K. Edee, I. Fenniche, G. Granet, and B. Guizal, “Modal method based on subsectional Gegenbauer polynomial expansion for lamellar gratings: weithing function, convergence and stability,” Progress Electromagn. Res. 133, 17–35 (2013).

A. M. Armeanu, K. Edee, G. Granet, and P. Schiavone, “Modal method based on spline expansion for the electromagnetic analysis of the lamellar grating,” Progress Electromagn. Res. 106, 243–261 (2010).

[CrossRef]

G. Granet, L. B. Andriamanampisoa, K. Raniriharinosy, A. M. Armeanu, and K. Edee, “Modal analysis of lamellar gratings using the moment method with subsectional basis and adaptive spatial resolution,” J. Opt. Soc. Am. A 27, 1303–1310(2010).

[CrossRef]

J.-P. Plumey, K. Edee, and G. Granet, “Modal expansion for 2D Green’s function in a non-orthogonal coordinates system,” Progress Electromagn. Res. 59, 101–112 (2006).

[CrossRef]

C. Baudier, R. Dusséeaux, K. Edee, and G. Granet, “Scattering of a plane wave by one-dimensional dielectric random surfaces. Study with the curvilinear method,” Waves Random Media 14, 61–74 (2004).

[CrossRef]

K. Edee, G. Granet, R. Dusséaux, and C. Baudier, “A hybrid method for the study of plane waves scattering by rough surfaces,” J. Electromagn. Waves Appl. 18, 1001–1015 (2004).

[CrossRef]

K. Edee and G. Granet, “Improvement of the curvilinear coordinate method for scattering from rough surfaces: reduction of the eigenvalue equation by using eigenvalue degenerscence,” J. Electromagn. Waves Appl. 18, 763–768 (2004).

[CrossRef]

B. Guizal, D. Barchiesi, and D. Felbacq, “Electromagnetic beam diffraction by a finite lamellar structure: an aperiodic coupled-wave method,” J. Opt. Soc. Am. A 20, 2274–2280 (2003).

G. Granet, K. Edee, and D. Felbacq, “Scattering of a plane wave by rough surfaces: a new curvilinear coordinate system based approach,” Progress Electromagn. Res. 41, 235–250 (2003).

[CrossRef]

J. C. Weeber, A. Dereux, C. Girard, G. Colas des Francs, J. R. Krenn, and J. P. Goudonnet, “Optical addressing at the subwavelength scale,” Phys. Rev. E. 62, 7381–7388 (2000).

[CrossRef]

F. L. Teixeira and W. C. Chew, “Differential forms, metrics, and the reflectionless absorption of electromagnetic waves,” J. Electromagn. Waves Appl. 13, 665–686 (1999).

[CrossRef]

W. C. Chew and W. H. Weedon, “A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microw. Opt. Technol. Lett. 7, 599–604(1994).

[CrossRef]

J. Bérenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200(1994).

[CrossRef]

G. Granet, L. B. Andriamanampisoa, K. Raniriharinosy, A. M. Armeanu, and K. Edee, “Modal analysis of lamellar gratings using the moment method with subsectional basis and adaptive spatial resolution,” J. Opt. Soc. Am. A 27, 1303–1310(2010).

[CrossRef]

A. M. Armeanu, K. Edee, G. Granet, and P. Schiavone, “Modal method based on spline expansion for the electromagnetic analysis of the lamellar grating,” Progress Electromagn. Res. 106, 243–261 (2010).

[CrossRef]

C. Baudier, R. Dusséeaux, K. Edee, and G. Granet, “Scattering of a plane wave by one-dimensional dielectric random surfaces. Study with the curvilinear method,” Waves Random Media 14, 61–74 (2004).

[CrossRef]

K. Edee, G. Granet, R. Dusséaux, and C. Baudier, “A hybrid method for the study of plane waves scattering by rough surfaces,” J. Electromagn. Waves Appl. 18, 1001–1015 (2004).

[CrossRef]

J. Bérenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200(1994).

[CrossRef]

F. L. Teixeira and W. C. Chew, “Differential forms, metrics, and the reflectionless absorption of electromagnetic waves,” J. Electromagn. Waves Appl. 13, 665–686 (1999).

[CrossRef]

W. C. Chew, J. M. Jin, and E. Michielssen, “Complex coordinate stretching as a generalized absorbing boundary condition,” Microw. Opt. Technol. Lett. 15, 363–369 (1997).

[CrossRef]

W. C. Chew and W. H. Weedon, “A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microw. Opt. Technol. Lett. 7, 599–604(1994).

[CrossRef]

J. C. Weeber, A. Dereux, C. Girard, G. Colas des Francs, J. R. Krenn, and J. P. Goudonnet, “Optical addressing at the subwavelength scale,” Phys. Rev. E. 62, 7381–7388 (2000).

[CrossRef]

J. C. Weeber, A. Dereux, C. Girard, G. Colas des Francs, J. R. Krenn, and J. P. Goudonnet, “Optical addressing at the subwavelength scale,” Phys. Rev. E. 62, 7381–7388 (2000).

[CrossRef]

K. Edee, G. Granet, R. Dusséaux, and C. Baudier, “A hybrid method for the study of plane waves scattering by rough surfaces,” J. Electromagn. Waves Appl. 18, 1001–1015 (2004).

[CrossRef]

C. Baudier, R. Dusséeaux, K. Edee, and G. Granet, “Scattering of a plane wave by one-dimensional dielectric random surfaces. Study with the curvilinear method,” Waves Random Media 14, 61–74 (2004).

[CrossRef]

K. Edee, I. Fenniche, G. Granet, and B. Guizal, “Modal method based on subsectional Gegenbauer polynomial expansion for lamellar gratings: weithing function, convergence and stability,” Progress Electromagn. Res. 133, 17–35 (2013).

K. Edee, “Modal method based on subsectional Gegenbauer polynomial expansion for lamellar gratings,” J. Opt. Soc. Am. A 28, 2006–2013 (2011).

[CrossRef]

A. M. Armeanu, K. Edee, G. Granet, and P. Schiavone, “Modal method based on spline expansion for the electromagnetic analysis of the lamellar grating,” Progress Electromagn. Res. 106, 243–261 (2010).

[CrossRef]

G. Granet, L. B. Andriamanampisoa, K. Raniriharinosy, A. M. Armeanu, and K. Edee, “Modal analysis of lamellar gratings using the moment method with subsectional basis and adaptive spatial resolution,” J. Opt. Soc. Am. A 27, 1303–1310(2010).

[CrossRef]

K. Edee, B. Guizal, G. Granet, and A. Moreau, “Beam implementation in a nonorthogonal coordinate system : application to the scattering from random rough surfaces,” J. Opt. Soc. Am. A 25, 796–804 (2008).

[CrossRef]

K. Edee, G. Granet, and J.-P. Plumey, “Complex coordinate implementation in the curvilinear coordinate method : application to plane-wave diffraction by nonperiodic rough surfaces,” J. Opt. Soc. Am. A 24, 1097–1102 (2007).

[CrossRef]

J.-P. Plumey, K. Edee, and G. Granet, “Modal expansion for 2D Green’s function in a non-orthogonal coordinates system,” Progress Electromagn. Res. 59, 101–112 (2006).

[CrossRef]

K. Edee, P. Schiavone, and G. Granet, “Analysis of defect in E.U.V lithography mask using a modal method by nodal B-spline expansion,” Jpn. J. Appl. Phys. 44, 6458–6462 (2005).

[CrossRef]

C. Baudier, R. Dusséeaux, K. Edee, and G. Granet, “Scattering of a plane wave by one-dimensional dielectric random surfaces. Study with the curvilinear method,” Waves Random Media 14, 61–74 (2004).

[CrossRef]

K. Edee and G. Granet, “Improvement of the curvilinear coordinate method for scattering from rough surfaces: reduction of the eigenvalue equation by using eigenvalue degenerscence,” J. Electromagn. Waves Appl. 18, 763–768 (2004).

[CrossRef]

K. Edee, G. Granet, R. Dusséaux, and C. Baudier, “A hybrid method for the study of plane waves scattering by rough surfaces,” J. Electromagn. Waves Appl. 18, 1001–1015 (2004).

[CrossRef]

G. Granet, K. Edee, and D. Felbacq, “Scattering of a plane wave by rough surfaces: a new curvilinear coordinate system based approach,” Progress Electromagn. Res. 41, 235–250 (2003).

[CrossRef]

G. Granet, K. Edee, and D. Felbacq, “Scattering of a plane wave by rough surfaces: a new curvilinear coordinate system based approach,” Progress Electromagn. Res. 41, 235–250 (2003).

[CrossRef]

B. Guizal, D. Barchiesi, and D. Felbacq, “Electromagnetic beam diffraction by a finite lamellar structure: an aperiodic coupled-wave method,” J. Opt. Soc. Am. A 20, 2274–2280 (2003).

K. Edee, I. Fenniche, G. Granet, and B. Guizal, “Modal method based on subsectional Gegenbauer polynomial expansion for lamellar gratings: weithing function, convergence and stability,” Progress Electromagn. Res. 133, 17–35 (2013).

J. C. Weeber, A. Dereux, C. Girard, G. Colas des Francs, J. R. Krenn, and J. P. Goudonnet, “Optical addressing at the subwavelength scale,” Phys. Rev. E. 62, 7381–7388 (2000).

[CrossRef]

J. C. Weeber, A. Dereux, C. Girard, G. Colas des Francs, J. R. Krenn, and J. P. Goudonnet, “Optical addressing at the subwavelength scale,” Phys. Rev. E. 62, 7381–7388 (2000).

[CrossRef]

K. Edee, I. Fenniche, G. Granet, and B. Guizal, “Modal method based on subsectional Gegenbauer polynomial expansion for lamellar gratings: weithing function, convergence and stability,” Progress Electromagn. Res. 133, 17–35 (2013).

A. M. Armeanu, K. Edee, G. Granet, and P. Schiavone, “Modal method based on spline expansion for the electromagnetic analysis of the lamellar grating,” Progress Electromagn. Res. 106, 243–261 (2010).

[CrossRef]

G. Granet, L. B. Andriamanampisoa, K. Raniriharinosy, A. M. Armeanu, and K. Edee, “Modal analysis of lamellar gratings using the moment method with subsectional basis and adaptive spatial resolution,” J. Opt. Soc. Am. A 27, 1303–1310(2010).

[CrossRef]

K. Edee, B. Guizal, G. Granet, and A. Moreau, “Beam implementation in a nonorthogonal coordinate system : application to the scattering from random rough surfaces,” J. Opt. Soc. Am. A 25, 796–804 (2008).

[CrossRef]

K. Edee, G. Granet, and J.-P. Plumey, “Complex coordinate implementation in the curvilinear coordinate method : application to plane-wave diffraction by nonperiodic rough surfaces,” J. Opt. Soc. Am. A 24, 1097–1102 (2007).

[CrossRef]

J.-P. Plumey, K. Edee, and G. Granet, “Modal expansion for 2D Green’s function in a non-orthogonal coordinates system,” Progress Electromagn. Res. 59, 101–112 (2006).

[CrossRef]

K. Edee, P. Schiavone, and G. Granet, “Analysis of defect in E.U.V lithography mask using a modal method by nodal B-spline expansion,” Jpn. J. Appl. Phys. 44, 6458–6462 (2005).

[CrossRef]

K. Edee, G. Granet, R. Dusséaux, and C. Baudier, “A hybrid method for the study of plane waves scattering by rough surfaces,” J. Electromagn. Waves Appl. 18, 1001–1015 (2004).

[CrossRef]

K. Edee and G. Granet, “Improvement of the curvilinear coordinate method for scattering from rough surfaces: reduction of the eigenvalue equation by using eigenvalue degenerscence,” J. Electromagn. Waves Appl. 18, 763–768 (2004).

[CrossRef]

C. Baudier, R. Dusséeaux, K. Edee, and G. Granet, “Scattering of a plane wave by one-dimensional dielectric random surfaces. Study with the curvilinear method,” Waves Random Media 14, 61–74 (2004).

[CrossRef]

G. Granet, K. Edee, and D. Felbacq, “Scattering of a plane wave by rough surfaces: a new curvilinear coordinate system based approach,” Progress Electromagn. Res. 41, 235–250 (2003).

[CrossRef]

K. Edee, I. Fenniche, G. Granet, and B. Guizal, “Modal method based on subsectional Gegenbauer polynomial expansion for lamellar gratings: weithing function, convergence and stability,” Progress Electromagn. Res. 133, 17–35 (2013).

K. Edee, B. Guizal, G. Granet, and A. Moreau, “Beam implementation in a nonorthogonal coordinate system : application to the scattering from random rough surfaces,” J. Opt. Soc. Am. A 25, 796–804 (2008).

[CrossRef]

B. Guizal, D. Barchiesi, and D. Felbacq, “Electromagnetic beam diffraction by a finite lamellar structure: an aperiodic coupled-wave method,” J. Opt. Soc. Am. A 20, 2274–2280 (2003).

W. C. Chew, J. M. Jin, and E. Michielssen, “Complex coordinate stretching as a generalized absorbing boundary condition,” Microw. Opt. Technol. Lett. 15, 363–369 (1997).

[CrossRef]

Z. S. Sacks, D. M. Kingsland, R. Lee, and J.-F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE. Trans. Antennas Propag. 43, 1460–1463 (1995).

[CrossRef]

J. C. Weeber, A. Dereux, C. Girard, G. Colas des Francs, J. R. Krenn, and J. P. Goudonnet, “Optical addressing at the subwavelength scale,” Phys. Rev. E. 62, 7381–7388 (2000).

[CrossRef]

Z. S. Sacks, D. M. Kingsland, R. Lee, and J.-F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE. Trans. Antennas Propag. 43, 1460–1463 (1995).

[CrossRef]

Z. S. Sacks, D. M. Kingsland, R. Lee, and J.-F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE. Trans. Antennas Propag. 43, 1460–1463 (1995).

[CrossRef]

W. C. Chew, J. M. Jin, and E. Michielssen, “Complex coordinate stretching as a generalized absorbing boundary condition,” Microw. Opt. Technol. Lett. 15, 363–369 (1997).

[CrossRef]

K. Edee, G. Granet, and J.-P. Plumey, “Complex coordinate implementation in the curvilinear coordinate method : application to plane-wave diffraction by nonperiodic rough surfaces,” J. Opt. Soc. Am. A 24, 1097–1102 (2007).

[CrossRef]

J.-P. Plumey, K. Edee, and G. Granet, “Modal expansion for 2D Green’s function in a non-orthogonal coordinates system,” Progress Electromagn. Res. 59, 101–112 (2006).

[CrossRef]

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Z. S. Sacks, D. M. Kingsland, R. Lee, and J.-F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE. Trans. Antennas Propag. 43, 1460–1463 (1995).

[CrossRef]

A. M. Armeanu, K. Edee, G. Granet, and P. Schiavone, “Modal method based on spline expansion for the electromagnetic analysis of the lamellar grating,” Progress Electromagn. Res. 106, 243–261 (2010).

[CrossRef]

K. Edee, P. Schiavone, and G. Granet, “Analysis of defect in E.U.V lithography mask using a modal method by nodal B-spline expansion,” Jpn. J. Appl. Phys. 44, 6458–6462 (2005).

[CrossRef]

F. L. Teixeira and W. C. Chew, “Differential forms, metrics, and the reflectionless absorption of electromagnetic waves,” J. Electromagn. Waves Appl. 13, 665–686 (1999).

[CrossRef]

J. C. Weeber, A. Dereux, C. Girard, G. Colas des Francs, J. R. Krenn, and J. P. Goudonnet, “Optical addressing at the subwavelength scale,” Phys. Rev. E. 62, 7381–7388 (2000).

[CrossRef]

W. C. Chew and W. H. Weedon, “A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microw. Opt. Technol. Lett. 7, 599–604(1994).

[CrossRef]

Z. S. Sacks, D. M. Kingsland, R. Lee, and J.-F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE. Trans. Antennas Propag. 43, 1460–1463 (1995).

[CrossRef]

J. Bérenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200(1994).

[CrossRef]

K. Edee, G. Granet, R. Dusséaux, and C. Baudier, “A hybrid method for the study of plane waves scattering by rough surfaces,” J. Electromagn. Waves Appl. 18, 1001–1015 (2004).

[CrossRef]

K. Edee and G. Granet, “Improvement of the curvilinear coordinate method for scattering from rough surfaces: reduction of the eigenvalue equation by using eigenvalue degenerscence,” J. Electromagn. Waves Appl. 18, 763–768 (2004).

[CrossRef]

F. L. Teixeira and W. C. Chew, “Differential forms, metrics, and the reflectionless absorption of electromagnetic waves,” J. Electromagn. Waves Appl. 13, 665–686 (1999).

[CrossRef]

L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).

[CrossRef]

R. H. Morf, “Exponentially convergent and numerically efficient solution of Maxwell’s equations for lamellar gratings,” J. Opt. Soc. Am. A 12, 1043–1056 (1995).

[CrossRef]

K. Edee, “Modal method based on subsectional Gegenbauer polynomial expansion for lamellar gratings,” J. Opt. Soc. Am. A 28, 2006–2013 (2011).

[CrossRef]

G. Granet, L. B. Andriamanampisoa, K. Raniriharinosy, A. M. Armeanu, and K. Edee, “Modal analysis of lamellar gratings using the moment method with subsectional basis and adaptive spatial resolution,” J. Opt. Soc. Am. A 27, 1303–1310(2010).

[CrossRef]

K. Edee, B. Guizal, G. Granet, and A. Moreau, “Beam implementation in a nonorthogonal coordinate system : application to the scattering from random rough surfaces,” J. Opt. Soc. Am. A 25, 796–804 (2008).

[CrossRef]

E. Silberstein, P. Lalanne, J.-P. Hugonin, and Q. Cao, “Use of gratings in integrated optics,” J. Opt. Soc. Am. A 18, 2865–2875 (2001).

[CrossRef]

J. P. Hugonin and P. Lalanne, “Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization,” J. Opt. Soc. Am. A 22, 1844–1849 (2005).

[CrossRef]

B. Guizal, D. Barchiesi, and D. Felbacq, “Electromagnetic beam diffraction by a finite lamellar structure: an aperiodic coupled-wave method,” J. Opt. Soc. Am. A 20, 2274–2280 (2003).

K. Edee, G. Granet, and J.-P. Plumey, “Complex coordinate implementation in the curvilinear coordinate method : application to plane-wave diffraction by nonperiodic rough surfaces,” J. Opt. Soc. Am. A 24, 1097–1102 (2007).

[CrossRef]

K. Edee, P. Schiavone, and G. Granet, “Analysis of defect in E.U.V lithography mask using a modal method by nodal B-spline expansion,” Jpn. J. Appl. Phys. 44, 6458–6462 (2005).

[CrossRef]

W. C. Chew and W. H. Weedon, “A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microw. Opt. Technol. Lett. 7, 599–604(1994).

[CrossRef]

W. C. Chew, J. M. Jin, and E. Michielssen, “Complex coordinate stretching as a generalized absorbing boundary condition,” Microw. Opt. Technol. Lett. 15, 363–369 (1997).

[CrossRef]

J. C. Weeber, A. Dereux, C. Girard, G. Colas des Francs, J. R. Krenn, and J. P. Goudonnet, “Optical addressing at the subwavelength scale,” Phys. Rev. E. 62, 7381–7388 (2000).

[CrossRef]

K. Edee, I. Fenniche, G. Granet, and B. Guizal, “Modal method based on subsectional Gegenbauer polynomial expansion for lamellar gratings: weithing function, convergence and stability,” Progress Electromagn. Res. 133, 17–35 (2013).

A. M. Armeanu, K. Edee, G. Granet, and P. Schiavone, “Modal method based on spline expansion for the electromagnetic analysis of the lamellar grating,” Progress Electromagn. Res. 106, 243–261 (2010).

[CrossRef]

J.-P. Plumey, K. Edee, and G. Granet, “Modal expansion for 2D Green’s function in a non-orthogonal coordinates system,” Progress Electromagn. Res. 59, 101–112 (2006).

[CrossRef]

G. Granet, K. Edee, and D. Felbacq, “Scattering of a plane wave by rough surfaces: a new curvilinear coordinate system based approach,” Progress Electromagn. Res. 41, 235–250 (2003).

[CrossRef]

C. Baudier, R. Dusséeaux, K. Edee, and G. Granet, “Scattering of a plane wave by one-dimensional dielectric random surfaces. Study with the curvilinear method,” Waves Random Media 14, 61–74 (2004).

[CrossRef]

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).