Abstract

We fabricated three-dimensional metallic helix arrays with single-, double-, and triple-helical structures. The transmission performances with the normal incident angle were measured in the microwave frequency of 12–18 GHz. For the single- and double-helical structures, giant circular dichroism with fairly wide bands is observed in the transmission spectra. However, the triple-helical structure does not exhibit circular dichroism. Based on the phenomenon of circular dichroism, the single- and double-helical structures can be used as broadband circular polarizers in the microwave region, but triple-helical ones cannot. The experiments have a good agreement with our simulation results, which were studied by the finite-difference time domain method.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Berova, K. Nakanishi, and R. W. Woody, Circular Dichroism: Principles and Applications (Wiley, 2000).
  2. N. J. Greenfield, “Using circular dichroism spectra to estimate protein secondary structure,” Nat. Protoc. 1, 2876–2890(2007).
    [CrossRef]
  3. U. J. Meierhenrich, J. J. Filippi, C. Meinert, J. H. Bredehoft, J. Takahashi, L. Nahon, N. C. Jones, and S. V. Hoffmann, “Circular dichroism of amino acids in the vacuum-ultraviolet region,” Angew. Chem. Int. Ed. 49, 7799–7802 (2010).
    [CrossRef]
  4. L. Whitmore and B. A. Wallace, “Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases,” Biopolymers 89, 392–400 (2008).
    [CrossRef]
  5. F. Guerin, V. K. Varadan, V. V. Varadan, M. Labeyrie, and P. Y. Guillon, “Some experimental results on the dispersive behaviour of chiral composites,” J. Phys. D 28, 194–201 (1995).
    [CrossRef]
  6. B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonplanar chiral metamaterials with negative index,” Appl. Phys. Lett. 94, 151112 (2009).
    [CrossRef]
  7. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
    [CrossRef]
  8. S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
    [CrossRef]
  9. R. Zhao, T. Koschny, and C. M. Soukoulis, “Chiral metamaterials: retrieval of the effective parameters with and without substrate,” Opt. Express 18, 14553–14567 (2010).
    [CrossRef]
  10. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
    [CrossRef]
  11. J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18, 1059–1069 (2010).
    [CrossRef]
  12. Z. Y. Yang, M. Zhao, and Y. F. Lu, “Similar structures, different characteristics: optical performances of circular polarizers with single- and double-helical metamaterials,” J. Lightwave Technol. 28, 931–938 (2010).
    [CrossRef]
  13. Z. Y. Yang, M. Zhao, and P. X. Lu, “A numerical study on helix nanowire metamaterials as optical circular polarizers in the visible region,” IEEE Photon. Technol. Lett. 22, 1303–1305(2010).
    [CrossRef]
  14. Z. Y. Yang, M. Zhao, and P. X. Lu, “How to improve the signal-to-noise ratio for circular polarizers consisting of helical metamaterials?” Opt. Express 19, 4255–4260 (2011).
    [CrossRef]
  15. Z. Zhao, D. S. Gao, C. J. Bao, X. Zhou, T. T. Lu, and L. Chen, “High extinction ratio circular polarizer with conical double-helical metamaterials,” J. Lightwave Technol. 30, 2442–2446 (2012).
    [CrossRef]
  16. S. X. Li, Z. Y. Yang, J. Wang, and M. Zhao, “Broadband terahertz circular polarizers with single- and double-helical array metamaterials,” J. Opt. Soc. Am. A 28, 19–23 (2011).
    [CrossRef]
  17. I. V. Semchenko, S. A. Khakhomov, S. A. Tretyakov, A. H. Sihvola, and E. A. Fedosenko, “Reflection and transmission by a uniaxially bi-anisotropic slab under normal incidence of plane waves,” J. Phys. D 31, 2458–2464 (1998).
    [CrossRef]
  18. A. J. Bahr and K. R. Clausing, “An approximate model for artificial chiral material,” IEEE Trans. Antennas Propag. 42, 1592–1599 (1994).
    [CrossRef]
  19. C. R. Taylor, P. G. Lederer, F. C. Smith, and S. Haq, “Measurement and prediction of helix-loaded chiral composites,” IEEE Trans. Antennas Propag. 47, 692–700 (1999).
    [CrossRef]
  20. C. Wu, H. Q. Li, X. T. Yu, F. Li, H. Chen, and C. T. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107, 177401 (2011).
    [CrossRef]
  21. J. Kaschke, J. K. Gansel, and M. Wegener, “On metamaterial circular polarizers based on metal N-helices,” Opt. Express 20, 26012–26020 (2012).
    [CrossRef]
  22. C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82, 053811 (2010).
    [CrossRef]
  23. R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys. 67, 717–754 (2004).
    [CrossRef]
  24. J. D. Kraus and R. J. Marhefka, Antennas: for All Applications (McGraw-Hill, 2003).
  25. S. S. Zhong, Antenna Theory and Techniques (Electronic Industry, 2011).

2012

2011

2010

J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18, 1059–1069 (2010).
[CrossRef]

Z. Y. Yang, M. Zhao, and Y. F. Lu, “Similar structures, different characteristics: optical performances of circular polarizers with single- and double-helical metamaterials,” J. Lightwave Technol. 28, 931–938 (2010).
[CrossRef]

R. Zhao, T. Koschny, and C. M. Soukoulis, “Chiral metamaterials: retrieval of the effective parameters with and without substrate,” Opt. Express 18, 14553–14567 (2010).
[CrossRef]

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82, 053811 (2010).
[CrossRef]

U. J. Meierhenrich, J. J. Filippi, C. Meinert, J. H. Bredehoft, J. Takahashi, L. Nahon, N. C. Jones, and S. V. Hoffmann, “Circular dichroism of amino acids in the vacuum-ultraviolet region,” Angew. Chem. Int. Ed. 49, 7799–7802 (2010).
[CrossRef]

Z. Y. Yang, M. Zhao, and P. X. Lu, “A numerical study on helix nanowire metamaterials as optical circular polarizers in the visible region,” IEEE Photon. Technol. Lett. 22, 1303–1305(2010).
[CrossRef]

2009

B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonplanar chiral metamaterials with negative index,” Appl. Phys. Lett. 94, 151112 (2009).
[CrossRef]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef]

2008

L. Whitmore and B. A. Wallace, “Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases,” Biopolymers 89, 392–400 (2008).
[CrossRef]

2007

N. J. Greenfield, “Using circular dichroism spectra to estimate protein secondary structure,” Nat. Protoc. 1, 2876–2890(2007).
[CrossRef]

2004

R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys. 67, 717–754 (2004).
[CrossRef]

1999

C. R. Taylor, P. G. Lederer, F. C. Smith, and S. Haq, “Measurement and prediction of helix-loaded chiral composites,” IEEE Trans. Antennas Propag. 47, 692–700 (1999).
[CrossRef]

1998

I. V. Semchenko, S. A. Khakhomov, S. A. Tretyakov, A. H. Sihvola, and E. A. Fedosenko, “Reflection and transmission by a uniaxially bi-anisotropic slab under normal incidence of plane waves,” J. Phys. D 31, 2458–2464 (1998).
[CrossRef]

1995

F. Guerin, V. K. Varadan, V. V. Varadan, M. Labeyrie, and P. Y. Guillon, “Some experimental results on the dispersive behaviour of chiral composites,” J. Phys. D 28, 194–201 (1995).
[CrossRef]

1994

A. J. Bahr and K. R. Clausing, “An approximate model for artificial chiral material,” IEEE Trans. Antennas Propag. 42, 1592–1599 (1994).
[CrossRef]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef]

Bahr, A. J.

A. J. Bahr and K. R. Clausing, “An approximate model for artificial chiral material,” IEEE Trans. Antennas Propag. 42, 1592–1599 (1994).
[CrossRef]

Bao, C. J.

Berova, N.

N. Berova, K. Nakanishi, and R. W. Woody, Circular Dichroism: Principles and Applications (Wiley, 2000).

Bredehoft, J. H.

U. J. Meierhenrich, J. J. Filippi, C. Meinert, J. H. Bredehoft, J. Takahashi, L. Nahon, N. C. Jones, and S. V. Hoffmann, “Circular dichroism of amino acids in the vacuum-ultraviolet region,” Angew. Chem. Int. Ed. 49, 7799–7802 (2010).
[CrossRef]

Burger, S.

Chan, C. T.

C. Wu, H. Q. Li, X. T. Yu, F. Li, H. Chen, and C. T. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107, 177401 (2011).
[CrossRef]

Chen, H.

C. Wu, H. Q. Li, X. T. Yu, F. Li, H. Chen, and C. T. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107, 177401 (2011).
[CrossRef]

Chen, L.

Clausing, K. R.

A. J. Bahr and K. R. Clausing, “An approximate model for artificial chiral material,” IEEE Trans. Antennas Propag. 42, 1592–1599 (1994).
[CrossRef]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef]

Dong, J.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

Fedosenko, E. A.

I. V. Semchenko, S. A. Khakhomov, S. A. Tretyakov, A. H. Sihvola, and E. A. Fedosenko, “Reflection and transmission by a uniaxially bi-anisotropic slab under normal incidence of plane waves,” J. Phys. D 31, 2458–2464 (1998).
[CrossRef]

Fedotov, V. A.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

Filippi, J. J.

U. J. Meierhenrich, J. J. Filippi, C. Meinert, J. H. Bredehoft, J. Takahashi, L. Nahon, N. C. Jones, and S. V. Hoffmann, “Circular dichroism of amino acids in the vacuum-ultraviolet region,” Angew. Chem. Int. Ed. 49, 7799–7802 (2010).
[CrossRef]

Freymann, G. V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef]

Gansel, J. K.

Gao, D. S.

Greenfield, N. J.

N. J. Greenfield, “Using circular dichroism spectra to estimate protein secondary structure,” Nat. Protoc. 1, 2876–2890(2007).
[CrossRef]

Guerin, F.

F. Guerin, V. K. Varadan, V. V. Varadan, M. Labeyrie, and P. Y. Guillon, “Some experimental results on the dispersive behaviour of chiral composites,” J. Phys. D 28, 194–201 (1995).
[CrossRef]

Guillon, P. Y.

F. Guerin, V. K. Varadan, V. V. Varadan, M. Labeyrie, and P. Y. Guillon, “Some experimental results on the dispersive behaviour of chiral composites,” J. Phys. D 28, 194–201 (1995).
[CrossRef]

Haq, S.

C. R. Taylor, P. G. Lederer, F. C. Smith, and S. Haq, “Measurement and prediction of helix-loaded chiral composites,” IEEE Trans. Antennas Propag. 47, 692–700 (1999).
[CrossRef]

Hoffmann, S. V.

U. J. Meierhenrich, J. J. Filippi, C. Meinert, J. H. Bredehoft, J. Takahashi, L. Nahon, N. C. Jones, and S. V. Hoffmann, “Circular dichroism of amino acids in the vacuum-ultraviolet region,” Angew. Chem. Int. Ed. 49, 7799–7802 (2010).
[CrossRef]

Jones, N. C.

U. J. Meierhenrich, J. J. Filippi, C. Meinert, J. H. Bredehoft, J. Takahashi, L. Nahon, N. C. Jones, and S. V. Hoffmann, “Circular dichroism of amino acids in the vacuum-ultraviolet region,” Angew. Chem. Int. Ed. 49, 7799–7802 (2010).
[CrossRef]

Kaschke, J.

Khakhomov, S. A.

I. V. Semchenko, S. A. Khakhomov, S. A. Tretyakov, A. H. Sihvola, and E. A. Fedosenko, “Reflection and transmission by a uniaxially bi-anisotropic slab under normal incidence of plane waves,” J. Phys. D 31, 2458–2464 (1998).
[CrossRef]

Koschny, T.

R. Zhao, T. Koschny, and C. M. Soukoulis, “Chiral metamaterials: retrieval of the effective parameters with and without substrate,” Opt. Express 18, 14553–14567 (2010).
[CrossRef]

B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonplanar chiral metamaterials with negative index,” Appl. Phys. Lett. 94, 151112 (2009).
[CrossRef]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

Kraus, J. D.

J. D. Kraus and R. J. Marhefka, Antennas: for All Applications (McGraw-Hill, 2003).

Labeyrie, M.

F. Guerin, V. K. Varadan, V. V. Varadan, M. Labeyrie, and P. Y. Guillon, “Some experimental results on the dispersive behaviour of chiral composites,” J. Phys. D 28, 194–201 (1995).
[CrossRef]

Lederer, F.

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82, 053811 (2010).
[CrossRef]

Lederer, P. G.

C. R. Taylor, P. G. Lederer, F. C. Smith, and S. Haq, “Measurement and prediction of helix-loaded chiral composites,” IEEE Trans. Antennas Propag. 47, 692–700 (1999).
[CrossRef]

Li, F.

C. Wu, H. Q. Li, X. T. Yu, F. Li, H. Chen, and C. T. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107, 177401 (2011).
[CrossRef]

Li, H. Q.

C. Wu, H. Q. Li, X. T. Yu, F. Li, H. Chen, and C. T. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107, 177401 (2011).
[CrossRef]

Li, J.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef]

Li, S. X.

Linden, S.

J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18, 1059–1069 (2010).
[CrossRef]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef]

Lu, P. X.

Z. Y. Yang, M. Zhao, and P. X. Lu, “How to improve the signal-to-noise ratio for circular polarizers consisting of helical metamaterials?” Opt. Express 19, 4255–4260 (2011).
[CrossRef]

Z. Y. Yang, M. Zhao, and P. X. Lu, “A numerical study on helix nanowire metamaterials as optical circular polarizers in the visible region,” IEEE Photon. Technol. Lett. 22, 1303–1305(2010).
[CrossRef]

Lu, T. T.

Lu, X.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef]

Lu, Y. F.

Marhefka, R. J.

J. D. Kraus and R. J. Marhefka, Antennas: for All Applications (McGraw-Hill, 2003).

Meierhenrich, U. J.

U. J. Meierhenrich, J. J. Filippi, C. Meinert, J. H. Bredehoft, J. Takahashi, L. Nahon, N. C. Jones, and S. V. Hoffmann, “Circular dichroism of amino acids in the vacuum-ultraviolet region,” Angew. Chem. Int. Ed. 49, 7799–7802 (2010).
[CrossRef]

Meinert, C.

U. J. Meierhenrich, J. J. Filippi, C. Meinert, J. H. Bredehoft, J. Takahashi, L. Nahon, N. C. Jones, and S. V. Hoffmann, “Circular dichroism of amino acids in the vacuum-ultraviolet region,” Angew. Chem. Int. Ed. 49, 7799–7802 (2010).
[CrossRef]

Menzel, C.

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82, 053811 (2010).
[CrossRef]

Nahon, L.

U. J. Meierhenrich, J. J. Filippi, C. Meinert, J. H. Bredehoft, J. Takahashi, L. Nahon, N. C. Jones, and S. V. Hoffmann, “Circular dichroism of amino acids in the vacuum-ultraviolet region,” Angew. Chem. Int. Ed. 49, 7799–7802 (2010).
[CrossRef]

Nakanishi, K.

N. Berova, K. Nakanishi, and R. W. Woody, Circular Dichroism: Principles and Applications (Wiley, 2000).

Park, Y. S.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef]

Plum, E.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

Potton, R. J.

R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys. 67, 717–754 (2004).
[CrossRef]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef]

Rockstuhl, C.

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82, 053811 (2010).
[CrossRef]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef]

Semchenko, I. V.

I. V. Semchenko, S. A. Khakhomov, S. A. Tretyakov, A. H. Sihvola, and E. A. Fedosenko, “Reflection and transmission by a uniaxially bi-anisotropic slab under normal incidence of plane waves,” J. Phys. D 31, 2458–2464 (1998).
[CrossRef]

Sihvola, A. H.

I. V. Semchenko, S. A. Khakhomov, S. A. Tretyakov, A. H. Sihvola, and E. A. Fedosenko, “Reflection and transmission by a uniaxially bi-anisotropic slab under normal incidence of plane waves,” J. Phys. D 31, 2458–2464 (1998).
[CrossRef]

Smith, F. C.

C. R. Taylor, P. G. Lederer, F. C. Smith, and S. Haq, “Measurement and prediction of helix-loaded chiral composites,” IEEE Trans. Antennas Propag. 47, 692–700 (1999).
[CrossRef]

Soukoulis, C. M.

R. Zhao, T. Koschny, and C. M. Soukoulis, “Chiral metamaterials: retrieval of the effective parameters with and without substrate,” Opt. Express 18, 14553–14567 (2010).
[CrossRef]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonplanar chiral metamaterials with negative index,” Appl. Phys. Lett. 94, 151112 (2009).
[CrossRef]

Takahashi, J.

U. J. Meierhenrich, J. J. Filippi, C. Meinert, J. H. Bredehoft, J. Takahashi, L. Nahon, N. C. Jones, and S. V. Hoffmann, “Circular dichroism of amino acids in the vacuum-ultraviolet region,” Angew. Chem. Int. Ed. 49, 7799–7802 (2010).
[CrossRef]

Taylor, C. R.

C. R. Taylor, P. G. Lederer, F. C. Smith, and S. Haq, “Measurement and prediction of helix-loaded chiral composites,” IEEE Trans. Antennas Propag. 47, 692–700 (1999).
[CrossRef]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef]

Tretyakov, S. A.

I. V. Semchenko, S. A. Khakhomov, S. A. Tretyakov, A. H. Sihvola, and E. A. Fedosenko, “Reflection and transmission by a uniaxially bi-anisotropic slab under normal incidence of plane waves,” J. Phys. D 31, 2458–2464 (1998).
[CrossRef]

Varadan, V. K.

F. Guerin, V. K. Varadan, V. V. Varadan, M. Labeyrie, and P. Y. Guillon, “Some experimental results on the dispersive behaviour of chiral composites,” J. Phys. D 28, 194–201 (1995).
[CrossRef]

Varadan, V. V.

F. Guerin, V. K. Varadan, V. V. Varadan, M. Labeyrie, and P. Y. Guillon, “Some experimental results on the dispersive behaviour of chiral composites,” J. Phys. D 28, 194–201 (1995).
[CrossRef]

Wallace, B. A.

L. Whitmore and B. A. Wallace, “Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases,” Biopolymers 89, 392–400 (2008).
[CrossRef]

Wang, B.

B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonplanar chiral metamaterials with negative index,” Appl. Phys. Lett. 94, 151112 (2009).
[CrossRef]

Wang, J.

Wegener, M.

Whitmore, L.

L. Whitmore and B. A. Wallace, “Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases,” Biopolymers 89, 392–400 (2008).
[CrossRef]

Woody, R. W.

N. Berova, K. Nakanishi, and R. W. Woody, Circular Dichroism: Principles and Applications (Wiley, 2000).

Wu, C.

C. Wu, H. Q. Li, X. T. Yu, F. Li, H. Chen, and C. T. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107, 177401 (2011).
[CrossRef]

Yang, Z. Y.

Yu, X. T.

C. Wu, H. Q. Li, X. T. Yu, F. Li, H. Chen, and C. T. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107, 177401 (2011).
[CrossRef]

Zhang, S.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef]

Zhang, W.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef]

Zhang, X.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef]

Zhao, M.

Zhao, R.

Zhao, Z.

Zheludev, N. I.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

Zhong, S. S.

S. S. Zhong, Antenna Theory and Techniques (Electronic Industry, 2011).

Zhou, J.

B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonplanar chiral metamaterials with negative index,” Appl. Phys. Lett. 94, 151112 (2009).
[CrossRef]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

Zhou, X.

Angew. Chem. Int. Ed.

U. J. Meierhenrich, J. J. Filippi, C. Meinert, J. H. Bredehoft, J. Takahashi, L. Nahon, N. C. Jones, and S. V. Hoffmann, “Circular dichroism of amino acids in the vacuum-ultraviolet region,” Angew. Chem. Int. Ed. 49, 7799–7802 (2010).
[CrossRef]

Appl. Phys. Lett.

B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonplanar chiral metamaterials with negative index,” Appl. Phys. Lett. 94, 151112 (2009).
[CrossRef]

Biopolymers

L. Whitmore and B. A. Wallace, “Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases,” Biopolymers 89, 392–400 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

Z. Y. Yang, M. Zhao, and P. X. Lu, “A numerical study on helix nanowire metamaterials as optical circular polarizers in the visible region,” IEEE Photon. Technol. Lett. 22, 1303–1305(2010).
[CrossRef]

IEEE Trans. Antennas Propag.

A. J. Bahr and K. R. Clausing, “An approximate model for artificial chiral material,” IEEE Trans. Antennas Propag. 42, 1592–1599 (1994).
[CrossRef]

C. R. Taylor, P. G. Lederer, F. C. Smith, and S. Haq, “Measurement and prediction of helix-loaded chiral composites,” IEEE Trans. Antennas Propag. 47, 692–700 (1999).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. A

J. Phys. D

I. V. Semchenko, S. A. Khakhomov, S. A. Tretyakov, A. H. Sihvola, and E. A. Fedosenko, “Reflection and transmission by a uniaxially bi-anisotropic slab under normal incidence of plane waves,” J. Phys. D 31, 2458–2464 (1998).
[CrossRef]

F. Guerin, V. K. Varadan, V. V. Varadan, M. Labeyrie, and P. Y. Guillon, “Some experimental results on the dispersive behaviour of chiral composites,” J. Phys. D 28, 194–201 (1995).
[CrossRef]

Nat. Protoc.

N. J. Greenfield, “Using circular dichroism spectra to estimate protein secondary structure,” Nat. Protoc. 1, 2876–2890(2007).
[CrossRef]

Opt. Express

Phys. Rev. A

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82, 053811 (2010).
[CrossRef]

Phys. Rev. B

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

Phys. Rev. Lett.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef]

C. Wu, H. Q. Li, X. T. Yu, F. Li, H. Chen, and C. T. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107, 177401 (2011).
[CrossRef]

Rep. Prog. Phys.

R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys. 67, 717–754 (2004).
[CrossRef]

Science

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef]

Other

N. Berova, K. Nakanishi, and R. W. Woody, Circular Dichroism: Principles and Applications (Wiley, 2000).

J. D. Kraus and R. J. Marhefka, Antennas: for All Applications (McGraw-Hill, 2003).

S. S. Zhong, Antenna Theory and Techniques (Electronic Industry, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic diagram of a metallic helix array with the single-helical structure.

Fig. 2.
Fig. 2.

Schematic diagram of the experimental setup and photos of the samples with single-, double-, and triple-helical structures: (a) experimental setup, (b) samples of single-helical structure, (c) samples of double-helical structure, and (d) sample of triple-helical structure.

Fig. 3.
Fig. 3.

Transmission spectra of the experimental and simulation results. (a), (c), and (e) are for the experimental results of the single-, double-, and triple-helical structures, respectively; (b), (d), and (f) are for the simulation results of the single-, double-, and triple-helical structures, respectively.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Et=tEi=(txxtxytyxtyy)Ei.
Dφ=(cos(φ)sinφsin(φ)cos(φ))tnew=Dφ1tDφ.
tsin=(txxtxytyxtyy).
tsin=(txxtxytxytyy).
Λ=21/2(1i1i).
tsin-circ=ΛtsinΛ1=1/2(txx+tyy+2itxytxxtyytxxtyytxx+tyy2itxy)=(tLCP·RCPtLCP·LCPtRCP·RCPtRCP·LCP).
rsin-circ=(rLCP·RCPrLCP·LCPrRCP·RCPrRCP·LCP).
ttri=(txxtxytxytxx).
ttri-circ=ΛttriΛ1=(txx+itxy00txxitxy)=(tRCP·RCP00tLCP·LCP).
rtri-circ=(rLCP·RCP00rRCP·LCP).
|tRCP·RCP|=|tLCP·LCP|.

Metrics