Abstract

We describe a quantitative orientation-independent differential interference contrast (DIC) microscope, which allows bias retardation to be modulated and shear directions to be switched rapidly without any mechanical movement. The shear direction is switched by a regular liquid-crystal cell sandwiched between two standard DIC prisms. Another liquid-crystal cell modulates the bias. Techniques for measuring parameters of DIC prisms and calibrating the bias are shown. Two sets of raw DIC images with the orthogonal shear directions are captured within 1 s. Then the quantitative image of optical path gradient distribution within a thin optical section is computed. The gradient data are used to obtain a quantitative distribution of the optical path, which represents the refractive index gradient or height distribution. Computing enhanced regular DIC images with any desired shear direction is also possible.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. H. Smith, “Interference microscope,” U.S. patent 2,601,175 (August5, 1947).
  2. F. H. Smith, “Microscopic interferometry,” Research 8, 385–395 (1955).
  3. G. Nomarski, “Interferential polarizing device for study of phase object,” U.S. patent 2,924,142 (May14, 1952).
  4. R. D. Allen, G. B. David, and G. Nomarski, “The Zeiss-Nomarski differential equipment for transmitted light microscopy,” Zeitschrift für Wissenschaftliche Mikroscopie und Mickroskopische Technik 69, 193–221(1969).
  5. S. Inoué, “Ultrathin optical sectioning and dynamic volume investigation with conventional light microscopy,” in Three-Dimensional Confocal Microscopy: Volume Investigation of Biological Systems, J. Stevens, ed. (Academic, 1994), pp. 397–419.
  6. R. Oldenbourg and M. Shribak, “Microscopes,” in Geometrical and Physical Optics, Polarized Light, Components and Instruments, M. Bass, ed., 3rd ed., Vol. 1 of Handbook of Optics (McGraw-Hill, 2010), pp. 28.1–28.62.
  7. G. M. Holzwarth, S. C. Webb, D. J. Kubinski, and N. S. Allen, “Improving DIC microcopy with polarization modulation,” J. Microsc. 188, 249–254 (1997).
    [CrossRef]
  8. G. M. Holzwarth, D. B. Hill, and E. B. McLaughlin, “Polarization-modulated differential-interference contrast microscopy with a variable retarder,” Appl. Opt. 39, 6288–6294 (2000).
    [CrossRef]
  9. H. Ooki, Y. Iwasaki, and J. Iwasaki, “Differential interference contrast microscope with differential detection for optimizing image contrast,” Appl. Opt. 35, 2230–2234 (1996).
    [CrossRef]
  10. P. Hariharan and M. Roy, “Achromatic phase-shifting for two-wavelength phase-stepping interferometry,” Opt. Commun. 126, 220–222 (1996).
    [CrossRef]
  11. M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214, 7–12 (2004).
    [CrossRef]
  12. S. V. King, A. R. Libertun, C. Preza, and C. J. Cogswell, “Calibration of a phase-shifting DIC microscope for quantitative phase imaging,” Proc. SPIE 6443, 64430M (2007).
  13. H. Ishiwata, M. Itoh, and T. Yatagai, “A new method of three-dimensional measurement by differential interference contrast microscope,” Opt. Commun. 260, 117–126 (2006).
    [CrossRef]
  14. H. Ishiwata, M. Itoh, and T. Yatagai, “A new analysis for extending the measurement range of the retardation-modulated differential interference contrast (RM-DIC) microscope,” Opt. Commun. 281, 1412–1423 (2008).
    [CrossRef]
  15. A. Noguchi, H. Ishiwata, M. Itoh, and T. Yatagai, “Optical sectioning in differential interference contrast microscopy,” Opt. Commun. 282, 3223–3230 (2009).
    [CrossRef]
  16. M. Shribak and S. Inoué, “Orientation-independent differential interference contrast microscopy,” Appl. Opt. 45, 460–469 (2006).
    [CrossRef]
  17. M. Shribak, “Orientation-independent differential interference contrast microscopy technique and device,” U.S. patent 7,564,618 (December17, 2003).
  18. M. Shribak, “Orientation-independent differential interference contrast microscopy technique and device,” U.S. patent 7,233,434 (December17, 2003).
  19. L. Fabre, Y. Inoue, T. Aoki, and S. Kawakami, “Differential interference contrast microscope using photonic crystals for phase imaging and three-dimensional shape reconstruction,” Appl. Opt. 48, 1347–1357 (2009).
    [CrossRef]
  20. C. Preza, D. L. Snyder, and J. A. Conchello, “Theoretical development and experimental evaluation of imaging models for differential-interference-contrast-microscopy,” J. Opt. Soc. Am. A 16, 2185–2199 (1999).
    [CrossRef]
  21. H. Hogan, “Getting the small picture,” Photonics Spectra 37(4), 58–64 (2003).
  22. R. Danz and P. Gretscher, “C-DIC: a new microscopy method for rational study of phase structures in incident light arrangement,” Thin Solid Films 462-463, 257–262 (2004).
    [CrossRef]
  23. M. Robinson, J. Chen, and G. Sharp, Polarization Engineering for LCD Projection (Wiley, 2005).
  24. R. A. Chipman, “Polarimetry,” in Geometrical and Physical Optics, Polarized Light, Components and Instruments, M. Bass, ed., 3rd ed., Vol. 1 of Handbook of Optics (McGraw-Hill, 2010), pp. 15.1–15.46.
  25. T. Scharf, Polarized Light in Liquid Crystals and Polymers (Wiley, 2007).
  26. E. Lueder, Liquid Crystal Displays: Addressing Schemes and Electro-Optical Effects (Wiley, 2010).
  27. S. Gauza and S.-T. Wu, “Liquid crystals,” in Atmospheric Optics, Modulators, Fiber Optics, X-Ray And Neutron Optics, M. Bass, ed., 3rd ed., Vol. 5 of Handbook of Optics (McGraw-Hill, 2010), pp. 8.1–8.40.
  28. E. D. Salmon and P. Tran, “High resolution video-enhanced differential-interference contrast (VE-DIC) light microscopy,” Meth. Cell Biol. 56, 153–184 (1998).
  29. B. J. Schnapp, “View single microtubules by video light microscopy,” Meth. Enzymol. 134, 561–573 (1986).
  30. M. Shribak, S. Inoué, and R. Oldenbourg, “Rectifiers for suppressing depolarization caused by differential transmission and phase shift in high NA lenses,” Proc. SPIE 4481, 163–174 (2001).
  31. M. Shribak, S. Inoué, and R. Oldenbourg, “Polarization aberrations caused by differential transmission and phase shift in high NA lenses: theory, measurement and rectification,” Opt. Eng. 41, 943–954 (2002).
    [CrossRef]
  32. P. Hariharan, Optical Interferometry, 2nd ed. (Academic, 2003).
  33. M. Shribak, Y. Otani, and T. Yoshizawa, “Autocollimation polarimeter for measuring two-dimensional distribution of birefringence,” Opt. Spectrosc. 89, 155–159 (2000).
    [CrossRef]
  34. M. Shribak and R. Oldenbourg, “Techniques for fast and sensitive measurements of two-dimensional birefringence distributions,” Appl. Opt. 42, 3009–3017 (2003).
    [CrossRef]
  35. M. Shribak, “Complete polarization state generator with one variable retarder and its application for fast and sensitive measuring of two-dimensional birefringence distribution,” J. Opt. Soc. Am. A 28, 410–419 (2011).
    [CrossRef]
  36. B. Heise, A. Sonnleitner, and E. P. Klement, “DIC image reconstruction on large cell scans,” Microsc. Res. Tech. 66, 312–320 (2005).
    [CrossRef]
  37. C. Preza, “Rotational-diversity phase estimation from differential-interference-contrast microscopy images,” J. Opt. Soc. Am. A 17, 415–424 (2000).
    [CrossRef]
  38. E. B. van Munster, L. J. van Vliet, and J. A. Aten, “Reconstruction of optical pathlength distributions from images obtained by a wide-field differential interference contrast microscope,” J. Microsc. 188, 149–157 (1997).
    [CrossRef]
  39. S.-K. Yu, T.-K. Liu, and S.-C. Lin, “Height measurement of transparent objects by adopting differential interference contrast technology,” Appl. Opt. 49, 2588–2596 (2010).
    [CrossRef]
  40. S. A. Prahl, A. Dayton, K. Juedes, E. J. Sanchez, R. P. Lopez, and D. D. Duncan, “Experimental validation of phase using Nomarski microscopy with an extended Fried algorithm,” J. Opt. Soc. Am. A 29, 2104–2109 (2012).
    [CrossRef]
  41. T. J. Holmes, S. Bhattacharyya, J. A. Cooper, D. Hanzel, V. Krishnamurthi, W. Lin, B. Roysam, D. H. Szarowski, and J. N. Turner, “Light microscopic images reconstructed by maximum likelihood deconvolution,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, 1995) pp. 389–402.
  42. D. Biggs and M. Andrews, “Acceleration of iterative image restoration algorithms,” Appl. Opt. 36, 1766–1775 (1997).
    [CrossRef]
  43. M. Shribak, J. LaFountain, D. Biggs, and S. Inoué, “Orientation-independent differential interference contrast microscopy and its combination with an orientation-independent polarization system,” J. Biomed. Opt. 13, 014011 (2008).
    [CrossRef]
  44. S. B. Mehta and C. J. R. Sheppard, “Sample-less calibration of the differential interference contrast microscope,” Appl. Opt. 49, 2954–2968 (2010).
    [CrossRef]
  45. C. B. Müller, K. Weiß, W. Richtering, A. Loman, and J. Enderlein, “Calibrating differential interference contrast microscopy with dual-focus fluorescence correlation spectroscopy,” Opt. Express 16, 4322–4329 (2008).
    [CrossRef]
  46. D. D. Duncan, D. G. Fischer, A. Dayton, and S. A. Prahl, “Quantitative Carré differential interference contrast microscopy to assess phase and amplitude,” J. Opt. Soc. Am. A 28, 1297–1306(2011).
    [CrossRef]
  47. M. I. Shribak, “Device for measuring birefringence of reflecting optical data carrier,” USSR patent 1,414,097 (March17, 1986).
  48. M. I. Shribak, “A compensation method for measuring birefringence,” Sov. J. Opt. Technol. 60, 546–549 (1993).
  49. M. I. Shribak, “Autocollimating detectors of birefringence,” Proc. SPIE 2782, 805–813 (1996).
  50. N. H. Hartshorne and A. Stuart, Crystals and the Polarizing Microscope, 4th ed. (Edward Arnold, 1970).
  51. M. I. Shribak, “Polarization separation of the forward and reverse beams in the reading of reflective carriers of information,” Sov. J. Opt. Technol. 53, 389–391 (1986).

2012

2011

2010

2009

L. Fabre, Y. Inoue, T. Aoki, and S. Kawakami, “Differential interference contrast microscope using photonic crystals for phase imaging and three-dimensional shape reconstruction,” Appl. Opt. 48, 1347–1357 (2009).
[CrossRef]

A. Noguchi, H. Ishiwata, M. Itoh, and T. Yatagai, “Optical sectioning in differential interference contrast microscopy,” Opt. Commun. 282, 3223–3230 (2009).
[CrossRef]

2008

H. Ishiwata, M. Itoh, and T. Yatagai, “A new analysis for extending the measurement range of the retardation-modulated differential interference contrast (RM-DIC) microscope,” Opt. Commun. 281, 1412–1423 (2008).
[CrossRef]

C. B. Müller, K. Weiß, W. Richtering, A. Loman, and J. Enderlein, “Calibrating differential interference contrast microscopy with dual-focus fluorescence correlation spectroscopy,” Opt. Express 16, 4322–4329 (2008).
[CrossRef]

M. Shribak, J. LaFountain, D. Biggs, and S. Inoué, “Orientation-independent differential interference contrast microscopy and its combination with an orientation-independent polarization system,” J. Biomed. Opt. 13, 014011 (2008).
[CrossRef]

2007

S. V. King, A. R. Libertun, C. Preza, and C. J. Cogswell, “Calibration of a phase-shifting DIC microscope for quantitative phase imaging,” Proc. SPIE 6443, 64430M (2007).

2006

H. Ishiwata, M. Itoh, and T. Yatagai, “A new method of three-dimensional measurement by differential interference contrast microscope,” Opt. Commun. 260, 117–126 (2006).
[CrossRef]

M. Shribak and S. Inoué, “Orientation-independent differential interference contrast microscopy,” Appl. Opt. 45, 460–469 (2006).
[CrossRef]

2005

B. Heise, A. Sonnleitner, and E. P. Klement, “DIC image reconstruction on large cell scans,” Microsc. Res. Tech. 66, 312–320 (2005).
[CrossRef]

2004

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214, 7–12 (2004).
[CrossRef]

R. Danz and P. Gretscher, “C-DIC: a new microscopy method for rational study of phase structures in incident light arrangement,” Thin Solid Films 462-463, 257–262 (2004).
[CrossRef]

2003

2002

M. Shribak, S. Inoué, and R. Oldenbourg, “Polarization aberrations caused by differential transmission and phase shift in high NA lenses: theory, measurement and rectification,” Opt. Eng. 41, 943–954 (2002).
[CrossRef]

2001

M. Shribak, S. Inoué, and R. Oldenbourg, “Rectifiers for suppressing depolarization caused by differential transmission and phase shift in high NA lenses,” Proc. SPIE 4481, 163–174 (2001).

2000

1999

1998

E. D. Salmon and P. Tran, “High resolution video-enhanced differential-interference contrast (VE-DIC) light microscopy,” Meth. Cell Biol. 56, 153–184 (1998).

1997

E. B. van Munster, L. J. van Vliet, and J. A. Aten, “Reconstruction of optical pathlength distributions from images obtained by a wide-field differential interference contrast microscope,” J. Microsc. 188, 149–157 (1997).
[CrossRef]

G. M. Holzwarth, S. C. Webb, D. J. Kubinski, and N. S. Allen, “Improving DIC microcopy with polarization modulation,” J. Microsc. 188, 249–254 (1997).
[CrossRef]

D. Biggs and M. Andrews, “Acceleration of iterative image restoration algorithms,” Appl. Opt. 36, 1766–1775 (1997).
[CrossRef]

1996

H. Ooki, Y. Iwasaki, and J. Iwasaki, “Differential interference contrast microscope with differential detection for optimizing image contrast,” Appl. Opt. 35, 2230–2234 (1996).
[CrossRef]

M. I. Shribak, “Autocollimating detectors of birefringence,” Proc. SPIE 2782, 805–813 (1996).

P. Hariharan and M. Roy, “Achromatic phase-shifting for two-wavelength phase-stepping interferometry,” Opt. Commun. 126, 220–222 (1996).
[CrossRef]

1993

M. I. Shribak, “A compensation method for measuring birefringence,” Sov. J. Opt. Technol. 60, 546–549 (1993).

1986

M. I. Shribak, “Polarization separation of the forward and reverse beams in the reading of reflective carriers of information,” Sov. J. Opt. Technol. 53, 389–391 (1986).

B. J. Schnapp, “View single microtubules by video light microscopy,” Meth. Enzymol. 134, 561–573 (1986).

1969

R. D. Allen, G. B. David, and G. Nomarski, “The Zeiss-Nomarski differential equipment for transmitted light microscopy,” Zeitschrift für Wissenschaftliche Mikroscopie und Mickroskopische Technik 69, 193–221(1969).

1955

F. H. Smith, “Microscopic interferometry,” Research 8, 385–395 (1955).

Allen, N. S.

G. M. Holzwarth, S. C. Webb, D. J. Kubinski, and N. S. Allen, “Improving DIC microcopy with polarization modulation,” J. Microsc. 188, 249–254 (1997).
[CrossRef]

Allen, R. D.

R. D. Allen, G. B. David, and G. Nomarski, “The Zeiss-Nomarski differential equipment for transmitted light microscopy,” Zeitschrift für Wissenschaftliche Mikroscopie und Mickroskopische Technik 69, 193–221(1969).

Andrews, M.

Aoki, T.

Arnison, M. R.

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214, 7–12 (2004).
[CrossRef]

Aten, J. A.

E. B. van Munster, L. J. van Vliet, and J. A. Aten, “Reconstruction of optical pathlength distributions from images obtained by a wide-field differential interference contrast microscope,” J. Microsc. 188, 149–157 (1997).
[CrossRef]

Bhattacharyya, S.

T. J. Holmes, S. Bhattacharyya, J. A. Cooper, D. Hanzel, V. Krishnamurthi, W. Lin, B. Roysam, D. H. Szarowski, and J. N. Turner, “Light microscopic images reconstructed by maximum likelihood deconvolution,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, 1995) pp. 389–402.

Biggs, D.

M. Shribak, J. LaFountain, D. Biggs, and S. Inoué, “Orientation-independent differential interference contrast microscopy and its combination with an orientation-independent polarization system,” J. Biomed. Opt. 13, 014011 (2008).
[CrossRef]

D. Biggs and M. Andrews, “Acceleration of iterative image restoration algorithms,” Appl. Opt. 36, 1766–1775 (1997).
[CrossRef]

Chen, J.

M. Robinson, J. Chen, and G. Sharp, Polarization Engineering for LCD Projection (Wiley, 2005).

Chipman, R. A.

R. A. Chipman, “Polarimetry,” in Geometrical and Physical Optics, Polarized Light, Components and Instruments, M. Bass, ed., 3rd ed., Vol. 1 of Handbook of Optics (McGraw-Hill, 2010), pp. 15.1–15.46.

Cogswell, C. J.

S. V. King, A. R. Libertun, C. Preza, and C. J. Cogswell, “Calibration of a phase-shifting DIC microscope for quantitative phase imaging,” Proc. SPIE 6443, 64430M (2007).

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214, 7–12 (2004).
[CrossRef]

Conchello, J. A.

Cooper, J. A.

T. J. Holmes, S. Bhattacharyya, J. A. Cooper, D. Hanzel, V. Krishnamurthi, W. Lin, B. Roysam, D. H. Szarowski, and J. N. Turner, “Light microscopic images reconstructed by maximum likelihood deconvolution,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, 1995) pp. 389–402.

Danz, R.

R. Danz and P. Gretscher, “C-DIC: a new microscopy method for rational study of phase structures in incident light arrangement,” Thin Solid Films 462-463, 257–262 (2004).
[CrossRef]

David, G. B.

R. D. Allen, G. B. David, and G. Nomarski, “The Zeiss-Nomarski differential equipment for transmitted light microscopy,” Zeitschrift für Wissenschaftliche Mikroscopie und Mickroskopische Technik 69, 193–221(1969).

Dayton, A.

Duncan, D. D.

Enderlein, J.

Fabre, L.

Fischer, D. G.

Gauza, S.

S. Gauza and S.-T. Wu, “Liquid crystals,” in Atmospheric Optics, Modulators, Fiber Optics, X-Ray And Neutron Optics, M. Bass, ed., 3rd ed., Vol. 5 of Handbook of Optics (McGraw-Hill, 2010), pp. 8.1–8.40.

Gretscher, P.

R. Danz and P. Gretscher, “C-DIC: a new microscopy method for rational study of phase structures in incident light arrangement,” Thin Solid Films 462-463, 257–262 (2004).
[CrossRef]

Hanzel, D.

T. J. Holmes, S. Bhattacharyya, J. A. Cooper, D. Hanzel, V. Krishnamurthi, W. Lin, B. Roysam, D. H. Szarowski, and J. N. Turner, “Light microscopic images reconstructed by maximum likelihood deconvolution,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, 1995) pp. 389–402.

Hariharan, P.

P. Hariharan and M. Roy, “Achromatic phase-shifting for two-wavelength phase-stepping interferometry,” Opt. Commun. 126, 220–222 (1996).
[CrossRef]

P. Hariharan, Optical Interferometry, 2nd ed. (Academic, 2003).

Hartshorne, N. H.

N. H. Hartshorne and A. Stuart, Crystals and the Polarizing Microscope, 4th ed. (Edward Arnold, 1970).

Heise, B.

B. Heise, A. Sonnleitner, and E. P. Klement, “DIC image reconstruction on large cell scans,” Microsc. Res. Tech. 66, 312–320 (2005).
[CrossRef]

Hill, D. B.

Hogan, H.

H. Hogan, “Getting the small picture,” Photonics Spectra 37(4), 58–64 (2003).

Holmes, T. J.

T. J. Holmes, S. Bhattacharyya, J. A. Cooper, D. Hanzel, V. Krishnamurthi, W. Lin, B. Roysam, D. H. Szarowski, and J. N. Turner, “Light microscopic images reconstructed by maximum likelihood deconvolution,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, 1995) pp. 389–402.

Holzwarth, G. M.

G. M. Holzwarth, D. B. Hill, and E. B. McLaughlin, “Polarization-modulated differential-interference contrast microscopy with a variable retarder,” Appl. Opt. 39, 6288–6294 (2000).
[CrossRef]

G. M. Holzwarth, S. C. Webb, D. J. Kubinski, and N. S. Allen, “Improving DIC microcopy with polarization modulation,” J. Microsc. 188, 249–254 (1997).
[CrossRef]

Inoue, Y.

Inoué, S.

M. Shribak, J. LaFountain, D. Biggs, and S. Inoué, “Orientation-independent differential interference contrast microscopy and its combination with an orientation-independent polarization system,” J. Biomed. Opt. 13, 014011 (2008).
[CrossRef]

M. Shribak and S. Inoué, “Orientation-independent differential interference contrast microscopy,” Appl. Opt. 45, 460–469 (2006).
[CrossRef]

M. Shribak, S. Inoué, and R. Oldenbourg, “Polarization aberrations caused by differential transmission and phase shift in high NA lenses: theory, measurement and rectification,” Opt. Eng. 41, 943–954 (2002).
[CrossRef]

M. Shribak, S. Inoué, and R. Oldenbourg, “Rectifiers for suppressing depolarization caused by differential transmission and phase shift in high NA lenses,” Proc. SPIE 4481, 163–174 (2001).

S. Inoué, “Ultrathin optical sectioning and dynamic volume investigation with conventional light microscopy,” in Three-Dimensional Confocal Microscopy: Volume Investigation of Biological Systems, J. Stevens, ed. (Academic, 1994), pp. 397–419.

Ishiwata, H.

A. Noguchi, H. Ishiwata, M. Itoh, and T. Yatagai, “Optical sectioning in differential interference contrast microscopy,” Opt. Commun. 282, 3223–3230 (2009).
[CrossRef]

H. Ishiwata, M. Itoh, and T. Yatagai, “A new analysis for extending the measurement range of the retardation-modulated differential interference contrast (RM-DIC) microscope,” Opt. Commun. 281, 1412–1423 (2008).
[CrossRef]

H. Ishiwata, M. Itoh, and T. Yatagai, “A new method of three-dimensional measurement by differential interference contrast microscope,” Opt. Commun. 260, 117–126 (2006).
[CrossRef]

Itoh, M.

A. Noguchi, H. Ishiwata, M. Itoh, and T. Yatagai, “Optical sectioning in differential interference contrast microscopy,” Opt. Commun. 282, 3223–3230 (2009).
[CrossRef]

H. Ishiwata, M. Itoh, and T. Yatagai, “A new analysis for extending the measurement range of the retardation-modulated differential interference contrast (RM-DIC) microscope,” Opt. Commun. 281, 1412–1423 (2008).
[CrossRef]

H. Ishiwata, M. Itoh, and T. Yatagai, “A new method of three-dimensional measurement by differential interference contrast microscope,” Opt. Commun. 260, 117–126 (2006).
[CrossRef]

Iwasaki, J.

Iwasaki, Y.

Juedes, K.

Kawakami, S.

King, S. V.

S. V. King, A. R. Libertun, C. Preza, and C. J. Cogswell, “Calibration of a phase-shifting DIC microscope for quantitative phase imaging,” Proc. SPIE 6443, 64430M (2007).

Klement, E. P.

B. Heise, A. Sonnleitner, and E. P. Klement, “DIC image reconstruction on large cell scans,” Microsc. Res. Tech. 66, 312–320 (2005).
[CrossRef]

Krishnamurthi, V.

T. J. Holmes, S. Bhattacharyya, J. A. Cooper, D. Hanzel, V. Krishnamurthi, W. Lin, B. Roysam, D. H. Szarowski, and J. N. Turner, “Light microscopic images reconstructed by maximum likelihood deconvolution,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, 1995) pp. 389–402.

Kubinski, D. J.

G. M. Holzwarth, S. C. Webb, D. J. Kubinski, and N. S. Allen, “Improving DIC microcopy with polarization modulation,” J. Microsc. 188, 249–254 (1997).
[CrossRef]

LaFountain, J.

M. Shribak, J. LaFountain, D. Biggs, and S. Inoué, “Orientation-independent differential interference contrast microscopy and its combination with an orientation-independent polarization system,” J. Biomed. Opt. 13, 014011 (2008).
[CrossRef]

Larkin, K. G.

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214, 7–12 (2004).
[CrossRef]

Libertun, A. R.

S. V. King, A. R. Libertun, C. Preza, and C. J. Cogswell, “Calibration of a phase-shifting DIC microscope for quantitative phase imaging,” Proc. SPIE 6443, 64430M (2007).

Lin, S.-C.

Lin, W.

T. J. Holmes, S. Bhattacharyya, J. A. Cooper, D. Hanzel, V. Krishnamurthi, W. Lin, B. Roysam, D. H. Szarowski, and J. N. Turner, “Light microscopic images reconstructed by maximum likelihood deconvolution,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, 1995) pp. 389–402.

Liu, T.-K.

Loman, A.

Lopez, R. P.

Lueder, E.

E. Lueder, Liquid Crystal Displays: Addressing Schemes and Electro-Optical Effects (Wiley, 2010).

McLaughlin, E. B.

Mehta, S. B.

Müller, C. B.

Noguchi, A.

A. Noguchi, H. Ishiwata, M. Itoh, and T. Yatagai, “Optical sectioning in differential interference contrast microscopy,” Opt. Commun. 282, 3223–3230 (2009).
[CrossRef]

Nomarski, G.

R. D. Allen, G. B. David, and G. Nomarski, “The Zeiss-Nomarski differential equipment for transmitted light microscopy,” Zeitschrift für Wissenschaftliche Mikroscopie und Mickroskopische Technik 69, 193–221(1969).

G. Nomarski, “Interferential polarizing device for study of phase object,” U.S. patent 2,924,142 (May14, 1952).

Oldenbourg, R.

M. Shribak and R. Oldenbourg, “Techniques for fast and sensitive measurements of two-dimensional birefringence distributions,” Appl. Opt. 42, 3009–3017 (2003).
[CrossRef]

M. Shribak, S. Inoué, and R. Oldenbourg, “Polarization aberrations caused by differential transmission and phase shift in high NA lenses: theory, measurement and rectification,” Opt. Eng. 41, 943–954 (2002).
[CrossRef]

M. Shribak, S. Inoué, and R. Oldenbourg, “Rectifiers for suppressing depolarization caused by differential transmission and phase shift in high NA lenses,” Proc. SPIE 4481, 163–174 (2001).

R. Oldenbourg and M. Shribak, “Microscopes,” in Geometrical and Physical Optics, Polarized Light, Components and Instruments, M. Bass, ed., 3rd ed., Vol. 1 of Handbook of Optics (McGraw-Hill, 2010), pp. 28.1–28.62.

Ooki, H.

Otani, Y.

M. Shribak, Y. Otani, and T. Yoshizawa, “Autocollimation polarimeter for measuring two-dimensional distribution of birefringence,” Opt. Spectrosc. 89, 155–159 (2000).
[CrossRef]

Prahl, S. A.

Preza, C.

Richtering, W.

Robinson, M.

M. Robinson, J. Chen, and G. Sharp, Polarization Engineering for LCD Projection (Wiley, 2005).

Roy, M.

P. Hariharan and M. Roy, “Achromatic phase-shifting for two-wavelength phase-stepping interferometry,” Opt. Commun. 126, 220–222 (1996).
[CrossRef]

Roysam, B.

T. J. Holmes, S. Bhattacharyya, J. A. Cooper, D. Hanzel, V. Krishnamurthi, W. Lin, B. Roysam, D. H. Szarowski, and J. N. Turner, “Light microscopic images reconstructed by maximum likelihood deconvolution,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, 1995) pp. 389–402.

Salmon, E. D.

E. D. Salmon and P. Tran, “High resolution video-enhanced differential-interference contrast (VE-DIC) light microscopy,” Meth. Cell Biol. 56, 153–184 (1998).

Sanchez, E. J.

Scharf, T.

T. Scharf, Polarized Light in Liquid Crystals and Polymers (Wiley, 2007).

Schnapp, B. J.

B. J. Schnapp, “View single microtubules by video light microscopy,” Meth. Enzymol. 134, 561–573 (1986).

Sharp, G.

M. Robinson, J. Chen, and G. Sharp, Polarization Engineering for LCD Projection (Wiley, 2005).

Sheppard, C. J. R.

S. B. Mehta and C. J. R. Sheppard, “Sample-less calibration of the differential interference contrast microscope,” Appl. Opt. 49, 2954–2968 (2010).
[CrossRef]

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214, 7–12 (2004).
[CrossRef]

Shribak, M.

M. Shribak, “Complete polarization state generator with one variable retarder and its application for fast and sensitive measuring of two-dimensional birefringence distribution,” J. Opt. Soc. Am. A 28, 410–419 (2011).
[CrossRef]

M. Shribak, J. LaFountain, D. Biggs, and S. Inoué, “Orientation-independent differential interference contrast microscopy and its combination with an orientation-independent polarization system,” J. Biomed. Opt. 13, 014011 (2008).
[CrossRef]

M. Shribak and S. Inoué, “Orientation-independent differential interference contrast microscopy,” Appl. Opt. 45, 460–469 (2006).
[CrossRef]

M. Shribak and R. Oldenbourg, “Techniques for fast and sensitive measurements of two-dimensional birefringence distributions,” Appl. Opt. 42, 3009–3017 (2003).
[CrossRef]

M. Shribak, S. Inoué, and R. Oldenbourg, “Polarization aberrations caused by differential transmission and phase shift in high NA lenses: theory, measurement and rectification,” Opt. Eng. 41, 943–954 (2002).
[CrossRef]

M. Shribak, S. Inoué, and R. Oldenbourg, “Rectifiers for suppressing depolarization caused by differential transmission and phase shift in high NA lenses,” Proc. SPIE 4481, 163–174 (2001).

M. Shribak, Y. Otani, and T. Yoshizawa, “Autocollimation polarimeter for measuring two-dimensional distribution of birefringence,” Opt. Spectrosc. 89, 155–159 (2000).
[CrossRef]

M. Shribak, “Orientation-independent differential interference contrast microscopy technique and device,” U.S. patent 7,564,618 (December17, 2003).

M. Shribak, “Orientation-independent differential interference contrast microscopy technique and device,” U.S. patent 7,233,434 (December17, 2003).

R. Oldenbourg and M. Shribak, “Microscopes,” in Geometrical and Physical Optics, Polarized Light, Components and Instruments, M. Bass, ed., 3rd ed., Vol. 1 of Handbook of Optics (McGraw-Hill, 2010), pp. 28.1–28.62.

Shribak, M. I.

M. I. Shribak, “Autocollimating detectors of birefringence,” Proc. SPIE 2782, 805–813 (1996).

M. I. Shribak, “A compensation method for measuring birefringence,” Sov. J. Opt. Technol. 60, 546–549 (1993).

M. I. Shribak, “Polarization separation of the forward and reverse beams in the reading of reflective carriers of information,” Sov. J. Opt. Technol. 53, 389–391 (1986).

M. I. Shribak, “Device for measuring birefringence of reflecting optical data carrier,” USSR patent 1,414,097 (March17, 1986).

Smith, F. H.

F. H. Smith, “Microscopic interferometry,” Research 8, 385–395 (1955).

F. H. Smith, “Interference microscope,” U.S. patent 2,601,175 (August5, 1947).

Smith, N. I.

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214, 7–12 (2004).
[CrossRef]

Snyder, D. L.

Sonnleitner, A.

B. Heise, A. Sonnleitner, and E. P. Klement, “DIC image reconstruction on large cell scans,” Microsc. Res. Tech. 66, 312–320 (2005).
[CrossRef]

Stuart, A.

N. H. Hartshorne and A. Stuart, Crystals and the Polarizing Microscope, 4th ed. (Edward Arnold, 1970).

Szarowski, D. H.

T. J. Holmes, S. Bhattacharyya, J. A. Cooper, D. Hanzel, V. Krishnamurthi, W. Lin, B. Roysam, D. H. Szarowski, and J. N. Turner, “Light microscopic images reconstructed by maximum likelihood deconvolution,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, 1995) pp. 389–402.

Tran, P.

E. D. Salmon and P. Tran, “High resolution video-enhanced differential-interference contrast (VE-DIC) light microscopy,” Meth. Cell Biol. 56, 153–184 (1998).

Turner, J. N.

T. J. Holmes, S. Bhattacharyya, J. A. Cooper, D. Hanzel, V. Krishnamurthi, W. Lin, B. Roysam, D. H. Szarowski, and J. N. Turner, “Light microscopic images reconstructed by maximum likelihood deconvolution,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, 1995) pp. 389–402.

van Munster, E. B.

E. B. van Munster, L. J. van Vliet, and J. A. Aten, “Reconstruction of optical pathlength distributions from images obtained by a wide-field differential interference contrast microscope,” J. Microsc. 188, 149–157 (1997).
[CrossRef]

van Vliet, L. J.

E. B. van Munster, L. J. van Vliet, and J. A. Aten, “Reconstruction of optical pathlength distributions from images obtained by a wide-field differential interference contrast microscope,” J. Microsc. 188, 149–157 (1997).
[CrossRef]

Webb, S. C.

G. M. Holzwarth, S. C. Webb, D. J. Kubinski, and N. S. Allen, “Improving DIC microcopy with polarization modulation,” J. Microsc. 188, 249–254 (1997).
[CrossRef]

Weiß, K.

Wu, S.-T.

S. Gauza and S.-T. Wu, “Liquid crystals,” in Atmospheric Optics, Modulators, Fiber Optics, X-Ray And Neutron Optics, M. Bass, ed., 3rd ed., Vol. 5 of Handbook of Optics (McGraw-Hill, 2010), pp. 8.1–8.40.

Yatagai, T.

A. Noguchi, H. Ishiwata, M. Itoh, and T. Yatagai, “Optical sectioning in differential interference contrast microscopy,” Opt. Commun. 282, 3223–3230 (2009).
[CrossRef]

H. Ishiwata, M. Itoh, and T. Yatagai, “A new analysis for extending the measurement range of the retardation-modulated differential interference contrast (RM-DIC) microscope,” Opt. Commun. 281, 1412–1423 (2008).
[CrossRef]

H. Ishiwata, M. Itoh, and T. Yatagai, “A new method of three-dimensional measurement by differential interference contrast microscope,” Opt. Commun. 260, 117–126 (2006).
[CrossRef]

Yoshizawa, T.

M. Shribak, Y. Otani, and T. Yoshizawa, “Autocollimation polarimeter for measuring two-dimensional distribution of birefringence,” Opt. Spectrosc. 89, 155–159 (2000).
[CrossRef]

Yu, S.-K.

Appl. Opt.

J. Biomed. Opt.

M. Shribak, J. LaFountain, D. Biggs, and S. Inoué, “Orientation-independent differential interference contrast microscopy and its combination with an orientation-independent polarization system,” J. Biomed. Opt. 13, 014011 (2008).
[CrossRef]

J. Microsc.

E. B. van Munster, L. J. van Vliet, and J. A. Aten, “Reconstruction of optical pathlength distributions from images obtained by a wide-field differential interference contrast microscope,” J. Microsc. 188, 149–157 (1997).
[CrossRef]

G. M. Holzwarth, S. C. Webb, D. J. Kubinski, and N. S. Allen, “Improving DIC microcopy with polarization modulation,” J. Microsc. 188, 249–254 (1997).
[CrossRef]

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214, 7–12 (2004).
[CrossRef]

J. Opt. Soc. Am. A

Meth. Cell Biol.

E. D. Salmon and P. Tran, “High resolution video-enhanced differential-interference contrast (VE-DIC) light microscopy,” Meth. Cell Biol. 56, 153–184 (1998).

Meth. Enzymol.

B. J. Schnapp, “View single microtubules by video light microscopy,” Meth. Enzymol. 134, 561–573 (1986).

Microsc. Res. Tech.

B. Heise, A. Sonnleitner, and E. P. Klement, “DIC image reconstruction on large cell scans,” Microsc. Res. Tech. 66, 312–320 (2005).
[CrossRef]

Opt. Commun.

P. Hariharan and M. Roy, “Achromatic phase-shifting for two-wavelength phase-stepping interferometry,” Opt. Commun. 126, 220–222 (1996).
[CrossRef]

H. Ishiwata, M. Itoh, and T. Yatagai, “A new method of three-dimensional measurement by differential interference contrast microscope,” Opt. Commun. 260, 117–126 (2006).
[CrossRef]

H. Ishiwata, M. Itoh, and T. Yatagai, “A new analysis for extending the measurement range of the retardation-modulated differential interference contrast (RM-DIC) microscope,” Opt. Commun. 281, 1412–1423 (2008).
[CrossRef]

A. Noguchi, H. Ishiwata, M. Itoh, and T. Yatagai, “Optical sectioning in differential interference contrast microscopy,” Opt. Commun. 282, 3223–3230 (2009).
[CrossRef]

Opt. Eng.

M. Shribak, S. Inoué, and R. Oldenbourg, “Polarization aberrations caused by differential transmission and phase shift in high NA lenses: theory, measurement and rectification,” Opt. Eng. 41, 943–954 (2002).
[CrossRef]

Opt. Express

Opt. Spectrosc.

M. Shribak, Y. Otani, and T. Yoshizawa, “Autocollimation polarimeter for measuring two-dimensional distribution of birefringence,” Opt. Spectrosc. 89, 155–159 (2000).
[CrossRef]

Photonics Spectra

H. Hogan, “Getting the small picture,” Photonics Spectra 37(4), 58–64 (2003).

Proc. SPIE

S. V. King, A. R. Libertun, C. Preza, and C. J. Cogswell, “Calibration of a phase-shifting DIC microscope for quantitative phase imaging,” Proc. SPIE 6443, 64430M (2007).

M. Shribak, S. Inoué, and R. Oldenbourg, “Rectifiers for suppressing depolarization caused by differential transmission and phase shift in high NA lenses,” Proc. SPIE 4481, 163–174 (2001).

M. I. Shribak, “Autocollimating detectors of birefringence,” Proc. SPIE 2782, 805–813 (1996).

Research

F. H. Smith, “Microscopic interferometry,” Research 8, 385–395 (1955).

Sov. J. Opt. Technol.

M. I. Shribak, “Polarization separation of the forward and reverse beams in the reading of reflective carriers of information,” Sov. J. Opt. Technol. 53, 389–391 (1986).

M. I. Shribak, “A compensation method for measuring birefringence,” Sov. J. Opt. Technol. 60, 546–549 (1993).

Thin Solid Films

R. Danz and P. Gretscher, “C-DIC: a new microscopy method for rational study of phase structures in incident light arrangement,” Thin Solid Films 462-463, 257–262 (2004).
[CrossRef]

Zeitschrift für Wissenschaftliche Mikroscopie und Mickroskopische Technik

R. D. Allen, G. B. David, and G. Nomarski, “The Zeiss-Nomarski differential equipment for transmitted light microscopy,” Zeitschrift für Wissenschaftliche Mikroscopie und Mickroskopische Technik 69, 193–221(1969).

Other

S. Inoué, “Ultrathin optical sectioning and dynamic volume investigation with conventional light microscopy,” in Three-Dimensional Confocal Microscopy: Volume Investigation of Biological Systems, J. Stevens, ed. (Academic, 1994), pp. 397–419.

R. Oldenbourg and M. Shribak, “Microscopes,” in Geometrical and Physical Optics, Polarized Light, Components and Instruments, M. Bass, ed., 3rd ed., Vol. 1 of Handbook of Optics (McGraw-Hill, 2010), pp. 28.1–28.62.

G. Nomarski, “Interferential polarizing device for study of phase object,” U.S. patent 2,924,142 (May14, 1952).

M. Robinson, J. Chen, and G. Sharp, Polarization Engineering for LCD Projection (Wiley, 2005).

R. A. Chipman, “Polarimetry,” in Geometrical and Physical Optics, Polarized Light, Components and Instruments, M. Bass, ed., 3rd ed., Vol. 1 of Handbook of Optics (McGraw-Hill, 2010), pp. 15.1–15.46.

T. Scharf, Polarized Light in Liquid Crystals and Polymers (Wiley, 2007).

E. Lueder, Liquid Crystal Displays: Addressing Schemes and Electro-Optical Effects (Wiley, 2010).

S. Gauza and S.-T. Wu, “Liquid crystals,” in Atmospheric Optics, Modulators, Fiber Optics, X-Ray And Neutron Optics, M. Bass, ed., 3rd ed., Vol. 5 of Handbook of Optics (McGraw-Hill, 2010), pp. 8.1–8.40.

M. Shribak, “Orientation-independent differential interference contrast microscopy technique and device,” U.S. patent 7,564,618 (December17, 2003).

M. Shribak, “Orientation-independent differential interference contrast microscopy technique and device,” U.S. patent 7,233,434 (December17, 2003).

M. I. Shribak, “Device for measuring birefringence of reflecting optical data carrier,” USSR patent 1,414,097 (March17, 1986).

N. H. Hartshorne and A. Stuart, Crystals and the Polarizing Microscope, 4th ed. (Edward Arnold, 1970).

P. Hariharan, Optical Interferometry, 2nd ed. (Academic, 2003).

F. H. Smith, “Interference microscope,” U.S. patent 2,601,175 (August5, 1947).

T. J. Holmes, S. Bhattacharyya, J. A. Cooper, D. Hanzel, V. Krishnamurthi, W. Lin, B. Roysam, D. H. Szarowski, and J. N. Turner, “Light microscopic images reconstructed by maximum likelihood deconvolution,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, 1995) pp. 389–402.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Principal optical schematics of OI-DIC microscope for transmitted light.

Fig. 2.
Fig. 2.

Principal optical schematics of OI-DIC microscope for reflected light.

Fig. 3.
Fig. 3.

Design and principle of work of beam-shearing assembly.

Fig. 4.
Fig. 4.

OI-DIC images of the hematoxylin-eosin (H&E) stained breast cancer tissue sample.

Fig. 5.
Fig. 5.

Crane fly spermatocyte (full metaphase of meiosis-I). OI-DIC phase image; brightness is linearly proportional to refractive index.

Fig. 6.
Fig. 6.

Angular splitting the incident beam with two orthogonal polarization components Ex and Ey by a DIC prism into two output beams with shear angle ε.

Fig. 7.
Fig. 7.

Setup for measuring the shear angle of a DIC prism employing the return-path birefringence compensator.

Tables (1)

Tables Icon

Table 1. Measured Shear Angles, and Computed Shear Distances and Ratios of Shear Distance to Airy Disk Radius for Various Combinations of Olympus DIC Prisms and Objective Lenses at Wavelength 532 nm

Equations (47)

Equations on this page are rendered with MathJax. Learn more.

fcε1=fobε2=d.
|A0(0,0)(Ex,Ey)|{DIC1x-shear|A1(d2,0)(Ex,0)|rotatorOFF|A2(d2,0)(Ex,0)|DIC2y-shear|A3(d2,d2)(Ex,0)|DIC1xshear|B1(d2,0)(0,Ey)|rotatorOFF|B2(d2,0)(0,Ey)|DIC2y-shear|B3(d2,d2)(0,Ey)|,
|A0(0,0)(Ex,Ey)|{DIC1x-shear|A1(d2,0)(Ex,0)|rotatorON|A2(d2,0)(0,Ey)|DIC2y-shear|A3(d2,d2)(0,Ey)|DIC1x-shear|B1(d2,0)(0,Ey)|rotatorON|B2(d2,0)(Ex,0)|DIC2y-shear|B3(d2,d2)(Ex,0)|.
I(x,y)=I˜sin2{πλ[Λ+d·ϕ(x,y)]}+Ic(x,y),
d=(d,0),
ϕ(x,y)(dϕ(x,y)dx,dϕ(x,y)dy)=(γ(x,y)cosθ(x,y),γ(x,y)sinθ(x,y)),
I(x,y)=I˜sin2{πλ[Λ+d·γ(x,y)cosθ(x,y)]}+Ic(x,y).
di=(d,(1)id),
ΛΣi=Λ1+Λ4+(1)i(Λ2+Λ3),
ΛΣi=2Λ1+(1)iΛ2.
Ii(x,y)=I˜sin2{πλ[Γ+ΛΣi+2d·γ(x,y)cos(θ(x,y)(1)iπ4)]}+Ic(x,y),
C=ImaxIminImax+Imin,
C=sin(2πλΛ)sin(2πλγd)1cos(2πλΛ)cos(2πλγd)+2IcI˜.
dCdΛ=sin(2πλγd)(1+2IcI˜)cos(2πλΛ)cos(2πλγd)1cos(2πλΛ)cos(2πλγd)+2IcI˜.
Ii,j(x,y)=I˜sin2{πλ[jΓ0+2dγ(x,y)cos(θ(x,y)(1)iπ4)]}+Ic(x,y),
Ai(x,y)=Ii,1(x,y)Ii,1(x,y)Ii,1(x,y)+Ii,1(x,y)2Ii,0(x,y)tan(πΓ0λ).
A1(x,y)=tan(22πλdγ(x,y)cos(θ(x,y)+π4)),A2(x,y)=tan(22πλdγ(x,y)sin(θ(x,y)+π4)).
γ(x,y)=λ22πdi=12arctan2[Ai(x,y)],θ(x,y)=arctan(arctanA2(x,y)arctanA1(x,y))π4.
Ii,j(x,y)=I˜sin2{jπ4+2πdγ(x,y)λcos(θ(x,y)(1)iπ4)}+Ic(x,y),
A˜i(x,y)=Ii,3(x,y)Ii,1(x,y)Ii,0(x,y)Ii,2(x,y).
A˜1(x,y)=tan(22πλdγ(x,y)cos(θ(x,y)+π4)),A˜2(x,y)=tan(22πλdγ(x,y)sin(θ(x,y)+π4)).
γ(x,y)=λ22πdi=12arctan2[A˜i(x,y)],θ(x,y)=arctan(arctanA˜2(x,y)arctanA˜1(x,y))π4.
γ(x,y)=λ22πdi=12arctan2[Ai(x,y)Abgi(x,y)],θ(x,y)=arctan(arctan[A2(x,y)Abg2(x,y)]arctan[A1(x,y)Abg1(x,y)])π4,
γ(x,y)=λ22πdi=12arctan2[A˜i(x,y)A˜bgi(x,y)],θ(x,y)=arctan(arctan[A˜2(x,y)A˜bg2(x,y)]arctan[A˜1(x,y)A˜bg1(x,y)])π4.
Acor1=A˜cor1=tan(22πλdγcorcos(θcor+π4)),Acor2=A˜cor2=tan(22πλdγcorsin(θcor+π4)).
γ(x,y)=λ22πdi=12arctan2[Ai(x,y)Abgi(x,y)Acori],θ(x,y)=arctan(arctan[A2(x,y)Abg2(x,y)Acor2]arctan[A1(x,y)Abg1(x,y)Acor1])π4,
γ(x,y)=λ22πdi=12arctan2[A˜i(x,y)A˜bgi(x,y)A˜cori],θ(x,y)=arctan(arctan[A˜2(x,y)A˜bg2(x,y)A˜cor2]arctan[A˜1(x,y)A˜bg1(x,y)A˜cor1])π4.
ε=dΛdx.
Λ=δ360°λ.
ε=λ360°dδdx.
I=I{cosδsin2(ζχ)sinδcos2(ζχ)sin2(ζψ)}2,
I=Isin2δsin22(χψ).
I=Isin2(δ2(χχ0)).
δ=2(χχ0),
dδdx=δ1δ2(x1x2)cosψ=2(χ1χ2)(x1x2)cosψ.
ε=λ180°(χ1χ2)(x1x2)cosψ.
ε=λ180°1cosψdχ(x)dx.
d=εLtM,
rAiry=0.61λNA,
Λ(x)=Λ˜+ε(xx0),
Λ(R)=Λ˜+εpR.
I(Vrms)=I˜sin2(πλ(ΛΣ+Γ(Vrms)))+Ic,
I0(Vrms)=I˜sin2(πλΓ(Vrms))+Ic.
I1(Vrms)=I˜sin2(πλ(Γ(Vrms)εpR))+Ic,
I1(Vrms)=I˜sin2(πλ(Γ(Vrms)+εpR))+Ic.
Γ(Vrms)=λ2πarctan[I1(Vrms)I1(Vrms)I1(Vrms)+I1(Vrms)2I0(Vrms)tan(πλεpR)].
Γ(Vrms)=λ2πarctan[I1(Vrms)I1(Vrms)I1(Vrms)+I1(Vrms)2I0(Vrms)tan(2πλεpR)].

Metrics