Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Photon diffusion in a homogeneous medium bounded externally or internally by an infinitely long circular cylindrical applicator. V. Steady-state fluorescence

Not Accessible

Your library or personal account may give you access

Abstract

As Part V in our series, this paper examines steady-state fluorescence photon diffusion in a homogenous medium that contains a homogenous distribution of fluorophores, and is enclosed by a “concave” circular cylindrical applicator or is enclosing a “convex” circular cylindrical applicator, both geometries being infinite in the longitudinal dimension. The aim is to predict by analytics and examine with the finite-element method the changing characteristics of the fluorescence-wavelength photon-fluence rate and the ratio (sometimes called the Born ratio) of it versus the excitation-wavelength photon-fluence rate, with respect to the source–detector distance. The analysis is performed for a source and a detector located on the medium–applicator interface and aligned either azimuthally or longitudinally in both concave and convex geometries. When compared to its steady-state counterparts on a semi-infinite medium–applicator interface with the same line-of-sight source–detector distance, the fluorescence-wavelength photon-fluence rate reduces faster along the longitudinal direction and slower along the azimuthal direction in the concave geometry, and conversely in the convex geometry. However, the Born ratio increases slower in both azimuthal and longitudinal directions in the concave geometry and faster in both directions in the convex geometry, respectively, when compared to that in the semi-infinite geometry.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Photon diffusion in a homogeneous medium bounded externally or internally by an infinitely long circular cylindrical applicator. I. Steady-state theory

Anqi Zhang, Daqing Piao, Charles F. Bunting, and Brian W. Pogue
J. Opt. Soc. Am. A 27(3) 648-662 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (71)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved