|.
VR(n,σ)=|12πσcos(nϕrf)eϕrf22σ2dϕrf|=en2σ22.
I±(t)=I0[1±cos(θ+ϕrf(t))],
G±2(0)=I±2(t)t/I±(t)t2=1+cos2(θ+ϕrf(t))tcos(θ+ϕrf(t))t21±cos(θ+ϕrf(t))t2.
G±2(0)θ,α=1+12(cos(2θ)sin(2α)2α+1)cos2(θ)sin2(α)α21±2cos(θ)sin(α)α+cos2(θ)sin2(α)α2,
G±2(0)θ,σ=1+12(cos(2θ)e22σ22+1)cos2(θ)e2σ221±2cos(θ)eσ22+cos2(θ)e2σ22.
G±2(0)θ,γ=1+12(cos(2θ)e2γ+1)cos2(θ)e2γ1±2cos(θ)eγ+cos2(θ)e2γ.

Metrics