Abstract

Polarization of orbital angular momentum (OAM) carrying Laguerre–Gauss optical vortex beams, consistent with Maxwell’s equations, is discussed, and experimental evidence for it is presented. The experiments reveal several novel features of such beams, including OAM dependent reconstruction of polarization and spatial profile during propagation.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” in Progress in Optics, E. Wolf, ed. (North-Holland, 1999), Vol. 39, pp. 291–372.
  2. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
    [CrossRef]
  3. V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
    [CrossRef]
  4. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pasko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
    [CrossRef]
  5. J. M. Hickmann, E. J. S. Fonseca, W. C. Soares, and S. Chavez-Cerda, “Unveiling a truncated optical lattice associated with a triangular aperture using lights orbital angular momentum,” Phys. Rev. Lett. 105, 053904 (2010).
    [CrossRef]
  6. S. Straupe and S. Kulik, “Quantum optics the quest for higher dimensionality,” Nat. Photonics 4, 585–586 (2010).
    [CrossRef]
  7. M. Lax, W. H. Louisell, and W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975).
    [CrossRef]
  8. L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979).
    [CrossRef]
  9. J. D. Jackson, Classical Electrodynamics (Wiley, 1999), Problem 7.28.
  10. W. L. Erikson and S. Singh, “Polarization properties of Maxwell-Gaussian laser beams,” Phys. Rev. E 49, 5778–5786 (1994).
    [CrossRef]
  11. J. W. Moore, R. Vyas, and S. Singh, “The hidden side of a laser beam,” in Proceedings of the John Hall Symposium, J. C. Bergquist, S. A. Diddams, L. Hollberg, C. Oates, J. Ye, and L. Kaleth, eds. (World Scientific, 2006), pp. 97–99.
  12. R. Vyas and S. Singh, “Cross-polarization of Maxwell-Gaussian laser beams with orbital and spin angular momentum,” in Coherence and Quantum Optics IX, N. P. Bigelow, J. H. Eberly, and C. R. Stroud, eds. (AIP, 2008), pp. 344–345.
  13. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966).
    [CrossRef]
  14. M. A. Bandres, J. C. Gutiérrez-Vega, and S. Chavez-Cerda, “Parabolic nondiffracting optical wavefields,” Opt. Lett. 29, 44–46 (2004).
    [CrossRef]
  15. M. A. Bandres and J. C. Gutiérrez-Vega, “Ince-Gaussian beams,” Opt. Lett. 29, 144–146 (2004).
    [CrossRef]
  16. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
    [CrossRef]
  17. J. Vickers, M. Burch, R. Vyas, and S. Singh, “Phase and interference properties of optical vortex beams,” J. Opt. Soc. Am. A 25, 823–827 (2008).
    [CrossRef]
  18. M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
    [CrossRef]
  19. J. Leach, E. Yao, and M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” New J. Phys. 6, 71 (2004).
    [CrossRef]
  20. G. Kihara Rurimo, M. Schardt, S. Quabis, S. Malzer, Ch. Dotzler, A. Winkler, G. Leuchs, G. H. Dohler, D. Driscoll, M. Hanson, A. C. Gossard, and S. F. Pereira, “Using a quantum well heterostructure to study the longitudinal and transverse electric field components of a strongly focused laser beam,” J. Appl. Phys. 100, 023112 (2006).
    [CrossRef]
  21. B. Hao and J. Leger, “Experimental measurement of longitudinal component in the vicinity of focused radially polarized beam,” Opt. Express 15, 3550–3556 (2007).
    [CrossRef]
  22. J. Conry, R. Vyas, and S. Singh, “Cross-polarization of linearly polarized Hermite–Gauss laser beams,” J. Opt. Soc. Am. A 29, 579–584 (2012).
    [CrossRef]

2012

2010

J. M. Hickmann, E. J. S. Fonseca, W. C. Soares, and S. Chavez-Cerda, “Unveiling a truncated optical lattice associated with a triangular aperture using lights orbital angular momentum,” Phys. Rev. Lett. 105, 053904 (2010).
[CrossRef]

S. Straupe and S. Kulik, “Quantum optics the quest for higher dimensionality,” Nat. Photonics 4, 585–586 (2010).
[CrossRef]

2008

2007

2006

G. Kihara Rurimo, M. Schardt, S. Quabis, S. Malzer, Ch. Dotzler, A. Winkler, G. Leuchs, G. H. Dohler, D. Driscoll, M. Hanson, A. C. Gossard, and S. F. Pereira, “Using a quantum well heterostructure to study the longitudinal and transverse electric field components of a strongly focused laser beam,” J. Appl. Phys. 100, 023112 (2006).
[CrossRef]

2004

2003

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
[CrossRef]

1995

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[CrossRef]

1994

W. L. Erikson and S. Singh, “Polarization properties of Maxwell-Gaussian laser beams,” Phys. Rev. E 49, 5778–5786 (1994).
[CrossRef]

1993

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[CrossRef]

1987

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef]

1979

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979).
[CrossRef]

1975

M. Lax, W. H. Louisell, and W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975).
[CrossRef]

1966

Allen, L.

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[CrossRef]

L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” in Progress in Optics, E. Wolf, ed. (North-Holland, 1999), Vol. 39, pp. 291–372.

Babiker, M.

L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” in Progress in Optics, E. Wolf, ed. (North-Holland, 1999), Vol. 39, pp. 291–372.

Bandres, M. A.

Barnett, S.

Beijersbergen, M. W.

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[CrossRef]

Burch, M.

Chavez-Cerda, S.

J. M. Hickmann, E. J. S. Fonseca, W. C. Soares, and S. Chavez-Cerda, “Unveiling a truncated optical lattice associated with a triangular aperture using lights orbital angular momentum,” Phys. Rev. Lett. 105, 053904 (2010).
[CrossRef]

M. A. Bandres, J. C. Gutiérrez-Vega, and S. Chavez-Cerda, “Parabolic nondiffracting optical wavefields,” Opt. Lett. 29, 44–46 (2004).
[CrossRef]

Conry, J.

Courtial, J.

Davis, L. W.

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979).
[CrossRef]

Dholakia, K.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
[CrossRef]

Dohler, G. H.

G. Kihara Rurimo, M. Schardt, S. Quabis, S. Malzer, Ch. Dotzler, A. Winkler, G. Leuchs, G. H. Dohler, D. Driscoll, M. Hanson, A. C. Gossard, and S. F. Pereira, “Using a quantum well heterostructure to study the longitudinal and transverse electric field components of a strongly focused laser beam,” J. Appl. Phys. 100, 023112 (2006).
[CrossRef]

Dotzler, Ch.

G. Kihara Rurimo, M. Schardt, S. Quabis, S. Malzer, Ch. Dotzler, A. Winkler, G. Leuchs, G. H. Dohler, D. Driscoll, M. Hanson, A. C. Gossard, and S. F. Pereira, “Using a quantum well heterostructure to study the longitudinal and transverse electric field components of a strongly focused laser beam,” J. Appl. Phys. 100, 023112 (2006).
[CrossRef]

Driscoll, D.

G. Kihara Rurimo, M. Schardt, S. Quabis, S. Malzer, Ch. Dotzler, A. Winkler, G. Leuchs, G. H. Dohler, D. Driscoll, M. Hanson, A. C. Gossard, and S. F. Pereira, “Using a quantum well heterostructure to study the longitudinal and transverse electric field components of a strongly focused laser beam,” J. Appl. Phys. 100, 023112 (2006).
[CrossRef]

Dultz, W.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
[CrossRef]

Durnin, J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef]

Eberly, J. H.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef]

Erikson, W. L.

W. L. Erikson and S. Singh, “Polarization properties of Maxwell-Gaussian laser beams,” Phys. Rev. E 49, 5778–5786 (1994).
[CrossRef]

Fonseca, E. J. S.

J. M. Hickmann, E. J. S. Fonseca, W. C. Soares, and S. Chavez-Cerda, “Unveiling a truncated optical lattice associated with a triangular aperture using lights orbital angular momentum,” Phys. Rev. Lett. 105, 053904 (2010).
[CrossRef]

Franke-Arnold, S.

Friese, M. E. J.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[CrossRef]

Garcés-Chávez, V.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
[CrossRef]

Gibson, G.

Gossard, A. C.

G. Kihara Rurimo, M. Schardt, S. Quabis, S. Malzer, Ch. Dotzler, A. Winkler, G. Leuchs, G. H. Dohler, D. Driscoll, M. Hanson, A. C. Gossard, and S. F. Pereira, “Using a quantum well heterostructure to study the longitudinal and transverse electric field components of a strongly focused laser beam,” J. Appl. Phys. 100, 023112 (2006).
[CrossRef]

Gutiérrez-Vega, J. C.

Hanson, M.

G. Kihara Rurimo, M. Schardt, S. Quabis, S. Malzer, Ch. Dotzler, A. Winkler, G. Leuchs, G. H. Dohler, D. Driscoll, M. Hanson, A. C. Gossard, and S. F. Pereira, “Using a quantum well heterostructure to study the longitudinal and transverse electric field components of a strongly focused laser beam,” J. Appl. Phys. 100, 023112 (2006).
[CrossRef]

Hao, B.

He, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[CrossRef]

Heckenberg, N. R.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[CrossRef]

Hickmann, J. M.

J. M. Hickmann, E. J. S. Fonseca, W. C. Soares, and S. Chavez-Cerda, “Unveiling a truncated optical lattice associated with a triangular aperture using lights orbital angular momentum,” Phys. Rev. Lett. 105, 053904 (2010).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1999), Problem 7.28.

Kihara Rurimo, G.

G. Kihara Rurimo, M. Schardt, S. Quabis, S. Malzer, Ch. Dotzler, A. Winkler, G. Leuchs, G. H. Dohler, D. Driscoll, M. Hanson, A. C. Gossard, and S. F. Pereira, “Using a quantum well heterostructure to study the longitudinal and transverse electric field components of a strongly focused laser beam,” J. Appl. Phys. 100, 023112 (2006).
[CrossRef]

Kogelnik, H.

Kulik, S.

S. Straupe and S. Kulik, “Quantum optics the quest for higher dimensionality,” Nat. Photonics 4, 585–586 (2010).
[CrossRef]

Lax, M.

M. Lax, W. H. Louisell, and W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975).
[CrossRef]

Leach, J.

J. Leach, E. Yao, and M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” New J. Phys. 6, 71 (2004).
[CrossRef]

Leger, J.

Leuchs, G.

G. Kihara Rurimo, M. Schardt, S. Quabis, S. Malzer, Ch. Dotzler, A. Winkler, G. Leuchs, G. H. Dohler, D. Driscoll, M. Hanson, A. C. Gossard, and S. F. Pereira, “Using a quantum well heterostructure to study the longitudinal and transverse electric field components of a strongly focused laser beam,” J. Appl. Phys. 100, 023112 (2006).
[CrossRef]

Li, T.

Louisell, W. H.

M. Lax, W. H. Louisell, and W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975).
[CrossRef]

Malzer, S.

G. Kihara Rurimo, M. Schardt, S. Quabis, S. Malzer, Ch. Dotzler, A. Winkler, G. Leuchs, G. H. Dohler, D. Driscoll, M. Hanson, A. C. Gossard, and S. F. Pereira, “Using a quantum well heterostructure to study the longitudinal and transverse electric field components of a strongly focused laser beam,” J. Appl. Phys. 100, 023112 (2006).
[CrossRef]

McGloin, D.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
[CrossRef]

McKnight, W. B.

M. Lax, W. H. Louisell, and W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975).
[CrossRef]

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef]

Moore, J. W.

J. W. Moore, R. Vyas, and S. Singh, “The hidden side of a laser beam,” in Proceedings of the John Hall Symposium, J. C. Bergquist, S. A. Diddams, L. Hollberg, C. Oates, J. Ye, and L. Kaleth, eds. (World Scientific, 2006), pp. 97–99.

Padgett, M.

Padgett, M. J.

J. Leach, E. Yao, and M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” New J. Phys. 6, 71 (2004).
[CrossRef]

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
[CrossRef]

L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” in Progress in Optics, E. Wolf, ed. (North-Holland, 1999), Vol. 39, pp. 291–372.

Pasko, V.

Pereira, S. F.

G. Kihara Rurimo, M. Schardt, S. Quabis, S. Malzer, Ch. Dotzler, A. Winkler, G. Leuchs, G. H. Dohler, D. Driscoll, M. Hanson, A. C. Gossard, and S. F. Pereira, “Using a quantum well heterostructure to study the longitudinal and transverse electric field components of a strongly focused laser beam,” J. Appl. Phys. 100, 023112 (2006).
[CrossRef]

Quabis, S.

G. Kihara Rurimo, M. Schardt, S. Quabis, S. Malzer, Ch. Dotzler, A. Winkler, G. Leuchs, G. H. Dohler, D. Driscoll, M. Hanson, A. C. Gossard, and S. F. Pereira, “Using a quantum well heterostructure to study the longitudinal and transverse electric field components of a strongly focused laser beam,” J. Appl. Phys. 100, 023112 (2006).
[CrossRef]

Rubinsztein-Dunlop, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[CrossRef]

Schardt, M.

G. Kihara Rurimo, M. Schardt, S. Quabis, S. Malzer, Ch. Dotzler, A. Winkler, G. Leuchs, G. H. Dohler, D. Driscoll, M. Hanson, A. C. Gossard, and S. F. Pereira, “Using a quantum well heterostructure to study the longitudinal and transverse electric field components of a strongly focused laser beam,” J. Appl. Phys. 100, 023112 (2006).
[CrossRef]

Schmitzer, H.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
[CrossRef]

Singh, S.

J. Conry, R. Vyas, and S. Singh, “Cross-polarization of linearly polarized Hermite–Gauss laser beams,” J. Opt. Soc. Am. A 29, 579–584 (2012).
[CrossRef]

J. Vickers, M. Burch, R. Vyas, and S. Singh, “Phase and interference properties of optical vortex beams,” J. Opt. Soc. Am. A 25, 823–827 (2008).
[CrossRef]

W. L. Erikson and S. Singh, “Polarization properties of Maxwell-Gaussian laser beams,” Phys. Rev. E 49, 5778–5786 (1994).
[CrossRef]

J. W. Moore, R. Vyas, and S. Singh, “The hidden side of a laser beam,” in Proceedings of the John Hall Symposium, J. C. Bergquist, S. A. Diddams, L. Hollberg, C. Oates, J. Ye, and L. Kaleth, eds. (World Scientific, 2006), pp. 97–99.

R. Vyas and S. Singh, “Cross-polarization of Maxwell-Gaussian laser beams with orbital and spin angular momentum,” in Coherence and Quantum Optics IX, N. P. Bigelow, J. H. Eberly, and C. R. Stroud, eds. (AIP, 2008), pp. 344–345.

Soares, W. C.

J. M. Hickmann, E. J. S. Fonseca, W. C. Soares, and S. Chavez-Cerda, “Unveiling a truncated optical lattice associated with a triangular aperture using lights orbital angular momentum,” Phys. Rev. Lett. 105, 053904 (2010).
[CrossRef]

Straupe, S.

S. Straupe and S. Kulik, “Quantum optics the quest for higher dimensionality,” Nat. Photonics 4, 585–586 (2010).
[CrossRef]

van der Veen, H. E. L. O.

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[CrossRef]

Vasnetsov, M.

Vickers, J.

Vyas, R.

J. Conry, R. Vyas, and S. Singh, “Cross-polarization of linearly polarized Hermite–Gauss laser beams,” J. Opt. Soc. Am. A 29, 579–584 (2012).
[CrossRef]

J. Vickers, M. Burch, R. Vyas, and S. Singh, “Phase and interference properties of optical vortex beams,” J. Opt. Soc. Am. A 25, 823–827 (2008).
[CrossRef]

R. Vyas and S. Singh, “Cross-polarization of Maxwell-Gaussian laser beams with orbital and spin angular momentum,” in Coherence and Quantum Optics IX, N. P. Bigelow, J. H. Eberly, and C. R. Stroud, eds. (AIP, 2008), pp. 344–345.

J. W. Moore, R. Vyas, and S. Singh, “The hidden side of a laser beam,” in Proceedings of the John Hall Symposium, J. C. Bergquist, S. A. Diddams, L. Hollberg, C. Oates, J. Ye, and L. Kaleth, eds. (World Scientific, 2006), pp. 97–99.

Winkler, A.

G. Kihara Rurimo, M. Schardt, S. Quabis, S. Malzer, Ch. Dotzler, A. Winkler, G. Leuchs, G. H. Dohler, D. Driscoll, M. Hanson, A. C. Gossard, and S. F. Pereira, “Using a quantum well heterostructure to study the longitudinal and transverse electric field components of a strongly focused laser beam,” J. Appl. Phys. 100, 023112 (2006).
[CrossRef]

Woerdman, J. P.

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[CrossRef]

Yao, E.

J. Leach, E. Yao, and M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” New J. Phys. 6, 71 (2004).
[CrossRef]

Appl. Opt.

J. Appl. Phys.

G. Kihara Rurimo, M. Schardt, S. Quabis, S. Malzer, Ch. Dotzler, A. Winkler, G. Leuchs, G. H. Dohler, D. Driscoll, M. Hanson, A. C. Gossard, and S. F. Pereira, “Using a quantum well heterostructure to study the longitudinal and transverse electric field components of a strongly focused laser beam,” J. Appl. Phys. 100, 023112 (2006).
[CrossRef]

J. Opt. Soc. Am. A

Nat. Photonics

S. Straupe and S. Kulik, “Quantum optics the quest for higher dimensionality,” Nat. Photonics 4, 585–586 (2010).
[CrossRef]

New J. Phys.

J. Leach, E. Yao, and M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” New J. Phys. 6, 71 (2004).
[CrossRef]

Opt. Commun.

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

M. Lax, W. H. Louisell, and W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975).
[CrossRef]

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979).
[CrossRef]

Phys. Rev. E

W. L. Erikson and S. Singh, “Polarization properties of Maxwell-Gaussian laser beams,” Phys. Rev. E 49, 5778–5786 (1994).
[CrossRef]

Phys. Rev. Lett.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef]

J. M. Hickmann, E. J. S. Fonseca, W. C. Soares, and S. Chavez-Cerda, “Unveiling a truncated optical lattice associated with a triangular aperture using lights orbital angular momentum,” Phys. Rev. Lett. 105, 053904 (2010).
[CrossRef]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[CrossRef]

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
[CrossRef]

Other

J. D. Jackson, Classical Electrodynamics (Wiley, 1999), Problem 7.28.

J. W. Moore, R. Vyas, and S. Singh, “The hidden side of a laser beam,” in Proceedings of the John Hall Symposium, J. C. Bergquist, S. A. Diddams, L. Hollberg, C. Oates, J. Ye, and L. Kaleth, eds. (World Scientific, 2006), pp. 97–99.

R. Vyas and S. Singh, “Cross-polarization of Maxwell-Gaussian laser beams with orbital and spin angular momentum,” in Coherence and Quantum Optics IX, N. P. Bigelow, J. H. Eberly, and C. R. Stroud, eds. (AIP, 2008), pp. 344–345.

L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” in Progress in Optics, E. Wolf, ed. (North-Holland, 1999), Vol. 39, pp. 291–372.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Dominant polarization ( x component) intensity I 1 ( ) and cross-polarization ( y component) intensity I 2 ( ) for an LGV beam polarized in x direction for = + 1 and = + 2 at different distance from the waist (left to right) z / z R = 0 , 0.5, 1, 2, 4. The upper row in each image group shows theoretically computed profiles and the lower experimentally recorded profiles.

Fig. 2.
Fig. 2.

Dependence of the angle of rotation of the cross-polarization intensity profile at z = z R on angular momentum index where experiment, Δ theory.

Fig. 3.
Fig. 3.

Cross-polarization intensity I 2 ( ) ( y component) for an LGV beam polarized in x direction for = 1 and = 2 at different distance from the waist (left to right) z / z R = 0 , 0.5, 1, 2, 4. The upper row in each image group shows theoretically computed profiles and the lower experimentally recorded profiles.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ψ p ( ρ , φ , z ) = C p w ( 2 ρ w ) | | L p | | ( 2 ρ 2 w 2 ) e ρ 2 / w 2 e i ( 2 p + | | + 1 ) θ e i k ρ 2 / 2 R e i φ ,
E 1 ( ) ( r ) = A ψ ( r ) ,
E 2 ( ) ( r ) = A 2 k 2 2 ψ ( r ) x y = A ψ ( r ) 2 ( k w o ) 2 [ sin ( 2 φ ) s 2 e 2 i θ + 2 i e sgn ( ) 2 i φ ( ( | | 1 ) s 2 ( w o w ) 2 ( w o w ) e i θ ) ] ,
E 3 ( ) ( r ) = i A k ψ ( r ) x = i 2 A ψ ( r ) k w o [ | | s ( w o w ) e sgn ( ) i φ cos φ s e i θ ] ,
I 1 ( ) ( r ) = 1 2 P o | ψ ( r ) | 2 ,
I 2 ( ) ( r ) = I 1 ( ) ( r ) ( k w o ) 4 [ s 4 sin 2 ( 2 φ ) + 4 s 2 ( w o w ) sin ( 2 φ ) sin [ θ sgn ( ) 2 φ ] + 4 2 ( w o w ) 2 4 ( | | 1 ) ( w o w ) 2 sin ( 2 φ ) sin [ 2 θ sgn ( ) 2 φ ] 8 2 ( | | 1 ) s 2 ( w o w ) 3 cos θ + 4 2 ( | | 1 ) 2 s 4 ( w o w ) 4 ] ,
I 3 ( ) ( r ) = I 1 ( ) ( r ) ( k w o ) 2 [ 2 s 2 cos 2 φ 4 | | ( w o w ) cos φ cos [ θ sgn ( ) φ ] + 2 2 s 2 ( w o w ) 2 ] ,
I 2 ( ) ( r ) = I 1 ( ) ( r ) ( k w o ) 4 ( s 4 sin 2 2 φ ) = I 1 ( ) ( r ) ( k w o ) 4 ( 4 X 2 Y 2 ) ,

Metrics