Abstract

We present a structural optimization method for metal nanostructures based on the shape dependency of their electromagnetic (EM) heat dissipation and thermodynamic transfer to the surroundings. We have used a parallel genetic algorithm in conjunction with a coupled EM (finite-difference time-domain) and thermodynamic modeling of the metallic nanostructures for the optimization. The optimized nanostructure demonstrates significant improvement in EM heating in the spectral window of optimization as well as expedited cooling properties. The symmetry of the structures, which is inherent in the design procedure, makes them independent of the polarization at normal incidence and insensitive to the incident direction while incidence is inclined at an angle.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
    [CrossRef]
  2. S. Asano and G. Yamamoto, “Light scattering by a spheroidal particle,” Appl. Opt. 14, 29–49 (1975).
  3. M. I. Mishchenko and L. D. Travis, “T-matrix computations of light scattering by large spheroidal particles,” Opt. Commun. 109, 16–21 (1994).
    [CrossRef]
  4. V. G. Farafonov, N. V. Voshchinnikov, and V. V. Somsikov, “Light scattering by a core-mantle spheroidal particle,” Appl. Opt. 35, 5412–5426 (1996).
    [CrossRef]
  5. Y. Han, G. Gréhan, and G. Gouesbet, “Generalized Lorenz–Mie theory for a spheroidal particle with off-axis Gaussian-beam illumination,” Appl. Opt. 42, 6621–6629 (2003).
    [CrossRef]
  6. H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. 80, 1826–1828 (2002).
  7. T. Klar, M. Perner, S. Grosse, G. von Plessen, E. Spirkl, and J. Feldmann, “Surface plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
    [CrossRef]
  8. M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34, 257–264 (2001).
    [CrossRef]
  9. K.-H. Su, Q.-H. Wei, and X. Zhang, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
    [CrossRef]
  10. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics of extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
    [CrossRef]
  11. H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9, 1139–1146 (2009).
    [CrossRef]
  12. C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
    [CrossRef]
  13. J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, “Photothermal efficiencies of nanoshells for clinical therapeutic applications,” J. Phys. Chem. 113, 12090–12095 (2009).
    [CrossRef]
  14. R. Bardhan, S. Lal, A. Joshi, and N. J. Halas, “Theranostic nanoshells: from probe design to imaging and treatment of cancer,” Acc. Chem. Res. 44, 936–946 (2011).
    [CrossRef]
  15. Y. Rahmat-Samii and E. Michielssen, Electromagnetic Optimization by Genetic Algorithm (Wiley, 1999).
  16. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  17. S. D. Gedney, “An anisotropic PML absorbing media for the FDTD simulation of fields in lossy and dispersive media,” Electromagnetics 16, 399–415 (1996).
    [CrossRef]
  18. H. D. Baehr and K. Stephan, Heat and Mass Transfer2nd ed. (Springer, 2006).
  19. C. Loken, D. Gruner, L. Groer, R. Peltier, N. Bunn, M. Craig, T. Henriques, J. Dempsey, C.-H. Yu, J. Chen, L. J. Dursi, J. Chong, S. Northrup, J. Pinto, N. Knecht, and R. Van Zon, “SciNet: lessons learned from building a power-efficient top-20 system and data centre,” J. Phys. Conf. Ser. 256, 012026(2010).
    [CrossRef]
  20. D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6, 2592–2597 (2006).
    [CrossRef]
  21. J. R. Adleman, D. A. Boyd, D. G. Goodwin, and D. Psaltis, “Heterogenous catalysis mediated by plasmon heating,” Nano Lett. 9, 4417–4423 (2009).
    [CrossRef]
  22. G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5, 27–32 (2005).
    [CrossRef]

2011 (1)

R. Bardhan, S. Lal, A. Joshi, and N. J. Halas, “Theranostic nanoshells: from probe design to imaging and treatment of cancer,” Acc. Chem. Res. 44, 936–946 (2011).
[CrossRef]

2010 (2)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics of extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

C. Loken, D. Gruner, L. Groer, R. Peltier, N. Bunn, M. Craig, T. Henriques, J. Dempsey, C.-H. Yu, J. Chen, L. J. Dursi, J. Chong, S. Northrup, J. Pinto, N. Knecht, and R. Van Zon, “SciNet: lessons learned from building a power-efficient top-20 system and data centre,” J. Phys. Conf. Ser. 256, 012026(2010).
[CrossRef]

2009 (3)

J. R. Adleman, D. A. Boyd, D. G. Goodwin, and D. Psaltis, “Heterogenous catalysis mediated by plasmon heating,” Nano Lett. 9, 4417–4423 (2009).
[CrossRef]

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9, 1139–1146 (2009).
[CrossRef]

J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, “Photothermal efficiencies of nanoshells for clinical therapeutic applications,” J. Phys. Chem. 113, 12090–12095 (2009).
[CrossRef]

2006 (1)

D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6, 2592–2597 (2006).
[CrossRef]

2005 (2)

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5, 27–32 (2005).
[CrossRef]

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[CrossRef]

2003 (2)

Y. Han, G. Gréhan, and G. Gouesbet, “Generalized Lorenz–Mie theory for a spheroidal particle with off-axis Gaussian-beam illumination,” Appl. Opt. 42, 6621–6629 (2003).
[CrossRef]

K.-H. Su, Q.-H. Wei, and X. Zhang, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[CrossRef]

2002 (1)

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. 80, 1826–1828 (2002).

2001 (1)

M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34, 257–264 (2001).
[CrossRef]

1998 (1)

T. Klar, M. Perner, S. Grosse, G. von Plessen, E. Spirkl, and J. Feldmann, “Surface plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

1996 (2)

V. G. Farafonov, N. V. Voshchinnikov, and V. V. Somsikov, “Light scattering by a core-mantle spheroidal particle,” Appl. Opt. 35, 5412–5426 (1996).
[CrossRef]

S. D. Gedney, “An anisotropic PML absorbing media for the FDTD simulation of fields in lossy and dispersive media,” Electromagnetics 16, 399–415 (1996).
[CrossRef]

1994 (1)

M. I. Mishchenko and L. D. Travis, “T-matrix computations of light scattering by large spheroidal particles,” Opt. Commun. 109, 16–21 (1994).
[CrossRef]

1975 (1)

1908 (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
[CrossRef]

Adleman, J. R.

J. R. Adleman, D. A. Boyd, D. G. Goodwin, and D. Psaltis, “Heterogenous catalysis mediated by plasmon heating,” Nano Lett. 9, 4417–4423 (2009).
[CrossRef]

Asano, S.

Baehr, H. D.

H. D. Baehr and K. Stephan, Heat and Mass Transfer2nd ed. (Springer, 2006).

Bardhan, R.

R. Bardhan, S. Lal, A. Joshi, and N. J. Halas, “Theranostic nanoshells: from probe design to imaging and treatment of cancer,” Acc. Chem. Res. 44, 936–946 (2011).
[CrossRef]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics of extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

Boyd, D. A.

J. R. Adleman, D. A. Boyd, D. G. Goodwin, and D. Psaltis, “Heterogenous catalysis mediated by plasmon heating,” Nano Lett. 9, 4417–4423 (2009).
[CrossRef]

D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6, 2592–2597 (2006).
[CrossRef]

Brongersma, M.

D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6, 2592–2597 (2006).
[CrossRef]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics of extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

Bunn, N.

C. Loken, D. Gruner, L. Groer, R. Peltier, N. Bunn, M. Craig, T. Henriques, J. Dempsey, C.-H. Yu, J. Chen, L. J. Dursi, J. Chong, S. Northrup, J. Pinto, N. Knecht, and R. Van Zon, “SciNet: lessons learned from building a power-efficient top-20 system and data centre,” J. Phys. Conf. Ser. 256, 012026(2010).
[CrossRef]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics of extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

Carlson, M. T.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9, 1139–1146 (2009).
[CrossRef]

Chen, J.

C. Loken, D. Gruner, L. Groer, R. Peltier, N. Bunn, M. Craig, T. Henriques, J. Dempsey, C.-H. Yu, J. Chen, L. J. Dursi, J. Chong, S. Northrup, J. Pinto, N. Knecht, and R. Van Zon, “SciNet: lessons learned from building a power-efficient top-20 system and data centre,” J. Phys. Conf. Ser. 256, 012026(2010).
[CrossRef]

Chong, J.

C. Loken, D. Gruner, L. Groer, R. Peltier, N. Bunn, M. Craig, T. Henriques, J. Dempsey, C.-H. Yu, J. Chen, L. J. Dursi, J. Chong, S. Northrup, J. Pinto, N. Knecht, and R. Van Zon, “SciNet: lessons learned from building a power-efficient top-20 system and data centre,” J. Phys. Conf. Ser. 256, 012026(2010).
[CrossRef]

Cole, J. R.

J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, “Photothermal efficiencies of nanoshells for clinical therapeutic applications,” J. Phys. Chem. 113, 12090–12095 (2009).
[CrossRef]

Craig, M.

C. Loken, D. Gruner, L. Groer, R. Peltier, N. Bunn, M. Craig, T. Henriques, J. Dempsey, C.-H. Yu, J. Chen, L. J. Dursi, J. Chong, S. Northrup, J. Pinto, N. Knecht, and R. Van Zon, “SciNet: lessons learned from building a power-efficient top-20 system and data centre,” J. Phys. Conf. Ser. 256, 012026(2010).
[CrossRef]

Dempsey, J.

C. Loken, D. Gruner, L. Groer, R. Peltier, N. Bunn, M. Craig, T. Henriques, J. Dempsey, C.-H. Yu, J. Chen, L. J. Dursi, J. Chong, S. Northrup, J. Pinto, N. Knecht, and R. Van Zon, “SciNet: lessons learned from building a power-efficient top-20 system and data centre,” J. Phys. Conf. Ser. 256, 012026(2010).
[CrossRef]

Drezek, R.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[CrossRef]

Dursi, L. J.

C. Loken, D. Gruner, L. Groer, R. Peltier, N. Bunn, M. Craig, T. Henriques, J. Dempsey, C.-H. Yu, J. Chen, L. J. Dursi, J. Chong, S. Northrup, J. Pinto, N. Knecht, and R. Van Zon, “SciNet: lessons learned from building a power-efficient top-20 system and data centre,” J. Phys. Conf. Ser. 256, 012026(2010).
[CrossRef]

El-Naggar, M. Y.

D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6, 2592–2597 (2006).
[CrossRef]

El-Sayed, M. A.

M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34, 257–264 (2001).
[CrossRef]

Farafonov, V. G.

Feldmann, J.

T. Klar, M. Perner, S. Grosse, G. von Plessen, E. Spirkl, and J. Feldmann, “Surface plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

Gedney, S. D.

S. D. Gedney, “An anisotropic PML absorbing media for the FDTD simulation of fields in lossy and dispersive media,” Electromagnetics 16, 399–415 (1996).
[CrossRef]

Goodrich, G. P.

J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, “Photothermal efficiencies of nanoshells for clinical therapeutic applications,” J. Phys. Chem. 113, 12090–12095 (2009).
[CrossRef]

Goodwin, D. G.

J. R. Adleman, D. A. Boyd, D. G. Goodwin, and D. Psaltis, “Heterogenous catalysis mediated by plasmon heating,” Nano Lett. 9, 4417–4423 (2009).
[CrossRef]

D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6, 2592–2597 (2006).
[CrossRef]

Gouesbet, G.

Govorov, A. O.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9, 1139–1146 (2009).
[CrossRef]

Greengard, L.

D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6, 2592–2597 (2006).
[CrossRef]

Gréhan, G.

Groer, L.

C. Loken, D. Gruner, L. Groer, R. Peltier, N. Bunn, M. Craig, T. Henriques, J. Dempsey, C.-H. Yu, J. Chen, L. J. Dursi, J. Chong, S. Northrup, J. Pinto, N. Knecht, and R. Van Zon, “SciNet: lessons learned from building a power-efficient top-20 system and data centre,” J. Phys. Conf. Ser. 256, 012026(2010).
[CrossRef]

Grosse, S.

T. Klar, M. Perner, S. Grosse, G. von Plessen, E. Spirkl, and J. Feldmann, “Surface plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

Gruner, D.

C. Loken, D. Gruner, L. Groer, R. Peltier, N. Bunn, M. Craig, T. Henriques, J. Dempsey, C.-H. Yu, J. Chen, L. J. Dursi, J. Chong, S. Northrup, J. Pinto, N. Knecht, and R. Van Zon, “SciNet: lessons learned from building a power-efficient top-20 system and data centre,” J. Phys. Conf. Ser. 256, 012026(2010).
[CrossRef]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Halas, N.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[CrossRef]

Halas, N. J.

R. Bardhan, S. Lal, A. Joshi, and N. J. Halas, “Theranostic nanoshells: from probe design to imaging and treatment of cancer,” Acc. Chem. Res. 44, 936–946 (2011).
[CrossRef]

J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, “Photothermal efficiencies of nanoshells for clinical therapeutic applications,” J. Phys. Chem. 113, 12090–12095 (2009).
[CrossRef]

Han, Y.

Henriques, T.

C. Loken, D. Gruner, L. Groer, R. Peltier, N. Bunn, M. Craig, T. Henriques, J. Dempsey, C.-H. Yu, J. Chen, L. J. Dursi, J. Chong, S. Northrup, J. Pinto, N. Knecht, and R. Van Zon, “SciNet: lessons learned from building a power-efficient top-20 system and data centre,” J. Phys. Conf. Ser. 256, 012026(2010).
[CrossRef]

Hernandez, P.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9, 1139–1146 (2009).
[CrossRef]

Joshi, A.

R. Bardhan, S. Lal, A. Joshi, and N. J. Halas, “Theranostic nanoshells: from probe design to imaging and treatment of cancer,” Acc. Chem. Res. 44, 936–946 (2011).
[CrossRef]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics of extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

Kim, J.

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5, 27–32 (2005).
[CrossRef]

Klar, T.

T. Klar, M. Perner, S. Grosse, G. von Plessen, E. Spirkl, and J. Feldmann, “Surface plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

Knecht, N.

C. Loken, D. Gruner, L. Groer, R. Peltier, N. Bunn, M. Craig, T. Henriques, J. Dempsey, C.-H. Yu, J. Chen, L. J. Dursi, J. Chong, S. Northrup, J. Pinto, N. Knecht, and R. Van Zon, “SciNet: lessons learned from building a power-efficient top-20 system and data centre,” J. Phys. Conf. Ser. 256, 012026(2010).
[CrossRef]

Knight, M. W.

J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, “Photothermal efficiencies of nanoshells for clinical therapeutic applications,” J. Phys. Chem. 113, 12090–12095 (2009).
[CrossRef]

Kuwata, H.

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. 80, 1826–1828 (2002).

Lal, S.

R. Bardhan, S. Lal, A. Joshi, and N. J. Halas, “Theranostic nanoshells: from probe design to imaging and treatment of cancer,” Acc. Chem. Res. 44, 936–946 (2011).
[CrossRef]

Lee, L. P.

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5, 27–32 (2005).
[CrossRef]

Liu, G. L.

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5, 27–32 (2005).
[CrossRef]

Loken, C.

C. Loken, D. Gruner, L. Groer, R. Peltier, N. Bunn, M. Craig, T. Henriques, J. Dempsey, C.-H. Yu, J. Chen, L. J. Dursi, J. Chong, S. Northrup, J. Pinto, N. Knecht, and R. Van Zon, “SciNet: lessons learned from building a power-efficient top-20 system and data centre,” J. Phys. Conf. Ser. 256, 012026(2010).
[CrossRef]

Loo, C.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[CrossRef]

Lowery, A.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[CrossRef]

Lu, Y.

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5, 27–32 (2005).
[CrossRef]

Michielssen, E.

Y. Rahmat-Samii and E. Michielssen, Electromagnetic Optimization by Genetic Algorithm (Wiley, 1999).

Mie, G.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
[CrossRef]

Mirin, N. A.

J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, “Photothermal efficiencies of nanoshells for clinical therapeutic applications,” J. Phys. Chem. 113, 12090–12095 (2009).
[CrossRef]

Mishchenko, M. I.

M. I. Mishchenko and L. D. Travis, “T-matrix computations of light scattering by large spheroidal particles,” Opt. Commun. 109, 16–21 (1994).
[CrossRef]

Miyano, K.

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. 80, 1826–1828 (2002).

Miyazaki, H. T.

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. 80, 1826–1828 (2002).

Northrup, S.

C. Loken, D. Gruner, L. Groer, R. Peltier, N. Bunn, M. Craig, T. Henriques, J. Dempsey, C.-H. Yu, J. Chen, L. J. Dursi, J. Chong, S. Northrup, J. Pinto, N. Knecht, and R. Van Zon, “SciNet: lessons learned from building a power-efficient top-20 system and data centre,” J. Phys. Conf. Ser. 256, 012026(2010).
[CrossRef]

Peltier, R.

C. Loken, D. Gruner, L. Groer, R. Peltier, N. Bunn, M. Craig, T. Henriques, J. Dempsey, C.-H. Yu, J. Chen, L. J. Dursi, J. Chong, S. Northrup, J. Pinto, N. Knecht, and R. Van Zon, “SciNet: lessons learned from building a power-efficient top-20 system and data centre,” J. Phys. Conf. Ser. 256, 012026(2010).
[CrossRef]

Perner, M.

T. Klar, M. Perner, S. Grosse, G. von Plessen, E. Spirkl, and J. Feldmann, “Surface plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

Pinto, J.

C. Loken, D. Gruner, L. Groer, R. Peltier, N. Bunn, M. Craig, T. Henriques, J. Dempsey, C.-H. Yu, J. Chen, L. J. Dursi, J. Chong, S. Northrup, J. Pinto, N. Knecht, and R. Van Zon, “SciNet: lessons learned from building a power-efficient top-20 system and data centre,” J. Phys. Conf. Ser. 256, 012026(2010).
[CrossRef]

Psaltis, D.

J. R. Adleman, D. A. Boyd, D. G. Goodwin, and D. Psaltis, “Heterogenous catalysis mediated by plasmon heating,” Nano Lett. 9, 4417–4423 (2009).
[CrossRef]

Rahmat-Samii, Y.

Y. Rahmat-Samii and E. Michielssen, Electromagnetic Optimization by Genetic Algorithm (Wiley, 1999).

Richardson, H. H.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9, 1139–1146 (2009).
[CrossRef]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics of extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

Somsikov, V. V.

Spirkl, E.

T. Klar, M. Perner, S. Grosse, G. von Plessen, E. Spirkl, and J. Feldmann, “Surface plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

Stephan, K.

H. D. Baehr and K. Stephan, Heat and Mass Transfer2nd ed. (Springer, 2006).

Su, K.-H.

K.-H. Su, Q.-H. Wei, and X. Zhang, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Tamaru, H.

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. 80, 1826–1828 (2002).

Tandler, P. J.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9, 1139–1146 (2009).
[CrossRef]

Travis, L. D.

M. I. Mishchenko and L. D. Travis, “T-matrix computations of light scattering by large spheroidal particles,” Opt. Commun. 109, 16–21 (1994).
[CrossRef]

Van Zon, R.

C. Loken, D. Gruner, L. Groer, R. Peltier, N. Bunn, M. Craig, T. Henriques, J. Dempsey, C.-H. Yu, J. Chen, L. J. Dursi, J. Chong, S. Northrup, J. Pinto, N. Knecht, and R. Van Zon, “SciNet: lessons learned from building a power-efficient top-20 system and data centre,” J. Phys. Conf. Ser. 256, 012026(2010).
[CrossRef]

von Plessen, G.

T. Klar, M. Perner, S. Grosse, G. von Plessen, E. Spirkl, and J. Feldmann, “Surface plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

Voshchinnikov, N. V.

Wei, Q.-H.

K.-H. Su, Q.-H. Wei, and X. Zhang, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[CrossRef]

West, J.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[CrossRef]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics of extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

Yamamoto, G.

Yu, C.-H.

C. Loken, D. Gruner, L. Groer, R. Peltier, N. Bunn, M. Craig, T. Henriques, J. Dempsey, C.-H. Yu, J. Chen, L. J. Dursi, J. Chong, S. Northrup, J. Pinto, N. Knecht, and R. Van Zon, “SciNet: lessons learned from building a power-efficient top-20 system and data centre,” J. Phys. Conf. Ser. 256, 012026(2010).
[CrossRef]

Zhang, X.

K.-H. Su, Q.-H. Wei, and X. Zhang, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[CrossRef]

Acc. Chem. Res. (2)

M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34, 257–264 (2001).
[CrossRef]

R. Bardhan, S. Lal, A. Joshi, and N. J. Halas, “Theranostic nanoshells: from probe design to imaging and treatment of cancer,” Acc. Chem. Res. 44, 936–946 (2011).
[CrossRef]

Ann. Phys. (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. (1)

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. 80, 1826–1828 (2002).

Electromagnetics (1)

S. D. Gedney, “An anisotropic PML absorbing media for the FDTD simulation of fields in lossy and dispersive media,” Electromagnetics 16, 399–415 (1996).
[CrossRef]

J. Phys. Chem. (1)

J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, “Photothermal efficiencies of nanoshells for clinical therapeutic applications,” J. Phys. Chem. 113, 12090–12095 (2009).
[CrossRef]

J. Phys. Conf. Ser. (1)

C. Loken, D. Gruner, L. Groer, R. Peltier, N. Bunn, M. Craig, T. Henriques, J. Dempsey, C.-H. Yu, J. Chen, L. J. Dursi, J. Chong, S. Northrup, J. Pinto, N. Knecht, and R. Van Zon, “SciNet: lessons learned from building a power-efficient top-20 system and data centre,” J. Phys. Conf. Ser. 256, 012026(2010).
[CrossRef]

Nano Lett. (5)

D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6, 2592–2597 (2006).
[CrossRef]

J. R. Adleman, D. A. Boyd, D. G. Goodwin, and D. Psaltis, “Heterogenous catalysis mediated by plasmon heating,” Nano Lett. 9, 4417–4423 (2009).
[CrossRef]

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9, 1139–1146 (2009).
[CrossRef]

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[CrossRef]

K.-H. Su, Q.-H. Wei, and X. Zhang, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[CrossRef]

Nat. Mater. (2)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics of extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5, 27–32 (2005).
[CrossRef]

Opt. Commun. (1)

M. I. Mishchenko and L. D. Travis, “T-matrix computations of light scattering by large spheroidal particles,” Opt. Commun. 109, 16–21 (1994).
[CrossRef]

Phys. Rev. Lett. (1)

T. Klar, M. Perner, S. Grosse, G. von Plessen, E. Spirkl, and J. Feldmann, “Surface plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

Other (3)

Y. Rahmat-Samii and E. Michielssen, Electromagnetic Optimization by Genetic Algorithm (Wiley, 1999).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

H. D. Baehr and K. Stephan, Heat and Mass Transfer2nd ed. (Springer, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Operational flowchart of the shape optimization procedure.

Fig. 2.
Fig. 2.

Schematic of FDTD simulation setup with a TFSF source.

Fig. 3.
Fig. 3.

Flow chart of a parallel GA.

Fig. 4.
Fig. 4.

(a) First quadrant view of an optimized metallic nanostructure which maximizes both the EM absorption and transfer of the generated thermal energy to the surrounding. (b) Top view of the optimized structure. (The black color represents the surrounding heat reservoir). (c) The triangular chromosome associated to the optimized structure. (d) Reconstruction of the structure by eightfold replication of the chromosome around the center-point (the chromosome is pointed out by the red triangle).

Fig. 5.
Fig. 5.

(a) Comparison of the heat dissipation between a solid rectangular cuboid and the optimized structure of equal volume generated by the GA. (b) Comparison of the temperature evolution between the solid rectangular cuboid and the optimized structure. The structures are cooled from an elevated surface temperature to the temperature of the reservoir.

Fig. 6.
Fig. 6.

Maximum fitness of the generations of the GA plotted against the generation number. The top axis shows the required time to calculate the fitness of each generation to determine the maximum fitness.

Fig. 7.
Fig. 7.

Coordinate system to describe the TFSF source parameters. k^inc is the direction of the source propagation. ψ is the angle of the direction of vibration of the E field with respect to the direction of k^inc×z^, where z^ is the unit vector along the z axis. ϕ is the angle between the positive direction of the x axis and the projection of k^inc on the xy plane. The positive x and z axes directions are opposite as compared to Fig. 2.

Fig. 8.
Fig. 8.

Comparison of the heat dissipation of the optimized structure for different polarizations of the incident plane wave Gaussian pulse. Polarization angle (ψ) was varied from 0° to 45° with an interval of 15° with normal incidence. Also a random choice of ψ=32.5° is included in the plot.

Fig. 9.
Fig. 9.

Comparison of the heat dissipation of the optimized structure for different directions of the incident plane wave Gaussian pulse at an incident angle (θ) of 30°. The azimuth angle (ϕ) was varied from 0° to 45° with an interval of 15° at θ=30°.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Bi=hλclchar=hλcVMNSAsurf.
dUdt=Q˙=VMNSρcdTdt=hAsurf(TTs).
T=Ts+(T0Ts)exp(tτMNS),
Pheat(ω)=i,j,kσMNS(ω)|i,j,k(|Ex|i,j,k(ω)|2+|Ey|i,j,k(ω)|2+|Ez|i,j,k(ω)|2).
fGA=1τMNSωlowωhighPheat(ω)Psource(ω)dω,
CJ(ω)=Pheat(ω)Vunit-cellPsource(ω).

Metrics