Abstract

In this study, we demonstrated the evaluation of the device parameters, such as the cell thickness d, pretilt angles at the top and bottom substrates θ0 and θd, and twist angle ϕt for the guest–host (GH)-type electrically controlled birefringence (ECB) and twisted nematic (TN) modes, using the renormalized transmission ellipsometry (RTE). In the proposed technique, the extended Cauchy equation and the extinction coefficients for the ordinary and extraordinary rays based on the three Gaussian functions were employed as a description of the dielectric function. As a result, the numerically calculated phase difference Δ and angle of amplitude ratio Ψ determined using the proposed technique provided good agreement with the measured Δ and Ψ by introducing the extinction coefficient to the RTE. Furthermore, the device parameters for the GH-ECB and the GH-TN cells were obtained. It was confirmed that the extinction coefficient should be taken into consideration in an analysis of GH liquid crystal displays.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. H. Heilmeier and L. A. Zanoni, “Guest–host interactions in nematic liquid crystals. A new electro-optic effect,” Appl. Phys. Lett. 13, 91–92 (1968).
    [CrossRef]
  2. G. H. Heilmeier, J. A. Castellano, and L. A. Zanoni, “Guest–host interactions in nematic liquid crystal,” Mol. Cryst. Liq. Cryst. 8, 293–304 (1969).
    [CrossRef]
  3. D. L. White and G. N. Taylor, “New absorptive mode reflective liquid-crystal display device,” J. Appl. Phys. 45, 4718–4723 (1974).
    [CrossRef]
  4. N. Wakita and Y. Yamanaka, “Reflective three-layer GH-LC panel fabricated by using lithographic LC/resist composite film,” IEICE Trans. Electron. E83-C, 1565–1569 (2000).
  5. H. Iwanaga, “Development of highly soluble anthraquinone dichroic dyes and their application to three-layer guest-host liquid crystal displays,” Materials 2, 1636–1661 (2009).
    [CrossRef]
  6. H. L. Ong, “Electro-optical properties of guest-host nematic liquid-crystal displays,” J. Appl. Phys. 63, 1247–1249 (1988).
    [CrossRef]
  7. K. H. Yang, H. L. Ong, and W. E. Howard, “A simple method to determine the pretilt angle of nematic guest–host liquid crystals,” J. Appl. Phys. 60, 2820–2822 (1986).
    [CrossRef]
  8. J. N. Hilfiker, B. Johs, C. M. Herzinger, J. F. Elman, E. Montbach, D. Bryant, and P. J. Bos, “Generalized spectroscopic ellipsometry and Mueller-matrix study of twisted nematic and super twisted nematic liquid crystals,” Thin Solid Films 455–456, 596–600 (2004).
    [CrossRef]
  9. N. Tanaka, M. Kimura, and T. Akahane, “Determination of director profile of twisted nematic liquid crystal cell with tilted surface alignment by renormalized transmission ellipsometry,” Jpn. J. Appl. Phys. 44, 587–590 (2005).
    [CrossRef]
  10. N. Tanaka, M. Kimura, and T. Akahane, “Evaluation of the surface anchoring strength of the high pretilt angle alignment,” presented at the 11th International Display Workshops (IDW’04), Niigata, Japan, 8–10 December2004.
  11. Y. Ohno, T. Ishinabe, T. Miyashita, and T. Uchida, “Highly accurate method for measuring ordinary and extraordinary refractive indices of liquid crystal materials, cell thickness, and pretilt angle of liquid crystal cells using ellipsometry,” Jpn. J. Appl. Phys. 48, 051502 (2009).
    [CrossRef]
  12. V. Tkachenko, A. Marino, and G. Abbate, “Studying nematic liquid crystal by spectroscopic ellipsometry,” J. Soc. Inf. Disp. 18, 896–903 (2010).
    [CrossRef]
  13. K. Goda, Y. Toko, R. Takahashi, T. Takahashi, M. Kimura, and T. Akahane, “Characterization of bistable hybrid-twisted nematic liquid crystal mode by means of renormalized transmission spectroscopic ellipsometry,” Jpn. J. Appl. Phys. 50, 056601 (2011).
    [CrossRef]
  14. S. N. Jasperson and S. E. Schnatterly, “An improved method for high reflectivity ellipsometry based on a new polarization modulation technique,” Rev. Sci. Instrum. 40, 761–767 (1969).
    [CrossRef]
  15. S. N. Jasperson, D. K. Burge, and R. C. O’Handly, “A modulated ellipsometer for studying thin film optical properties and surface dynamics,” Surf. Sci. 37, 548–558 (1973).
    [CrossRef]
  16. R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. 31, 488–493 (1941).
    [CrossRef]
  17. S. Okutani, M. Kimura, H. Toriumi, K. Akao, T. Tadokoro, and T. Akahane, “Analysis of totally reflected light from liquid crystal cell using renormalized ellipsometry,” Jpn. J. Appl. Phys. 40, 3288–3293 (2001).
    [CrossRef]
  18. F. C. Frank, “I. Liquid crystal: on the theory of liquid crystals,” Discuss. Faraday Soc. 25, 19–28 (1958).
    [CrossRef]
  19. D. W. Berreman, “Optics in stratified and anisotropic media: 4×4-matrix formulation,” J. Opt. Soc. Am. 62, 502–510 (1972).
    [CrossRef]
  20. J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
    [CrossRef]
  21. Y. Sato, K. Sato, and T. Uchida, “Relationship between rubbing strength and surface anchoring of nematic liquid crystal,” Jpn. J. Appl. Phys. 31, L579–L581 (1992).
    [CrossRef]
  22. K. Goda, M. Kimura, and T. Akahane, “Improved method for the dispersion of refractive indices based on transmission spectroscopic ellipsometry,” Mol. Cryst. Liq. Cryst. 545, 242–248 (2011).
    [CrossRef]
  23. K. Goda, M. Kimura, and T. Akahane, “Analysis technique for wavelength dispersion of refractive indices by renormalized transmission spectroscopic ellipsometry,” Jpn. J. Appl. Phys. 51, 081701 (2012).
    [CrossRef]
  24. S. Y. Bae and B. R. Arnold, “Characterization of solvatochromic probes: simulation of merocyanine 540 absorption spectra in binary solvent mixtures and pure solvent systems,” J. Phys. Org. Chem. 17, 187–193 (2004).
    [CrossRef]

2012

K. Goda, M. Kimura, and T. Akahane, “Analysis technique for wavelength dispersion of refractive indices by renormalized transmission spectroscopic ellipsometry,” Jpn. J. Appl. Phys. 51, 081701 (2012).
[CrossRef]

2011

K. Goda, M. Kimura, and T. Akahane, “Improved method for the dispersion of refractive indices based on transmission spectroscopic ellipsometry,” Mol. Cryst. Liq. Cryst. 545, 242–248 (2011).
[CrossRef]

K. Goda, Y. Toko, R. Takahashi, T. Takahashi, M. Kimura, and T. Akahane, “Characterization of bistable hybrid-twisted nematic liquid crystal mode by means of renormalized transmission spectroscopic ellipsometry,” Jpn. J. Appl. Phys. 50, 056601 (2011).
[CrossRef]

2010

V. Tkachenko, A. Marino, and G. Abbate, “Studying nematic liquid crystal by spectroscopic ellipsometry,” J. Soc. Inf. Disp. 18, 896–903 (2010).
[CrossRef]

2009

Y. Ohno, T. Ishinabe, T. Miyashita, and T. Uchida, “Highly accurate method for measuring ordinary and extraordinary refractive indices of liquid crystal materials, cell thickness, and pretilt angle of liquid crystal cells using ellipsometry,” Jpn. J. Appl. Phys. 48, 051502 (2009).
[CrossRef]

H. Iwanaga, “Development of highly soluble anthraquinone dichroic dyes and their application to three-layer guest-host liquid crystal displays,” Materials 2, 1636–1661 (2009).
[CrossRef]

2005

N. Tanaka, M. Kimura, and T. Akahane, “Determination of director profile of twisted nematic liquid crystal cell with tilted surface alignment by renormalized transmission ellipsometry,” Jpn. J. Appl. Phys. 44, 587–590 (2005).
[CrossRef]

2004

J. N. Hilfiker, B. Johs, C. M. Herzinger, J. F. Elman, E. Montbach, D. Bryant, and P. J. Bos, “Generalized spectroscopic ellipsometry and Mueller-matrix study of twisted nematic and super twisted nematic liquid crystals,” Thin Solid Films 455–456, 596–600 (2004).
[CrossRef]

S. Y. Bae and B. R. Arnold, “Characterization of solvatochromic probes: simulation of merocyanine 540 absorption spectra in binary solvent mixtures and pure solvent systems,” J. Phys. Org. Chem. 17, 187–193 (2004).
[CrossRef]

2001

S. Okutani, M. Kimura, H. Toriumi, K. Akao, T. Tadokoro, and T. Akahane, “Analysis of totally reflected light from liquid crystal cell using renormalized ellipsometry,” Jpn. J. Appl. Phys. 40, 3288–3293 (2001).
[CrossRef]

2000

N. Wakita and Y. Yamanaka, “Reflective three-layer GH-LC panel fabricated by using lithographic LC/resist composite film,” IEICE Trans. Electron. E83-C, 1565–1569 (2000).

1992

Y. Sato, K. Sato, and T. Uchida, “Relationship between rubbing strength and surface anchoring of nematic liquid crystal,” Jpn. J. Appl. Phys. 31, L579–L581 (1992).
[CrossRef]

1988

H. L. Ong, “Electro-optical properties of guest-host nematic liquid-crystal displays,” J. Appl. Phys. 63, 1247–1249 (1988).
[CrossRef]

1986

K. H. Yang, H. L. Ong, and W. E. Howard, “A simple method to determine the pretilt angle of nematic guest–host liquid crystals,” J. Appl. Phys. 60, 2820–2822 (1986).
[CrossRef]

1974

D. L. White and G. N. Taylor, “New absorptive mode reflective liquid-crystal display device,” J. Appl. Phys. 45, 4718–4723 (1974).
[CrossRef]

1973

S. N. Jasperson, D. K. Burge, and R. C. O’Handly, “A modulated ellipsometer for studying thin film optical properties and surface dynamics,” Surf. Sci. 37, 548–558 (1973).
[CrossRef]

1972

1969

S. N. Jasperson and S. E. Schnatterly, “An improved method for high reflectivity ellipsometry based on a new polarization modulation technique,” Rev. Sci. Instrum. 40, 761–767 (1969).
[CrossRef]

G. H. Heilmeier, J. A. Castellano, and L. A. Zanoni, “Guest–host interactions in nematic liquid crystal,” Mol. Cryst. Liq. Cryst. 8, 293–304 (1969).
[CrossRef]

1968

G. H. Heilmeier and L. A. Zanoni, “Guest–host interactions in nematic liquid crystals. A new electro-optic effect,” Appl. Phys. Lett. 13, 91–92 (1968).
[CrossRef]

1965

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
[CrossRef]

1958

F. C. Frank, “I. Liquid crystal: on the theory of liquid crystals,” Discuss. Faraday Soc. 25, 19–28 (1958).
[CrossRef]

1941

Abbate, G.

V. Tkachenko, A. Marino, and G. Abbate, “Studying nematic liquid crystal by spectroscopic ellipsometry,” J. Soc. Inf. Disp. 18, 896–903 (2010).
[CrossRef]

Akahane, T.

K. Goda, M. Kimura, and T. Akahane, “Analysis technique for wavelength dispersion of refractive indices by renormalized transmission spectroscopic ellipsometry,” Jpn. J. Appl. Phys. 51, 081701 (2012).
[CrossRef]

K. Goda, M. Kimura, and T. Akahane, “Improved method for the dispersion of refractive indices based on transmission spectroscopic ellipsometry,” Mol. Cryst. Liq. Cryst. 545, 242–248 (2011).
[CrossRef]

K. Goda, Y. Toko, R. Takahashi, T. Takahashi, M. Kimura, and T. Akahane, “Characterization of bistable hybrid-twisted nematic liquid crystal mode by means of renormalized transmission spectroscopic ellipsometry,” Jpn. J. Appl. Phys. 50, 056601 (2011).
[CrossRef]

N. Tanaka, M. Kimura, and T. Akahane, “Determination of director profile of twisted nematic liquid crystal cell with tilted surface alignment by renormalized transmission ellipsometry,” Jpn. J. Appl. Phys. 44, 587–590 (2005).
[CrossRef]

S. Okutani, M. Kimura, H. Toriumi, K. Akao, T. Tadokoro, and T. Akahane, “Analysis of totally reflected light from liquid crystal cell using renormalized ellipsometry,” Jpn. J. Appl. Phys. 40, 3288–3293 (2001).
[CrossRef]

N. Tanaka, M. Kimura, and T. Akahane, “Evaluation of the surface anchoring strength of the high pretilt angle alignment,” presented at the 11th International Display Workshops (IDW’04), Niigata, Japan, 8–10 December2004.

Akao, K.

S. Okutani, M. Kimura, H. Toriumi, K. Akao, T. Tadokoro, and T. Akahane, “Analysis of totally reflected light from liquid crystal cell using renormalized ellipsometry,” Jpn. J. Appl. Phys. 40, 3288–3293 (2001).
[CrossRef]

Arnold, B. R.

S. Y. Bae and B. R. Arnold, “Characterization of solvatochromic probes: simulation of merocyanine 540 absorption spectra in binary solvent mixtures and pure solvent systems,” J. Phys. Org. Chem. 17, 187–193 (2004).
[CrossRef]

Bae, S. Y.

S. Y. Bae and B. R. Arnold, “Characterization of solvatochromic probes: simulation of merocyanine 540 absorption spectra in binary solvent mixtures and pure solvent systems,” J. Phys. Org. Chem. 17, 187–193 (2004).
[CrossRef]

Berreman, D. W.

Bos, P. J.

J. N. Hilfiker, B. Johs, C. M. Herzinger, J. F. Elman, E. Montbach, D. Bryant, and P. J. Bos, “Generalized spectroscopic ellipsometry and Mueller-matrix study of twisted nematic and super twisted nematic liquid crystals,” Thin Solid Films 455–456, 596–600 (2004).
[CrossRef]

Bryant, D.

J. N. Hilfiker, B. Johs, C. M. Herzinger, J. F. Elman, E. Montbach, D. Bryant, and P. J. Bos, “Generalized spectroscopic ellipsometry and Mueller-matrix study of twisted nematic and super twisted nematic liquid crystals,” Thin Solid Films 455–456, 596–600 (2004).
[CrossRef]

Burge, D. K.

S. N. Jasperson, D. K. Burge, and R. C. O’Handly, “A modulated ellipsometer for studying thin film optical properties and surface dynamics,” Surf. Sci. 37, 548–558 (1973).
[CrossRef]

Castellano, J. A.

G. H. Heilmeier, J. A. Castellano, and L. A. Zanoni, “Guest–host interactions in nematic liquid crystal,” Mol. Cryst. Liq. Cryst. 8, 293–304 (1969).
[CrossRef]

Elman, J. F.

J. N. Hilfiker, B. Johs, C. M. Herzinger, J. F. Elman, E. Montbach, D. Bryant, and P. J. Bos, “Generalized spectroscopic ellipsometry and Mueller-matrix study of twisted nematic and super twisted nematic liquid crystals,” Thin Solid Films 455–456, 596–600 (2004).
[CrossRef]

Frank, F. C.

F. C. Frank, “I. Liquid crystal: on the theory of liquid crystals,” Discuss. Faraday Soc. 25, 19–28 (1958).
[CrossRef]

Goda, K.

K. Goda, M. Kimura, and T. Akahane, “Analysis technique for wavelength dispersion of refractive indices by renormalized transmission spectroscopic ellipsometry,” Jpn. J. Appl. Phys. 51, 081701 (2012).
[CrossRef]

K. Goda, M. Kimura, and T. Akahane, “Improved method for the dispersion of refractive indices based on transmission spectroscopic ellipsometry,” Mol. Cryst. Liq. Cryst. 545, 242–248 (2011).
[CrossRef]

K. Goda, Y. Toko, R. Takahashi, T. Takahashi, M. Kimura, and T. Akahane, “Characterization of bistable hybrid-twisted nematic liquid crystal mode by means of renormalized transmission spectroscopic ellipsometry,” Jpn. J. Appl. Phys. 50, 056601 (2011).
[CrossRef]

Heilmeier, G. H.

G. H. Heilmeier, J. A. Castellano, and L. A. Zanoni, “Guest–host interactions in nematic liquid crystal,” Mol. Cryst. Liq. Cryst. 8, 293–304 (1969).
[CrossRef]

G. H. Heilmeier and L. A. Zanoni, “Guest–host interactions in nematic liquid crystals. A new electro-optic effect,” Appl. Phys. Lett. 13, 91–92 (1968).
[CrossRef]

Herzinger, C. M.

J. N. Hilfiker, B. Johs, C. M. Herzinger, J. F. Elman, E. Montbach, D. Bryant, and P. J. Bos, “Generalized spectroscopic ellipsometry and Mueller-matrix study of twisted nematic and super twisted nematic liquid crystals,” Thin Solid Films 455–456, 596–600 (2004).
[CrossRef]

Hilfiker, J. N.

J. N. Hilfiker, B. Johs, C. M. Herzinger, J. F. Elman, E. Montbach, D. Bryant, and P. J. Bos, “Generalized spectroscopic ellipsometry and Mueller-matrix study of twisted nematic and super twisted nematic liquid crystals,” Thin Solid Films 455–456, 596–600 (2004).
[CrossRef]

Howard, W. E.

K. H. Yang, H. L. Ong, and W. E. Howard, “A simple method to determine the pretilt angle of nematic guest–host liquid crystals,” J. Appl. Phys. 60, 2820–2822 (1986).
[CrossRef]

Ishinabe, T.

Y. Ohno, T. Ishinabe, T. Miyashita, and T. Uchida, “Highly accurate method for measuring ordinary and extraordinary refractive indices of liquid crystal materials, cell thickness, and pretilt angle of liquid crystal cells using ellipsometry,” Jpn. J. Appl. Phys. 48, 051502 (2009).
[CrossRef]

Iwanaga, H.

H. Iwanaga, “Development of highly soluble anthraquinone dichroic dyes and their application to three-layer guest-host liquid crystal displays,” Materials 2, 1636–1661 (2009).
[CrossRef]

Jasperson, S. N.

S. N. Jasperson, D. K. Burge, and R. C. O’Handly, “A modulated ellipsometer for studying thin film optical properties and surface dynamics,” Surf. Sci. 37, 548–558 (1973).
[CrossRef]

S. N. Jasperson and S. E. Schnatterly, “An improved method for high reflectivity ellipsometry based on a new polarization modulation technique,” Rev. Sci. Instrum. 40, 761–767 (1969).
[CrossRef]

Johs, B.

J. N. Hilfiker, B. Johs, C. M. Herzinger, J. F. Elman, E. Montbach, D. Bryant, and P. J. Bos, “Generalized spectroscopic ellipsometry and Mueller-matrix study of twisted nematic and super twisted nematic liquid crystals,” Thin Solid Films 455–456, 596–600 (2004).
[CrossRef]

Jones, R. C.

Kimura, M.

K. Goda, M. Kimura, and T. Akahane, “Analysis technique for wavelength dispersion of refractive indices by renormalized transmission spectroscopic ellipsometry,” Jpn. J. Appl. Phys. 51, 081701 (2012).
[CrossRef]

K. Goda, M. Kimura, and T. Akahane, “Improved method for the dispersion of refractive indices based on transmission spectroscopic ellipsometry,” Mol. Cryst. Liq. Cryst. 545, 242–248 (2011).
[CrossRef]

K. Goda, Y. Toko, R. Takahashi, T. Takahashi, M. Kimura, and T. Akahane, “Characterization of bistable hybrid-twisted nematic liquid crystal mode by means of renormalized transmission spectroscopic ellipsometry,” Jpn. J. Appl. Phys. 50, 056601 (2011).
[CrossRef]

N. Tanaka, M. Kimura, and T. Akahane, “Determination of director profile of twisted nematic liquid crystal cell with tilted surface alignment by renormalized transmission ellipsometry,” Jpn. J. Appl. Phys. 44, 587–590 (2005).
[CrossRef]

S. Okutani, M. Kimura, H. Toriumi, K. Akao, T. Tadokoro, and T. Akahane, “Analysis of totally reflected light from liquid crystal cell using renormalized ellipsometry,” Jpn. J. Appl. Phys. 40, 3288–3293 (2001).
[CrossRef]

N. Tanaka, M. Kimura, and T. Akahane, “Evaluation of the surface anchoring strength of the high pretilt angle alignment,” presented at the 11th International Display Workshops (IDW’04), Niigata, Japan, 8–10 December2004.

Marino, A.

V. Tkachenko, A. Marino, and G. Abbate, “Studying nematic liquid crystal by spectroscopic ellipsometry,” J. Soc. Inf. Disp. 18, 896–903 (2010).
[CrossRef]

Mead, R.

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
[CrossRef]

Miyashita, T.

Y. Ohno, T. Ishinabe, T. Miyashita, and T. Uchida, “Highly accurate method for measuring ordinary and extraordinary refractive indices of liquid crystal materials, cell thickness, and pretilt angle of liquid crystal cells using ellipsometry,” Jpn. J. Appl. Phys. 48, 051502 (2009).
[CrossRef]

Montbach, E.

J. N. Hilfiker, B. Johs, C. M. Herzinger, J. F. Elman, E. Montbach, D. Bryant, and P. J. Bos, “Generalized spectroscopic ellipsometry and Mueller-matrix study of twisted nematic and super twisted nematic liquid crystals,” Thin Solid Films 455–456, 596–600 (2004).
[CrossRef]

Nelder, J. A.

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
[CrossRef]

O’Handly, R. C.

S. N. Jasperson, D. K. Burge, and R. C. O’Handly, “A modulated ellipsometer for studying thin film optical properties and surface dynamics,” Surf. Sci. 37, 548–558 (1973).
[CrossRef]

Ohno, Y.

Y. Ohno, T. Ishinabe, T. Miyashita, and T. Uchida, “Highly accurate method for measuring ordinary and extraordinary refractive indices of liquid crystal materials, cell thickness, and pretilt angle of liquid crystal cells using ellipsometry,” Jpn. J. Appl. Phys. 48, 051502 (2009).
[CrossRef]

Okutani, S.

S. Okutani, M. Kimura, H. Toriumi, K. Akao, T. Tadokoro, and T. Akahane, “Analysis of totally reflected light from liquid crystal cell using renormalized ellipsometry,” Jpn. J. Appl. Phys. 40, 3288–3293 (2001).
[CrossRef]

Ong, H. L.

H. L. Ong, “Electro-optical properties of guest-host nematic liquid-crystal displays,” J. Appl. Phys. 63, 1247–1249 (1988).
[CrossRef]

K. H. Yang, H. L. Ong, and W. E. Howard, “A simple method to determine the pretilt angle of nematic guest–host liquid crystals,” J. Appl. Phys. 60, 2820–2822 (1986).
[CrossRef]

Sato, K.

Y. Sato, K. Sato, and T. Uchida, “Relationship between rubbing strength and surface anchoring of nematic liquid crystal,” Jpn. J. Appl. Phys. 31, L579–L581 (1992).
[CrossRef]

Sato, Y.

Y. Sato, K. Sato, and T. Uchida, “Relationship between rubbing strength and surface anchoring of nematic liquid crystal,” Jpn. J. Appl. Phys. 31, L579–L581 (1992).
[CrossRef]

Schnatterly, S. E.

S. N. Jasperson and S. E. Schnatterly, “An improved method for high reflectivity ellipsometry based on a new polarization modulation technique,” Rev. Sci. Instrum. 40, 761–767 (1969).
[CrossRef]

Tadokoro, T.

S. Okutani, M. Kimura, H. Toriumi, K. Akao, T. Tadokoro, and T. Akahane, “Analysis of totally reflected light from liquid crystal cell using renormalized ellipsometry,” Jpn. J. Appl. Phys. 40, 3288–3293 (2001).
[CrossRef]

Takahashi, R.

K. Goda, Y. Toko, R. Takahashi, T. Takahashi, M. Kimura, and T. Akahane, “Characterization of bistable hybrid-twisted nematic liquid crystal mode by means of renormalized transmission spectroscopic ellipsometry,” Jpn. J. Appl. Phys. 50, 056601 (2011).
[CrossRef]

Takahashi, T.

K. Goda, Y. Toko, R. Takahashi, T. Takahashi, M. Kimura, and T. Akahane, “Characterization of bistable hybrid-twisted nematic liquid crystal mode by means of renormalized transmission spectroscopic ellipsometry,” Jpn. J. Appl. Phys. 50, 056601 (2011).
[CrossRef]

Tanaka, N.

N. Tanaka, M. Kimura, and T. Akahane, “Determination of director profile of twisted nematic liquid crystal cell with tilted surface alignment by renormalized transmission ellipsometry,” Jpn. J. Appl. Phys. 44, 587–590 (2005).
[CrossRef]

N. Tanaka, M. Kimura, and T. Akahane, “Evaluation of the surface anchoring strength of the high pretilt angle alignment,” presented at the 11th International Display Workshops (IDW’04), Niigata, Japan, 8–10 December2004.

Taylor, G. N.

D. L. White and G. N. Taylor, “New absorptive mode reflective liquid-crystal display device,” J. Appl. Phys. 45, 4718–4723 (1974).
[CrossRef]

Tkachenko, V.

V. Tkachenko, A. Marino, and G. Abbate, “Studying nematic liquid crystal by spectroscopic ellipsometry,” J. Soc. Inf. Disp. 18, 896–903 (2010).
[CrossRef]

Toko, Y.

K. Goda, Y. Toko, R. Takahashi, T. Takahashi, M. Kimura, and T. Akahane, “Characterization of bistable hybrid-twisted nematic liquid crystal mode by means of renormalized transmission spectroscopic ellipsometry,” Jpn. J. Appl. Phys. 50, 056601 (2011).
[CrossRef]

Toriumi, H.

S. Okutani, M. Kimura, H. Toriumi, K. Akao, T. Tadokoro, and T. Akahane, “Analysis of totally reflected light from liquid crystal cell using renormalized ellipsometry,” Jpn. J. Appl. Phys. 40, 3288–3293 (2001).
[CrossRef]

Uchida, T.

Y. Ohno, T. Ishinabe, T. Miyashita, and T. Uchida, “Highly accurate method for measuring ordinary and extraordinary refractive indices of liquid crystal materials, cell thickness, and pretilt angle of liquid crystal cells using ellipsometry,” Jpn. J. Appl. Phys. 48, 051502 (2009).
[CrossRef]

Y. Sato, K. Sato, and T. Uchida, “Relationship between rubbing strength and surface anchoring of nematic liquid crystal,” Jpn. J. Appl. Phys. 31, L579–L581 (1992).
[CrossRef]

Wakita, N.

N. Wakita and Y. Yamanaka, “Reflective three-layer GH-LC panel fabricated by using lithographic LC/resist composite film,” IEICE Trans. Electron. E83-C, 1565–1569 (2000).

White, D. L.

D. L. White and G. N. Taylor, “New absorptive mode reflective liquid-crystal display device,” J. Appl. Phys. 45, 4718–4723 (1974).
[CrossRef]

Yamanaka, Y.

N. Wakita and Y. Yamanaka, “Reflective three-layer GH-LC panel fabricated by using lithographic LC/resist composite film,” IEICE Trans. Electron. E83-C, 1565–1569 (2000).

Yang, K. H.

K. H. Yang, H. L. Ong, and W. E. Howard, “A simple method to determine the pretilt angle of nematic guest–host liquid crystals,” J. Appl. Phys. 60, 2820–2822 (1986).
[CrossRef]

Zanoni, L. A.

G. H. Heilmeier, J. A. Castellano, and L. A. Zanoni, “Guest–host interactions in nematic liquid crystal,” Mol. Cryst. Liq. Cryst. 8, 293–304 (1969).
[CrossRef]

G. H. Heilmeier and L. A. Zanoni, “Guest–host interactions in nematic liquid crystals. A new electro-optic effect,” Appl. Phys. Lett. 13, 91–92 (1968).
[CrossRef]

Appl. Phys. Lett.

G. H. Heilmeier and L. A. Zanoni, “Guest–host interactions in nematic liquid crystals. A new electro-optic effect,” Appl. Phys. Lett. 13, 91–92 (1968).
[CrossRef]

Comput. J.

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
[CrossRef]

Discuss. Faraday Soc.

F. C. Frank, “I. Liquid crystal: on the theory of liquid crystals,” Discuss. Faraday Soc. 25, 19–28 (1958).
[CrossRef]

IEICE Trans. Electron.

N. Wakita and Y. Yamanaka, “Reflective three-layer GH-LC panel fabricated by using lithographic LC/resist composite film,” IEICE Trans. Electron. E83-C, 1565–1569 (2000).

J. Appl. Phys.

H. L. Ong, “Electro-optical properties of guest-host nematic liquid-crystal displays,” J. Appl. Phys. 63, 1247–1249 (1988).
[CrossRef]

K. H. Yang, H. L. Ong, and W. E. Howard, “A simple method to determine the pretilt angle of nematic guest–host liquid crystals,” J. Appl. Phys. 60, 2820–2822 (1986).
[CrossRef]

D. L. White and G. N. Taylor, “New absorptive mode reflective liquid-crystal display device,” J. Appl. Phys. 45, 4718–4723 (1974).
[CrossRef]

J. Opt. Soc. Am.

J. Phys. Org. Chem.

S. Y. Bae and B. R. Arnold, “Characterization of solvatochromic probes: simulation of merocyanine 540 absorption spectra in binary solvent mixtures and pure solvent systems,” J. Phys. Org. Chem. 17, 187–193 (2004).
[CrossRef]

J. Soc. Inf. Disp.

V. Tkachenko, A. Marino, and G. Abbate, “Studying nematic liquid crystal by spectroscopic ellipsometry,” J. Soc. Inf. Disp. 18, 896–903 (2010).
[CrossRef]

Jpn. J. Appl. Phys.

K. Goda, Y. Toko, R. Takahashi, T. Takahashi, M. Kimura, and T. Akahane, “Characterization of bistable hybrid-twisted nematic liquid crystal mode by means of renormalized transmission spectroscopic ellipsometry,” Jpn. J. Appl. Phys. 50, 056601 (2011).
[CrossRef]

S. Okutani, M. Kimura, H. Toriumi, K. Akao, T. Tadokoro, and T. Akahane, “Analysis of totally reflected light from liquid crystal cell using renormalized ellipsometry,” Jpn. J. Appl. Phys. 40, 3288–3293 (2001).
[CrossRef]

Y. Ohno, T. Ishinabe, T. Miyashita, and T. Uchida, “Highly accurate method for measuring ordinary and extraordinary refractive indices of liquid crystal materials, cell thickness, and pretilt angle of liquid crystal cells using ellipsometry,” Jpn. J. Appl. Phys. 48, 051502 (2009).
[CrossRef]

N. Tanaka, M. Kimura, and T. Akahane, “Determination of director profile of twisted nematic liquid crystal cell with tilted surface alignment by renormalized transmission ellipsometry,” Jpn. J. Appl. Phys. 44, 587–590 (2005).
[CrossRef]

K. Goda, M. Kimura, and T. Akahane, “Analysis technique for wavelength dispersion of refractive indices by renormalized transmission spectroscopic ellipsometry,” Jpn. J. Appl. Phys. 51, 081701 (2012).
[CrossRef]

Y. Sato, K. Sato, and T. Uchida, “Relationship between rubbing strength and surface anchoring of nematic liquid crystal,” Jpn. J. Appl. Phys. 31, L579–L581 (1992).
[CrossRef]

Materials

H. Iwanaga, “Development of highly soluble anthraquinone dichroic dyes and their application to three-layer guest-host liquid crystal displays,” Materials 2, 1636–1661 (2009).
[CrossRef]

Mol. Cryst. Liq. Cryst.

G. H. Heilmeier, J. A. Castellano, and L. A. Zanoni, “Guest–host interactions in nematic liquid crystal,” Mol. Cryst. Liq. Cryst. 8, 293–304 (1969).
[CrossRef]

K. Goda, M. Kimura, and T. Akahane, “Improved method for the dispersion of refractive indices based on transmission spectroscopic ellipsometry,” Mol. Cryst. Liq. Cryst. 545, 242–248 (2011).
[CrossRef]

Rev. Sci. Instrum.

S. N. Jasperson and S. E. Schnatterly, “An improved method for high reflectivity ellipsometry based on a new polarization modulation technique,” Rev. Sci. Instrum. 40, 761–767 (1969).
[CrossRef]

Surf. Sci.

S. N. Jasperson, D. K. Burge, and R. C. O’Handly, “A modulated ellipsometer for studying thin film optical properties and surface dynamics,” Surf. Sci. 37, 548–558 (1973).
[CrossRef]

Thin Solid Films

J. N. Hilfiker, B. Johs, C. M. Herzinger, J. F. Elman, E. Montbach, D. Bryant, and P. J. Bos, “Generalized spectroscopic ellipsometry and Mueller-matrix study of twisted nematic and super twisted nematic liquid crystals,” Thin Solid Films 455–456, 596–600 (2004).
[CrossRef]

Other

N. Tanaka, M. Kimura, and T. Akahane, “Evaluation of the surface anchoring strength of the high pretilt angle alignment,” presented at the 11th International Display Workshops (IDW’04), Niigata, Japan, 8–10 December2004.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Optical geometry of transmission spectroscopic ellipsometer (TSE) equipped with a PEM.

Fig. 2.
Fig. 2.

Illustration of the relationship between the laboratory coordinate system (x,y,z) and the definition of the pretilt angles at the top and bottom substrates θ0 and θd.

Fig. 3.
Fig. 3.

Molecular structures of (a) liquid crystal 5CB and (b) the merocyanine dye.

Fig. 4.
Fig. 4.

Obtained transmitted light intensities of GH-ECB and ECB cells for (a) an ordinary ray and (b) an extraordinary ray. Here, the open circles (black) indicate the measured transmitted light intensity for the ECB cell, and the triangles (red) indicate the measured transmitted light intensity for the GH-ECB cell.

Fig. 5.
Fig. 5.

Determined extinction coefficients for the GH-ECB cell. The open circles (black) indicate the extinction coefficient for an ordinary ray, and the triangles (red) indicate the extinction coefficient for an extraordinary ray.

Fig. 6.
Fig. 6.

Numerical calculation result of extinction coefficient. The open circles (black) and the triangles (black) indicate the determined extinction coefficients, and the solid (red) and the dashed (red) curves indicate the numerically calculated extinction coefficients for an ordinary and an extraordinary ray based on the three Gaussian functions.

Fig. 7.
Fig. 7.

Numerical calculation result of the GH-ECB cell for (a) the phase difference Δ and (b) the angle of amplitude ratio Ψ using the proposed technique. The open circles (black) and the triangles (green) indicate the measured Δ and Ψ, respectively, and the solid (red) and the dashed (blue) curves indicate the numerically calculated Δ and Ψ at normal and 30° oblique incidence, respectively.

Fig. 8.
Fig. 8.

Numerical calculation result of the GH-ECB cell for (a) the phase difference Δ and (b) the angle of amplitude ratio Ψ using the RTE in which the extinction coefficients were not taken into consideration. The open circles (black) and the triangles (green) indicate the measured Δ and Ψ, respectively, and the solid (red) and the dashed (blue) curves indicate the numerically calculated Δ and Ψ at normal and 30° oblique incidence, respectively.

Fig. 9.
Fig. 9.

Numerical calculation result of the GH-TN cell for (a) the phase difference Δ and (b) the angle of amplitude ratio Ψ using the proposed technique. The open circles (black) and the triangles (green) indicate the measured Δ and Ψ, respectively, and the solid (red) and the dashed (blue) curves indicate the numerically calculated Δ and Ψ at normal and 30° oblique incidence, respectively.

Fig. 10.
Fig. 10.

Numerical calculation result of the GH-TN cell for (a) the phase difference Δ and (b) the angle of amplitude ratio Ψ using the RTE in which the extinction coefficients were not taken into consideration. The open circles (black) and the triangles (green) indicate the measured Δ and Ψ, respectively, and the solid (red) and the dashed (blue) curves indicate the numerically calculated Δ and Ψ at normal and 30° oblique incidence, respectively.

Fig. 11.
Fig. 11.

Obtained maximum deviation between the designed Δ and Ψ and the numerically calculated Δ and Ψ for the GH-ECB cell. Here, the open circles (black) and the triangles (red) indicate the maximum deviation at normal and 30° oblique incidence, respectively. (a) The maximum deviation of Δ for d, (b) the maximum deviation of Ψ for d, (c) the maximum deviation of Δ for θ0, (d) the maximum deviation of Ψ for θ0, (e) the maximum deviation of Δ for θd, (f) the maximum deviation of Ψ for θd, (g) the maximum deviation of Δ for ϕt, and (h) the maximum deviation of Ψ for ϕt.

Fig. 12.
Fig. 12.

Obtained maximum deviation between the designed Δ and Ψ and the numerically calculated Δ and Ψ for the GH-TN cell. Here, the open circles (black) and the triangles (red) indicate the maximum deviation at normal and 30° oblique incidence, respectively. (a) The maximum deviation of Δ for d, (b) the maximum deviation of Ψ for d, (c) the maximum deviation of Δ for θ0, (d) the maximum deviation of Ψ for θ0, (e) the maximum deviation of Δ for θd, (f) the maximum deviation of Ψ for θd, (g) the maximum deviation of Δ for ϕt, and (h) the maximum deviation of Ψ for ϕt.

Tables (4)

Tables Icon

Table 1. Determined Cauchy Coefficients of Refractive Indices for the Ordinary and the Extraordinary Rays of 5CB

Tables Icon

Table 2. Obtained Parameters of Three Gaussian Functions for κo and κe

Tables Icon

Table 3. Obtained Device Parameters of the GH-ECB Cell

Tables Icon

Table 4. Obtained Device Parameters of the GH-TN Cell

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

JLC=[ρppρpsρspρss],
ρp=ρpp+ρsp,ρs=ρps+ρss.
ρp=|ρp|exp(iΔp),ρs=|ρs|exp(iΔs).
tanΨexp(iΔ)=ρpρs.
Eout=R(θA)JAR(θA)1JLCR(θPEM)JPEMR(θPEM)1Ei.
JA=[1000],JLC=[ρppρpsρspρss],JPEM=[exp(iδPEM2)00exp(iδPEM2)],Ei=[10],R(θ)=[cosθsinθsinθcosθ],R(θ)1=[cosθsinθsinθcosθ],
Eout=12[ρpcosδPEM+iρssinδPEMρpcosδPEM+iρssinδPEM].
I=|Etp|2+|Ets|2=|ρs|24cos2Ψ[1cos2Ψcosδ(t)+sin2ΨsinΔsinδ(t)].
IDC=|ρs|24cos2Ψ[1+J0(δ0)cos2Ψ],Iω=|ρs|24cos2Ψ[2J1(δ0)sin2ΨsinΔ],I2ω=|ρs|24cos2Ψ[2J2(δ0)cos2Ψ].
A(ω)=IωIDC=2J1(δ0)sinΔsin2Ψ,A(2ω)=I2ωIDC=2J2(δ0)cos2Ψ.
Δ=sin1(A(ω)2J1(δ0)sin{cos1[A(2ω)2J2(δ0)]}),Ψ=12cos1[A(2ω)2J2(δ0)].
no,e=α0+α2λ2+α4λ4,
κo,e=i=13hiexp(λλ0iγi)2,
felas=12[A(θ)(θz)2+B(θ)(ϕz)2+C(θ)(ϕz)2+D],
A(θ)=K11cos2θ+K33sin2θ,B(θ)=cos2θ(K22cos2θ+K33sin2θ),C(θ)=K22q0cos2θ,D=K22q02,
κo,e=λ4πdLClnI0I.

Metrics