Abstract

The compressive sensing paradigm exploits the inherent sparsity/compressibility of signals to reduce the number of measurements required for reliable reconstruction/recovery. In many applications additional prior information beyond signal sparsity, such as structure in sparsity, is available, and current efforts are mainly limited to exploiting that information exclusively in the signal reconstruction problem. In this work, we describe an information-theoretic framework that incorporates the additional prior information as well as appropriate measurement constraints in the design of compressive measurements. Using a Gaussian binomial mixture prior we design and analyze the performance of optimized projections relative to random projections under two specific design constraints and different operating measurement signal-to-noise ratio (SNR) regimes. We find that the information-optimized designs yield significant, in some cases nearly an order of magnitude, improvements in the reconstruction performance with respect to the random projections. These improvements are especially notable in the low measurement SNR regime where the energy-efficient design of optimized projections is most advantageous. In such cases, the optimized projection design departs significantly from random projections in terms of their incoherence with the representation basis. In fact, we find that the maximizing incoherence of projections with the representation basis is not necessarily optimal in the presence of additional prior information and finite measurement noise/error. We also apply the information-optimized projections to the compressive image formation problem for natural scenes, and the improved visual quality of reconstructed images with respect to random projections and other compressive measurement design affirms the overall effectiveness of the information-theoretic design framework.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (26)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription