Abstract

The CIELAB lightness and chroma values of pixels in five of the eight ISO SCID natural images were modified to produce sample images. Pairs of images were displayed on a calibrated monitor and assessed by a panel of 12 observers with normal color vision using a categorical judgment method. The experimental results showed that assuming the lightness parametric factor kL=1 to predict color differences in images, CIELAB performed better than CIEDE2000, CIE94, or CMC, which is a different result to the one found in color-difference literature for homogeneous color pairs. However, observers perceived CIELAB lightness and chroma differences in images in different ways. To fit current experimental data, a specific methodology is proposed to optimize kL in the color-difference formulas CIELAB, CIEDE2000, CIE94, and CMC. From the standardized residual sum of squares (STRESS) index, it was found that the optimized formulas, CIEDE2000(2.3:1), CIE94(3.0:1), and CMC(3.4:1), performed significantly better than their corresponding original forms with lightness parametric factor kL=1. Specifically, CIEDE2000(2.3:1) performed the best, with a satisfactory average STRESS value of 25.8, which is very similar to the 27.5 value that was found from the CIEDE2000(1:1) formula for the combined weighted dataset of homogeneous color samples employed at the development of this formula [J. Opt. Soc. Am. A 25, 1828 (2008), Table 2]. However, fitting our experimental data, none of the four optimized formulas CIELAB(1.5:1), CIEDE2000(2.3:1), CIE94(3.0:1), and CMC(3.4:1) is significantly better than the others. Current results roughly agree with the recent CIE recommendation that color difference in images can be predicted by simply adopting a lightness parametric factor kL=2 in CIELAB or CIEDE2000 [CIE Publication 199:2011]. It was also found that the different contents of the five images have considerable influence on the performance of the tested color-difference formulas.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. CIE, “Improvement to industrial colour-difference evaluation,” CIE Publication 142:2001 (CIE Central Bureau, 2001).
  2. C. Oleari, M. Melgosa, and R. Huertas, “Generalization of color-difference formulas for any illuminant and any observer by assuming perfect color constancy in a color-vision model based on the OSA–UCS system,” J. Opt. Soc. Am. A 28, 2226–2234 (2011).
    [CrossRef]
  3. CIE, “Methods for evaluating colour differences in images,” CIE Publication 199:2011 (CIE Central Bureau, 2011).
  4. M. Stokes, “Colorimetric tolerances of digital images,” Master’s thesis (Rochester Institute of Technology, 1991).
  5. CIE, “Colorimetry,” CIE Publication 15:2004 (CIE Central Bureau, 2004).
  6. ISO/CIE, “Colorimetry—part 4: 1976 L*a*b* colour space,” Joint ISO/CIE Standard: ISO 11664-4:2008(E)/CIE S 014-4/E:2007 (ISO, 2008).
  7. F. J. J. Clarke, R. McDonald, and B. Rigg, “Modification to the JPC79 colour-difference formula,” J. Soc. Dyers Colour. 100, 128–132 and 281–282 (1984).
    [CrossRef]
  8. CIE, “Industrial colour-difference evaluation,” CIE Publication 116:1995 (CIE Central Bureau, 1995).
  9. J. Uroz, M. R. Luo, and J. Morovic, “Perception of colour difference between printed images,” in Colour Science: Exploiting Digital Media, L. W. MacDonald and M. R. Luo, eds., (Wiley, 2002), pp. 49–73.
  10. T. Song and M. R. Luo, “Testing color-difference formulae on complex images using a CRT monitor,” in Proceedings of IS&T and SID Eighth Color Imaging Conference (The Society for Imaging Sciences and Technology, 2000), pp. 44–48.
  11. J. E. Gibson, M. D. Fairchild, and S. L. Wright, “Colorimetric tolerances of various digital image displays,” in Proceedings of IS&T and SID Eighth Color Imaging Conference (The Society for Imaging Sciences and Technology, 2000), pp. 295–300.
  12. C. Sano, T. Song, and M. R. Luo, “Colour differences for complex images,” in Proceedings of IS&T and SID 11th Color Imaging Conference (The Society for Imaging Sciences and Technology, 2003), pp. 121–126.
  13. F. H. Imai, N. Tsumura, and Y. Miyake, “Perceptual color difference metric for complex images based on Mahalanobis distance,” J. Electron. Imaging 10, 385–393 (2001).
    [CrossRef]
  14. M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
    [CrossRef]
  15. X. Zhang and B. A. Wandell, “A spatial extension of CIELAB for digital color image reproduction,” in Proceedings of the SID Symposiums (The Society for Information Display, 1996), pp. 731–734.
  16. D. G. Lee, M. R. Luo, G. Cui, and B. C. Ahn, “Evaluating colour differences for images,” in Proceedings of the 4th European Conference on Colour in Graphics, Imaging, and Vision (The Society for Imaging Sciences and Technology, 2008), pp. 12–15.
  17. ISO, “Graphic technology—prepress digital data exchange—part 1: CMYK standard colour image data (CMYK/SCID),” ISO 12640-1: 1997 (ISO, 1997).
  18. H. Liu, M. Huang, M. Xie, and M. Zhu, “The effect of image’s contents on the visual color difference for digital images,” in Proceedings of the 3rd International Congress on Image and Signal Processing (The Institute of Electrical and Electronics Engineers, 2010), pp. 2356–2359.
  19. M. Xie, “Study on methods of image quality evaluation based on the color-difference formula,” Master’s thesis (Beijing Institute of Graphic Communication, 2010) (in Chinese).
  20. M. Xie, H. Liu, and M. Huang, “Subjective evaluation experiment and data analysis of color difference for digital images,” in Proceedings of the 31st International Congress on Imaging Science (The Society for Imaging Sciences and Technology, 2010), pp. 180–183.
  21. R. Huertas, M. Melgosa, and E. Hita, “Influence of random-dot textures on perception of suprathreshold color differences,” J. Opt. Soc. Am. A 23, 2067–2076 (2006).
    [CrossRef]
  22. S. S. Guan and M. R. Luo, “Investigation of parametric effects using large colour differences,” Color Res. Appl. 24, 356–368 (1999).
    [CrossRef]
  23. M. R. Luo, “Development of colour-difference formulae,” Rev. Prog. Color. Relat. Top. 32, 28–39 (2002).
    [CrossRef]
  24. P. A. García, R. Huertas, M. Melgosa, and G. Cui, “Measurement of the relationship between perceived and computed colour difference,” J. Opt. Soc. Am. A 24, 1823–1829 (2007).
    [CrossRef]
  25. M. Huang, H. Liu, G. Cui, and M. R. Luo, “Testing uniform colour spaces and colour-difference formulae using printed samples,” Color Res. Appl. 37, 326–335 (2012).
    [CrossRef]
  26. E. Kirchner and N. Dekker, “Performance measures of color-difference equations: correlation coefficient versus standardized residual sum of squares,” J. Opt. Soc. Am. A 28, 1841–1848 (2011).
    [CrossRef]
  27. E. C. Poulton, “Models for biases in judging sensory magnitude,” Psychol. Bull. 86 (4), 777–803 (1979).
    [CrossRef]
  28. R. Shamey, L. M. Cárdenas, D. Hinks, and R. Woodard, “Comparison of naïve and expert subjects in the assessment of small color differences,” J. Opt. Soc. Am. A 27, 1482–1489 (2010).
    [CrossRef]
  29. M. Huang, H. Liu, G. Cui, M. R. Luo, and M. Melgosa, “Evaluation of threshold colour differences using printed samples,” J. Opt. Soc. Am. A 29, 883–891 (2012).
    [CrossRef]
  30. M. Melgosa, R. Huertas, and R. S. Berns, “Performance of recent advanced color-difference formulas using the standardized residual sum of squares index,” J. Opt. Soc. Am. A 25, 1828–1834 (2008).
    [CrossRef]

2012

M. Huang, H. Liu, G. Cui, and M. R. Luo, “Testing uniform colour spaces and colour-difference formulae using printed samples,” Color Res. Appl. 37, 326–335 (2012).
[CrossRef]

M. Huang, H. Liu, G. Cui, M. R. Luo, and M. Melgosa, “Evaluation of threshold colour differences using printed samples,” J. Opt. Soc. Am. A 29, 883–891 (2012).
[CrossRef]

2011

2010

2008

2007

2006

2002

M. R. Luo, “Development of colour-difference formulae,” Rev. Prog. Color. Relat. Top. 32, 28–39 (2002).
[CrossRef]

2001

F. H. Imai, N. Tsumura, and Y. Miyake, “Perceptual color difference metric for complex images based on Mahalanobis distance,” J. Electron. Imaging 10, 385–393 (2001).
[CrossRef]

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
[CrossRef]

1999

S. S. Guan and M. R. Luo, “Investigation of parametric effects using large colour differences,” Color Res. Appl. 24, 356–368 (1999).
[CrossRef]

1984

F. J. J. Clarke, R. McDonald, and B. Rigg, “Modification to the JPC79 colour-difference formula,” J. Soc. Dyers Colour. 100, 128–132 and 281–282 (1984).
[CrossRef]

1979

E. C. Poulton, “Models for biases in judging sensory magnitude,” Psychol. Bull. 86 (4), 777–803 (1979).
[CrossRef]

Ahn, B. C.

D. G. Lee, M. R. Luo, G. Cui, and B. C. Ahn, “Evaluating colour differences for images,” in Proceedings of the 4th European Conference on Colour in Graphics, Imaging, and Vision (The Society for Imaging Sciences and Technology, 2008), pp. 12–15.

Berns, R. S.

Cárdenas, L. M.

Clarke, F. J. J.

F. J. J. Clarke, R. McDonald, and B. Rigg, “Modification to the JPC79 colour-difference formula,” J. Soc. Dyers Colour. 100, 128–132 and 281–282 (1984).
[CrossRef]

Cui, G.

M. Huang, H. Liu, G. Cui, and M. R. Luo, “Testing uniform colour spaces and colour-difference formulae using printed samples,” Color Res. Appl. 37, 326–335 (2012).
[CrossRef]

M. Huang, H. Liu, G. Cui, M. R. Luo, and M. Melgosa, “Evaluation of threshold colour differences using printed samples,” J. Opt. Soc. Am. A 29, 883–891 (2012).
[CrossRef]

P. A. García, R. Huertas, M. Melgosa, and G. Cui, “Measurement of the relationship between perceived and computed colour difference,” J. Opt. Soc. Am. A 24, 1823–1829 (2007).
[CrossRef]

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
[CrossRef]

D. G. Lee, M. R. Luo, G. Cui, and B. C. Ahn, “Evaluating colour differences for images,” in Proceedings of the 4th European Conference on Colour in Graphics, Imaging, and Vision (The Society for Imaging Sciences and Technology, 2008), pp. 12–15.

Dekker, N.

Fairchild, M. D.

J. E. Gibson, M. D. Fairchild, and S. L. Wright, “Colorimetric tolerances of various digital image displays,” in Proceedings of IS&T and SID Eighth Color Imaging Conference (The Society for Imaging Sciences and Technology, 2000), pp. 295–300.

García, P. A.

Gibson, J. E.

J. E. Gibson, M. D. Fairchild, and S. L. Wright, “Colorimetric tolerances of various digital image displays,” in Proceedings of IS&T and SID Eighth Color Imaging Conference (The Society for Imaging Sciences and Technology, 2000), pp. 295–300.

Guan, S. S.

S. S. Guan and M. R. Luo, “Investigation of parametric effects using large colour differences,” Color Res. Appl. 24, 356–368 (1999).
[CrossRef]

Hinks, D.

Hita, E.

Huang, M.

M. Huang, H. Liu, G. Cui, M. R. Luo, and M. Melgosa, “Evaluation of threshold colour differences using printed samples,” J. Opt. Soc. Am. A 29, 883–891 (2012).
[CrossRef]

M. Huang, H. Liu, G. Cui, and M. R. Luo, “Testing uniform colour spaces and colour-difference formulae using printed samples,” Color Res. Appl. 37, 326–335 (2012).
[CrossRef]

H. Liu, M. Huang, M. Xie, and M. Zhu, “The effect of image’s contents on the visual color difference for digital images,” in Proceedings of the 3rd International Congress on Image and Signal Processing (The Institute of Electrical and Electronics Engineers, 2010), pp. 2356–2359.

M. Xie, H. Liu, and M. Huang, “Subjective evaluation experiment and data analysis of color difference for digital images,” in Proceedings of the 31st International Congress on Imaging Science (The Society for Imaging Sciences and Technology, 2010), pp. 180–183.

Huertas, R.

Imai, F. H.

F. H. Imai, N. Tsumura, and Y. Miyake, “Perceptual color difference metric for complex images based on Mahalanobis distance,” J. Electron. Imaging 10, 385–393 (2001).
[CrossRef]

Kirchner, E.

Lee, D. G.

D. G. Lee, M. R. Luo, G. Cui, and B. C. Ahn, “Evaluating colour differences for images,” in Proceedings of the 4th European Conference on Colour in Graphics, Imaging, and Vision (The Society for Imaging Sciences and Technology, 2008), pp. 12–15.

Liu, H.

M. Huang, H. Liu, G. Cui, and M. R. Luo, “Testing uniform colour spaces and colour-difference formulae using printed samples,” Color Res. Appl. 37, 326–335 (2012).
[CrossRef]

M. Huang, H. Liu, G. Cui, M. R. Luo, and M. Melgosa, “Evaluation of threshold colour differences using printed samples,” J. Opt. Soc. Am. A 29, 883–891 (2012).
[CrossRef]

H. Liu, M. Huang, M. Xie, and M. Zhu, “The effect of image’s contents on the visual color difference for digital images,” in Proceedings of the 3rd International Congress on Image and Signal Processing (The Institute of Electrical and Electronics Engineers, 2010), pp. 2356–2359.

M. Xie, H. Liu, and M. Huang, “Subjective evaluation experiment and data analysis of color difference for digital images,” in Proceedings of the 31st International Congress on Imaging Science (The Society for Imaging Sciences and Technology, 2010), pp. 180–183.

Luo, M. R.

M. Huang, H. Liu, G. Cui, M. R. Luo, and M. Melgosa, “Evaluation of threshold colour differences using printed samples,” J. Opt. Soc. Am. A 29, 883–891 (2012).
[CrossRef]

M. Huang, H. Liu, G. Cui, and M. R. Luo, “Testing uniform colour spaces and colour-difference formulae using printed samples,” Color Res. Appl. 37, 326–335 (2012).
[CrossRef]

M. R. Luo, “Development of colour-difference formulae,” Rev. Prog. Color. Relat. Top. 32, 28–39 (2002).
[CrossRef]

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
[CrossRef]

S. S. Guan and M. R. Luo, “Investigation of parametric effects using large colour differences,” Color Res. Appl. 24, 356–368 (1999).
[CrossRef]

C. Sano, T. Song, and M. R. Luo, “Colour differences for complex images,” in Proceedings of IS&T and SID 11th Color Imaging Conference (The Society for Imaging Sciences and Technology, 2003), pp. 121–126.

D. G. Lee, M. R. Luo, G. Cui, and B. C. Ahn, “Evaluating colour differences for images,” in Proceedings of the 4th European Conference on Colour in Graphics, Imaging, and Vision (The Society for Imaging Sciences and Technology, 2008), pp. 12–15.

J. Uroz, M. R. Luo, and J. Morovic, “Perception of colour difference between printed images,” in Colour Science: Exploiting Digital Media, L. W. MacDonald and M. R. Luo, eds., (Wiley, 2002), pp. 49–73.

T. Song and M. R. Luo, “Testing color-difference formulae on complex images using a CRT monitor,” in Proceedings of IS&T and SID Eighth Color Imaging Conference (The Society for Imaging Sciences and Technology, 2000), pp. 44–48.

McDonald, R.

F. J. J. Clarke, R. McDonald, and B. Rigg, “Modification to the JPC79 colour-difference formula,” J. Soc. Dyers Colour. 100, 128–132 and 281–282 (1984).
[CrossRef]

Melgosa, M.

Miyake, Y.

F. H. Imai, N. Tsumura, and Y. Miyake, “Perceptual color difference metric for complex images based on Mahalanobis distance,” J. Electron. Imaging 10, 385–393 (2001).
[CrossRef]

Morovic, J.

J. Uroz, M. R. Luo, and J. Morovic, “Perception of colour difference between printed images,” in Colour Science: Exploiting Digital Media, L. W. MacDonald and M. R. Luo, eds., (Wiley, 2002), pp. 49–73.

Oleari, C.

Poulton, E. C.

E. C. Poulton, “Models for biases in judging sensory magnitude,” Psychol. Bull. 86 (4), 777–803 (1979).
[CrossRef]

Rigg, B.

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
[CrossRef]

F. J. J. Clarke, R. McDonald, and B. Rigg, “Modification to the JPC79 colour-difference formula,” J. Soc. Dyers Colour. 100, 128–132 and 281–282 (1984).
[CrossRef]

Sano, C.

C. Sano, T. Song, and M. R. Luo, “Colour differences for complex images,” in Proceedings of IS&T and SID 11th Color Imaging Conference (The Society for Imaging Sciences and Technology, 2003), pp. 121–126.

Shamey, R.

Song, T.

T. Song and M. R. Luo, “Testing color-difference formulae on complex images using a CRT monitor,” in Proceedings of IS&T and SID Eighth Color Imaging Conference (The Society for Imaging Sciences and Technology, 2000), pp. 44–48.

C. Sano, T. Song, and M. R. Luo, “Colour differences for complex images,” in Proceedings of IS&T and SID 11th Color Imaging Conference (The Society for Imaging Sciences and Technology, 2003), pp. 121–126.

Stokes, M.

M. Stokes, “Colorimetric tolerances of digital images,” Master’s thesis (Rochester Institute of Technology, 1991).

Tsumura, N.

F. H. Imai, N. Tsumura, and Y. Miyake, “Perceptual color difference metric for complex images based on Mahalanobis distance,” J. Electron. Imaging 10, 385–393 (2001).
[CrossRef]

Uroz, J.

J. Uroz, M. R. Luo, and J. Morovic, “Perception of colour difference between printed images,” in Colour Science: Exploiting Digital Media, L. W. MacDonald and M. R. Luo, eds., (Wiley, 2002), pp. 49–73.

Wandell, B. A.

X. Zhang and B. A. Wandell, “A spatial extension of CIELAB for digital color image reproduction,” in Proceedings of the SID Symposiums (The Society for Information Display, 1996), pp. 731–734.

Woodard, R.

Wright, S. L.

J. E. Gibson, M. D. Fairchild, and S. L. Wright, “Colorimetric tolerances of various digital image displays,” in Proceedings of IS&T and SID Eighth Color Imaging Conference (The Society for Imaging Sciences and Technology, 2000), pp. 295–300.

Xie, M.

H. Liu, M. Huang, M. Xie, and M. Zhu, “The effect of image’s contents on the visual color difference for digital images,” in Proceedings of the 3rd International Congress on Image and Signal Processing (The Institute of Electrical and Electronics Engineers, 2010), pp. 2356–2359.

M. Xie, “Study on methods of image quality evaluation based on the color-difference formula,” Master’s thesis (Beijing Institute of Graphic Communication, 2010) (in Chinese).

M. Xie, H. Liu, and M. Huang, “Subjective evaluation experiment and data analysis of color difference for digital images,” in Proceedings of the 31st International Congress on Imaging Science (The Society for Imaging Sciences and Technology, 2010), pp. 180–183.

Zhang, X.

X. Zhang and B. A. Wandell, “A spatial extension of CIELAB for digital color image reproduction,” in Proceedings of the SID Symposiums (The Society for Information Display, 1996), pp. 731–734.

Zhu, M.

H. Liu, M. Huang, M. Xie, and M. Zhu, “The effect of image’s contents on the visual color difference for digital images,” in Proceedings of the 3rd International Congress on Image and Signal Processing (The Institute of Electrical and Electronics Engineers, 2010), pp. 2356–2359.

Color Res. Appl.

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
[CrossRef]

S. S. Guan and M. R. Luo, “Investigation of parametric effects using large colour differences,” Color Res. Appl. 24, 356–368 (1999).
[CrossRef]

M. Huang, H. Liu, G. Cui, and M. R. Luo, “Testing uniform colour spaces and colour-difference formulae using printed samples,” Color Res. Appl. 37, 326–335 (2012).
[CrossRef]

J. Electron. Imaging

F. H. Imai, N. Tsumura, and Y. Miyake, “Perceptual color difference metric for complex images based on Mahalanobis distance,” J. Electron. Imaging 10, 385–393 (2001).
[CrossRef]

J. Opt. Soc. Am. A

J. Soc. Dyers Colour.

F. J. J. Clarke, R. McDonald, and B. Rigg, “Modification to the JPC79 colour-difference formula,” J. Soc. Dyers Colour. 100, 128–132 and 281–282 (1984).
[CrossRef]

Psychol. Bull.

E. C. Poulton, “Models for biases in judging sensory magnitude,” Psychol. Bull. 86 (4), 777–803 (1979).
[CrossRef]

Rev. Prog. Color. Relat. Top.

M. R. Luo, “Development of colour-difference formulae,” Rev. Prog. Color. Relat. Top. 32, 28–39 (2002).
[CrossRef]

Other

CIE, “Industrial colour-difference evaluation,” CIE Publication 116:1995 (CIE Central Bureau, 1995).

J. Uroz, M. R. Luo, and J. Morovic, “Perception of colour difference between printed images,” in Colour Science: Exploiting Digital Media, L. W. MacDonald and M. R. Luo, eds., (Wiley, 2002), pp. 49–73.

T. Song and M. R. Luo, “Testing color-difference formulae on complex images using a CRT monitor,” in Proceedings of IS&T and SID Eighth Color Imaging Conference (The Society for Imaging Sciences and Technology, 2000), pp. 44–48.

J. E. Gibson, M. D. Fairchild, and S. L. Wright, “Colorimetric tolerances of various digital image displays,” in Proceedings of IS&T and SID Eighth Color Imaging Conference (The Society for Imaging Sciences and Technology, 2000), pp. 295–300.

C. Sano, T. Song, and M. R. Luo, “Colour differences for complex images,” in Proceedings of IS&T and SID 11th Color Imaging Conference (The Society for Imaging Sciences and Technology, 2003), pp. 121–126.

CIE, “Methods for evaluating colour differences in images,” CIE Publication 199:2011 (CIE Central Bureau, 2011).

M. Stokes, “Colorimetric tolerances of digital images,” Master’s thesis (Rochester Institute of Technology, 1991).

CIE, “Colorimetry,” CIE Publication 15:2004 (CIE Central Bureau, 2004).

ISO/CIE, “Colorimetry—part 4: 1976 L*a*b* colour space,” Joint ISO/CIE Standard: ISO 11664-4:2008(E)/CIE S 014-4/E:2007 (ISO, 2008).

X. Zhang and B. A. Wandell, “A spatial extension of CIELAB for digital color image reproduction,” in Proceedings of the SID Symposiums (The Society for Information Display, 1996), pp. 731–734.

D. G. Lee, M. R. Luo, G. Cui, and B. C. Ahn, “Evaluating colour differences for images,” in Proceedings of the 4th European Conference on Colour in Graphics, Imaging, and Vision (The Society for Imaging Sciences and Technology, 2008), pp. 12–15.

ISO, “Graphic technology—prepress digital data exchange—part 1: CMYK standard colour image data (CMYK/SCID),” ISO 12640-1: 1997 (ISO, 1997).

H. Liu, M. Huang, M. Xie, and M. Zhu, “The effect of image’s contents on the visual color difference for digital images,” in Proceedings of the 3rd International Congress on Image and Signal Processing (The Institute of Electrical and Electronics Engineers, 2010), pp. 2356–2359.

M. Xie, “Study on methods of image quality evaluation based on the color-difference formula,” Master’s thesis (Beijing Institute of Graphic Communication, 2010) (in Chinese).

M. Xie, H. Liu, and M. Huang, “Subjective evaluation experiment and data analysis of color difference for digital images,” in Proceedings of the 31st International Congress on Imaging Science (The Society for Imaging Sciences and Technology, 2010), pp. 180–183.

CIE, “Improvement to industrial colour-difference evaluation,” CIE Publication 142:2001 (CIE Central Bureau, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

CMYK/SCID ISO 400 images used in the experiments.

Fig. 2.
Fig. 2.

Transform functions for lightness (the third column in Table 1) employed in preparing test images.

Fig. 3.
Fig. 3.

Example of one test image pair in landscape format. The original and test images changed randomly from left to right position during the visual assessments.

Fig. 4.
Fig. 4.

Measured positions for testing spatial uniformity of monitor. The uniformity was checked in terms of the average color difference between areas marked by the same number.

Fig. 5.
Fig. 5.

Relationship between calculated and visually perceived color differences. Results from each of the five tested images and their corresponding linear fits are distinguished.

Fig. 6.
Fig. 6.

Same as Fig. 5 but considering kL=2 in color-difference formulas: (a) CIELAB(2:1), (b) CIEDE2000(2:1), (c) CIE94(2:1), and (d) CMC(2:1).

Fig. 7.
Fig. 7.

Experimental results distinguishing images with only lightness and only chroma differences, considering the color-difference formulas: (a) CIELAB(1:1), (b) CIEDE2000(1:1), (c) CIE94(1:1), and (d) CMC(1:1).

Fig. 8.
Fig. 8.

Same as Fig. 7 but considering the kL optimized color-difference formulas: (a) CIELAB(1.5:1), (b) CIEDE2000(2.3:1), (c) CIE94(3.0:1), and (d) CMC(3.4:1).

Fig. 9.
Fig. 9.

Same as Fig. 5 but considering the kL optimized color difference formulas: (a) CIELAB(1.5:1), (b) CIEDE2000(2.3:1), (c) CIE94(3.0:1), and (d) CMC(3.4:1).

Tables (12)

Tables Icon

Table 1. Transform Functions and Coefficients for Lightness and Chroma in Preparing Sample Images

Tables Icon

Table 2. Color-Difference Categories for Visual Evaluation Experiment

Tables Icon

Table 3. Intra- and Inter-observer Variability in Terms of STRESS

Tables Icon

Table 4. Coefficients of the Best-Fit Lines in Fig. 5 for Different Color-Difference Formulas

Tables Icon

Table 5. STRESS Values for Testing Performance of Color-Difference Equations

Tables Icon

Table 6. Coefficients of the Best-Fit Lines in Fig. 6 for Different Color-Difference Formulas with kL=2

Tables Icon

Table 7. STRESS Values for Testing Performance of Color-Difference Equations with kL=2a

Tables Icon

Table 8. Coefficients of the Best-Fit Lines in Fig. 7 for Different Color-Difference Formulas with kL=1

Tables Icon

Table 9. Coefficients of the Best-Fit Lines in Fig. 8 for Different Optimized Color-Difference Formulas

Tables Icon

Table 10. Coefficients of the Best-Fit Lines in Fig. 9 for Different Optimized Color-Difference Formulas

Tables Icon

Table 11. STRESS Values for Testing Performance of Color-Difference Equations with Optimized kL Valuesa

Tables Icon

Table 12. Statistical Significance of the Difference between Four Optimized Formulas Tested by the F-test Method (FC=[0.672;1.486])

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΔEab*=0iM0jN[(L1ij*L2ij*)/kL]2+(a1ij*a2ij*)2+(b1ij*b2ij*)2M×N.

Metrics