Ö. Ergül and L. Gürel, “Accurate solutions of extremely large integral-equation problems in computational electromagnetics,” Proc. IEEE 101, 342–349 (2013).

[CrossRef]

Ö. Ergül, “Analysis of composite nanoparticles with surface integral equations and the multilevel fast multipole algorithm,” J. Opt. 14, 062701 (2012).

[CrossRef]

Ö. Ergül, “Parallel implementation of MLFMA for homogeneous objects with various material properties,” Prog. Electromagn. Res. 121, 505–520 (2011).

[CrossRef]

Ö. Ergül, “Solutions of large-scale electromagnetics problems involving dielectric objects with the parallel multilevel fast multipole algorithm,” J. Opt. Soc. Am. A 28, 2261–2268 (2011).

[CrossRef]

X.-M. Pan, W.-C. Pi, and X.-Q. Sheng, “On OpenMP parallelization of the multilevel fast multipole algorithm,” Prog. Electromagn. Res. 112, 199–213 (2011).

[CrossRef]

Ö. Ergül and L. Gürel, “Rigorous solutions of electromagnetics problems involving hundreds of millions of unknowns,” IEEE Antennas Propag. Mag. 53(1), 18–27 (2011).

[CrossRef]

V. Melapudi, B. Shanker, S. Seal, and S. Aluru, “A scalable parallel wideband MLFMA for efficient electromagnetic simulations on large scale clusters,” IEEE Trans. Antennas Propag. 59, 2565–2577 (2011).

[CrossRef]

J. Fostier, B. Michiels, I. Bogaert, and D. De Zutter, “A fast 2-D parallel multilevel fast multipole algorithm solver for oblique plane wave incidence,” Radio Sci. 46, RS6006 (2011).

[CrossRef]

Ö. Ergül, “Fast and accurate analysis of homogenized metamaterials with the surface integral equations and the multilevel fast multipole algorithm,” IEEE Antennas Wirel. Propag. Lett. 10, 1286–1289 (2011).

[CrossRef]

M. G. Araujo, J. M. Taboada, F. Obelleiro, J. M. Bertolo, L. Landesa, J. Rivero, and J. L. Rodriguez, “Supercomputer aware approach for the solution of challenging electromagnetic problems,” Prog. Electromagn. Res. 101, 241–256 (2010).

[CrossRef]

J. M. Taboada, M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, “MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,” Prog. Electromagn. Res. 105, 15–30 (2010).

[CrossRef]

J. Fostier and F. Olyslager, “An open-source implementation for full-wave 2D scattering by million-wavelength-size objects,” IEEE Antennas Propag. Mag. 52(5), 23–34 (2010).

[CrossRef]

J. Rivero, J. M. Taboada, L. Landesa, F. Obelleiro, and I. Garcia-Tunon, “Surface integral equation formulation for the analysis of left-handed metamaterials,” Opt. Express 18, 15876–15886 (2010).

[CrossRef]

Ö. Ergül and L. Gürel, “Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 176–187 (2009).

[CrossRef]

Ö. Ergül and L. Gürel, “Efficient solution of the electric and magnetic current combined-field integral equation with the multilevel fast multipole algorithm and block-diagonal preconditioning,” Radio Sci. 44, RS6001 (2009).

[CrossRef]

Ö. Ergül, I. van den Bosch, and L. Gürel, “Two-step Lagrange interpolation method for the multilevel fast multipole algorithm,” IEEE Antennas Wirel. Propag. Lett. 8, 69–71 (2009).

[CrossRef]

J. Fostier, and F. Olyslager, “Full-wave electromagnetic scattering at extremely large 2-D objects,” Electron. Lett. 45, 245–246(2009).

[CrossRef]

Ö. Ergül and L. Gürel, “A hierarchical partitioning strategy for an efficient parallelization of the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 1740–1750 (2009).

[CrossRef]

Ö. Ergül and L. Gürel, “Hierarchical parallelisation strategy for multilevel fast multipole algorithm in computational electromagnetics,” Electron. Lett. 44, 3–5 (2008).

[CrossRef]

X.-M. Pan and X.-Q. Sheng, “A sophisticated parallel MLFMA for scattering by extremely large targets,” IEEE Antennas Propag. Mag. 50(3), 129–138 (2008).

[CrossRef]

Ö. Ergül and L. Gürel, “Efficient parallelization of the multilevel fast multipole algorithm for the solution of large-scale scattering problems,” IEEE Trans. Antennas Propag. 56, 2335–2345(2008).

[CrossRef]

J. Fostier and F. Olyslager, “An asynchronous parallel MLFMA for scattering at multiple dielectric objects,” IEEE Trans. Antennas Propag. 56, 2346–2355 (2008).

[CrossRef]

J. Fostier and F. Olyslager, “Provably scalable parallel multilevel fast multipole algorithm,” Electron. Lett. 44, 1111–1113 (2008).

[CrossRef]

Y. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 16, 15439–15448 (2008).

[CrossRef]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).

[CrossRef]

L. Gürel and Ö. Ergül, “Fast and accurate solutions of extremely large integral-equation problems discretised with tens of millions of unknowns,” Electron. Lett. 43, 499–500 (2007).

[CrossRef]

P. Ylä-Oijala, M. Taskinen, and J. Sarvas, “Surface integral equation method for general integral equation method for general composite metallic and dielectric structures with junctions,” Prog. Electromagn. Res. 52, 81–108 (2005).

[CrossRef]

P. Ylä-Oijala and M. Taskinen, “Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects,” IEEE Trans. Antennas Propag. 53, 1168–1173 (2005).

[CrossRef]

P. Ylä-Oijala, M. Taskinen, and S. Järvenpää, “Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods,” Radio Sci. 40, RS6002 (2005).

[CrossRef]

S. Velamparambil and W. C. Chew, “Analysis and performance of a distributed memory multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 53, 2719–2727 (2005).

[CrossRef]

S. Ohnuki and W. C. Chew, “Truncation error analysis of multipole expansion,” SIAM J. Sci. Comput. 25, 1293–1306 (2004).

[CrossRef]

S. Velamparambil, W. C. Chew, and J. Song, “10 million unknowns: Is it that big?,” IEEE Antennas Propag. Mag. 45(2), 43–58 (2003).

[CrossRef]

X.-Q. Sheng, J.-M. Jin, J. Song, W. C. Chew, and C.-C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[CrossRef]

J. Song, C.-C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects,” IEEE Trans. Antennas Propag. 45, 1488–1493 (1997).

[CrossRef]

R. Coifman, V. Rokhlin, and S. Wandzura, “The fast multipole method for the wave equation: a pedestrian prescription,” IEEE Antennas Propag. Mag. 35(3), 7–12 (1993).

[CrossRef]

H. van der Vorst, “Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput. 13, 631–644 (1992).

[CrossRef]

A. Brandt, “Multilevel computations of integral transforms and particle interactions with oscillatory kernels,” Comput. Phys. Commun. 65, 24–38 (1991).

[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).

[CrossRef]

V. Melapudi, B. Shanker, S. Seal, and S. Aluru, “A scalable parallel wideband MLFMA for efficient electromagnetic simulations on large scale clusters,” IEEE Trans. Antennas Propag. 59, 2565–2577 (2011).

[CrossRef]

J. M. Taboada, M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, “MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,” Prog. Electromagn. Res. 105, 15–30 (2010).

[CrossRef]

M. G. Araujo, J. M. Taboada, F. Obelleiro, J. M. Bertolo, L. Landesa, J. Rivero, and J. L. Rodriguez, “Supercomputer aware approach for the solution of challenging electromagnetic problems,” Prog. Electromagn. Res. 101, 241–256 (2010).

[CrossRef]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).

[CrossRef]

Y. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 16, 15439–15448 (2008).

[CrossRef]

J. M. Taboada, M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, “MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,” Prog. Electromagn. Res. 105, 15–30 (2010).

[CrossRef]

M. G. Araujo, J. M. Taboada, F. Obelleiro, J. M. Bertolo, L. Landesa, J. Rivero, and J. L. Rodriguez, “Supercomputer aware approach for the solution of challenging electromagnetic problems,” Prog. Electromagn. Res. 101, 241–256 (2010).

[CrossRef]

J. Fostier, B. Michiels, I. Bogaert, and D. De Zutter, “A fast 2-D parallel multilevel fast multipole algorithm solver for oblique plane wave incidence,” Radio Sci. 46, RS6006 (2011).

[CrossRef]

A. Brandt, “Multilevel computations of integral transforms and particle interactions with oscillatory kernels,” Comput. Phys. Commun. 65, 24–38 (1991).

[CrossRef]

S. Velamparambil and W. C. Chew, “Analysis and performance of a distributed memory multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 53, 2719–2727 (2005).

[CrossRef]

S. Ohnuki and W. C. Chew, “Truncation error analysis of multipole expansion,” SIAM J. Sci. Comput. 25, 1293–1306 (2004).

[CrossRef]

S. Velamparambil, W. C. Chew, and J. Song, “10 million unknowns: Is it that big?,” IEEE Antennas Propag. Mag. 45(2), 43–58 (2003).

[CrossRef]

X.-Q. Sheng, J.-M. Jin, J. Song, W. C. Chew, and C.-C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[CrossRef]

J. Song, C.-C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects,” IEEE Trans. Antennas Propag. 45, 1488–1493 (1997).

[CrossRef]

W. C. Chew, J.-M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics(Artech House, 2001).

R. Coifman, V. Rokhlin, and S. Wandzura, “The fast multipole method for the wave equation: a pedestrian prescription,” IEEE Antennas Propag. Mag. 35(3), 7–12 (1993).

[CrossRef]

J. Fostier, B. Michiels, I. Bogaert, and D. De Zutter, “A fast 2-D parallel multilevel fast multipole algorithm solver for oblique plane wave incidence,” Radio Sci. 46, RS6006 (2011).

[CrossRef]

Ö. Ergül and L. Gürel, “Accurate solutions of extremely large integral-equation problems in computational electromagnetics,” Proc. IEEE 101, 342–349 (2013).

[CrossRef]

Ö. Ergül, “Analysis of composite nanoparticles with surface integral equations and the multilevel fast multipole algorithm,” J. Opt. 14, 062701 (2012).

[CrossRef]

Ö. Ergül, “Fast and accurate analysis of homogenized metamaterials with the surface integral equations and the multilevel fast multipole algorithm,” IEEE Antennas Wirel. Propag. Lett. 10, 1286–1289 (2011).

[CrossRef]

Ö. Ergül, “Solutions of large-scale electromagnetics problems involving dielectric objects with the parallel multilevel fast multipole algorithm,” J. Opt. Soc. Am. A 28, 2261–2268 (2011).

[CrossRef]

Ö. Ergül, “Parallel implementation of MLFMA for homogeneous objects with various material properties,” Prog. Electromagn. Res. 121, 505–520 (2011).

[CrossRef]

Ö. Ergül and L. Gürel, “Rigorous solutions of electromagnetics problems involving hundreds of millions of unknowns,” IEEE Antennas Propag. Mag. 53(1), 18–27 (2011).

[CrossRef]

Ö. Ergül and L. Gürel, “Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 176–187 (2009).

[CrossRef]

Ö. Ergül and L. Gürel, “A hierarchical partitioning strategy for an efficient parallelization of the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 1740–1750 (2009).

[CrossRef]

Ö. Ergül and L. Gürel, “Efficient solution of the electric and magnetic current combined-field integral equation with the multilevel fast multipole algorithm and block-diagonal preconditioning,” Radio Sci. 44, RS6001 (2009).

[CrossRef]

Ö. Ergül, I. van den Bosch, and L. Gürel, “Two-step Lagrange interpolation method for the multilevel fast multipole algorithm,” IEEE Antennas Wirel. Propag. Lett. 8, 69–71 (2009).

[CrossRef]

Ö. Ergül and L. Gürel, “Hierarchical parallelisation strategy for multilevel fast multipole algorithm in computational electromagnetics,” Electron. Lett. 44, 3–5 (2008).

[CrossRef]

Ö. Ergül and L. Gürel, “Efficient parallelization of the multilevel fast multipole algorithm for the solution of large-scale scattering problems,” IEEE Trans. Antennas Propag. 56, 2335–2345(2008).

[CrossRef]

L. Gürel and Ö. Ergül, “Fast and accurate solutions of extremely large integral-equation problems discretised with tens of millions of unknowns,” Electron. Lett. 43, 499–500 (2007).

[CrossRef]

J. Fostier, B. Michiels, I. Bogaert, and D. De Zutter, “A fast 2-D parallel multilevel fast multipole algorithm solver for oblique plane wave incidence,” Radio Sci. 46, RS6006 (2011).

[CrossRef]

J. Fostier and F. Olyslager, “An open-source implementation for full-wave 2D scattering by million-wavelength-size objects,” IEEE Antennas Propag. Mag. 52(5), 23–34 (2010).

[CrossRef]

J. Fostier, and F. Olyslager, “Full-wave electromagnetic scattering at extremely large 2-D objects,” Electron. Lett. 45, 245–246(2009).

[CrossRef]

J. Fostier and F. Olyslager, “Provably scalable parallel multilevel fast multipole algorithm,” Electron. Lett. 44, 1111–1113 (2008).

[CrossRef]

J. Fostier and F. Olyslager, “An asynchronous parallel MLFMA for scattering at multiple dielectric objects,” IEEE Trans. Antennas Propag. 56, 2346–2355 (2008).

[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).

[CrossRef]

Ö. Ergül and L. Gürel, “Accurate solutions of extremely large integral-equation problems in computational electromagnetics,” Proc. IEEE 101, 342–349 (2013).

[CrossRef]

Ö. Ergül and L. Gürel, “Rigorous solutions of electromagnetics problems involving hundreds of millions of unknowns,” IEEE Antennas Propag. Mag. 53(1), 18–27 (2011).

[CrossRef]

Ö. Ergül and L. Gürel, “Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 176–187 (2009).

[CrossRef]

Ö. Ergül and L. Gürel, “A hierarchical partitioning strategy for an efficient parallelization of the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 1740–1750 (2009).

[CrossRef]

Ö. Ergül and L. Gürel, “Efficient solution of the electric and magnetic current combined-field integral equation with the multilevel fast multipole algorithm and block-diagonal preconditioning,” Radio Sci. 44, RS6001 (2009).

[CrossRef]

Ö. Ergül, I. van den Bosch, and L. Gürel, “Two-step Lagrange interpolation method for the multilevel fast multipole algorithm,” IEEE Antennas Wirel. Propag. Lett. 8, 69–71 (2009).

[CrossRef]

Ö. Ergül and L. Gürel, “Efficient parallelization of the multilevel fast multipole algorithm for the solution of large-scale scattering problems,” IEEE Trans. Antennas Propag. 56, 2335–2345(2008).

[CrossRef]

Ö. Ergül and L. Gürel, “Hierarchical parallelisation strategy for multilevel fast multipole algorithm in computational electromagnetics,” Electron. Lett. 44, 3–5 (2008).

[CrossRef]

L. Gürel and Ö. Ergül, “Fast and accurate solutions of extremely large integral-equation problems discretised with tens of millions of unknowns,” Electron. Lett. 43, 499–500 (2007).

[CrossRef]

P. Ylä-Oijala, M. Taskinen, and S. Järvenpää, “Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods,” Radio Sci. 40, RS6002 (2005).

[CrossRef]

X.-Q. Sheng, J.-M. Jin, J. Song, W. C. Chew, and C.-C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[CrossRef]

W. C. Chew, J.-M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics(Artech House, 2001).

M. G. Araujo, J. M. Taboada, F. Obelleiro, J. M. Bertolo, L. Landesa, J. Rivero, and J. L. Rodriguez, “Supercomputer aware approach for the solution of challenging electromagnetic problems,” Prog. Electromagn. Res. 101, 241–256 (2010).

[CrossRef]

J. M. Taboada, M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, “MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,” Prog. Electromagn. Res. 105, 15–30 (2010).

[CrossRef]

J. Rivero, J. M. Taboada, L. Landesa, F. Obelleiro, and I. Garcia-Tunon, “Surface integral equation formulation for the analysis of left-handed metamaterials,” Opt. Express 18, 15876–15886 (2010).

[CrossRef]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).

[CrossRef]

Y. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 16, 15439–15448 (2008).

[CrossRef]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).

[CrossRef]

X.-Q. Sheng, J.-M. Jin, J. Song, W. C. Chew, and C.-C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[CrossRef]

J. Song, C.-C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects,” IEEE Trans. Antennas Propag. 45, 1488–1493 (1997).

[CrossRef]

V. Melapudi, B. Shanker, S. Seal, and S. Aluru, “A scalable parallel wideband MLFMA for efficient electromagnetic simulations on large scale clusters,” IEEE Trans. Antennas Propag. 59, 2565–2577 (2011).

[CrossRef]

J. Fostier, B. Michiels, I. Bogaert, and D. De Zutter, “A fast 2-D parallel multilevel fast multipole algorithm solver for oblique plane wave incidence,” Radio Sci. 46, RS6006 (2011).

[CrossRef]

W. C. Chew, J.-M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics(Artech House, 2001).

M. G. Araujo, J. M. Taboada, F. Obelleiro, J. M. Bertolo, L. Landesa, J. Rivero, and J. L. Rodriguez, “Supercomputer aware approach for the solution of challenging electromagnetic problems,” Prog. Electromagn. Res. 101, 241–256 (2010).

[CrossRef]

J. M. Taboada, M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, “MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,” Prog. Electromagn. Res. 105, 15–30 (2010).

[CrossRef]

J. Rivero, J. M. Taboada, L. Landesa, F. Obelleiro, and I. Garcia-Tunon, “Surface integral equation formulation for the analysis of left-handed metamaterials,” Opt. Express 18, 15876–15886 (2010).

[CrossRef]

S. Ohnuki and W. C. Chew, “Truncation error analysis of multipole expansion,” SIAM J. Sci. Comput. 25, 1293–1306 (2004).

[CrossRef]

J. Fostier and F. Olyslager, “An open-source implementation for full-wave 2D scattering by million-wavelength-size objects,” IEEE Antennas Propag. Mag. 52(5), 23–34 (2010).

[CrossRef]

J. Fostier, and F. Olyslager, “Full-wave electromagnetic scattering at extremely large 2-D objects,” Electron. Lett. 45, 245–246(2009).

[CrossRef]

J. Fostier and F. Olyslager, “Provably scalable parallel multilevel fast multipole algorithm,” Electron. Lett. 44, 1111–1113 (2008).

[CrossRef]

J. Fostier and F. Olyslager, “An asynchronous parallel MLFMA for scattering at multiple dielectric objects,” IEEE Trans. Antennas Propag. 56, 2346–2355 (2008).

[CrossRef]

X.-M. Pan, W.-C. Pi, and X.-Q. Sheng, “On OpenMP parallelization of the multilevel fast multipole algorithm,” Prog. Electromagn. Res. 112, 199–213 (2011).

[CrossRef]

X.-M. Pan and X.-Q. Sheng, “A sophisticated parallel MLFMA for scattering by extremely large targets,” IEEE Antennas Propag. Mag. 50(3), 129–138 (2008).

[CrossRef]

X.-M. Pan, W.-C. Pi, and X.-Q. Sheng, “On OpenMP parallelization of the multilevel fast multipole algorithm,” Prog. Electromagn. Res. 112, 199–213 (2011).

[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).

[CrossRef]

J. Rivero, J. M. Taboada, L. Landesa, F. Obelleiro, and I. Garcia-Tunon, “Surface integral equation formulation for the analysis of left-handed metamaterials,” Opt. Express 18, 15876–15886 (2010).

[CrossRef]

M. G. Araujo, J. M. Taboada, F. Obelleiro, J. M. Bertolo, L. Landesa, J. Rivero, and J. L. Rodriguez, “Supercomputer aware approach for the solution of challenging electromagnetic problems,” Prog. Electromagn. Res. 101, 241–256 (2010).

[CrossRef]

M. G. Araujo, J. M. Taboada, F. Obelleiro, J. M. Bertolo, L. Landesa, J. Rivero, and J. L. Rodriguez, “Supercomputer aware approach for the solution of challenging electromagnetic problems,” Prog. Electromagn. Res. 101, 241–256 (2010).

[CrossRef]

J. M. Taboada, M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, “MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,” Prog. Electromagn. Res. 105, 15–30 (2010).

[CrossRef]

R. Coifman, V. Rokhlin, and S. Wandzura, “The fast multipole method for the wave equation: a pedestrian prescription,” IEEE Antennas Propag. Mag. 35(3), 7–12 (1993).

[CrossRef]

P. Ylä-Oijala, M. Taskinen, and J. Sarvas, “Surface integral equation method for general integral equation method for general composite metallic and dielectric structures with junctions,” Prog. Electromagn. Res. 52, 81–108 (2005).

[CrossRef]

V. Melapudi, B. Shanker, S. Seal, and S. Aluru, “A scalable parallel wideband MLFMA for efficient electromagnetic simulations on large scale clusters,” IEEE Trans. Antennas Propag. 59, 2565–2577 (2011).

[CrossRef]

V. Melapudi, B. Shanker, S. Seal, and S. Aluru, “A scalable parallel wideband MLFMA for efficient electromagnetic simulations on large scale clusters,” IEEE Trans. Antennas Propag. 59, 2565–2577 (2011).

[CrossRef]

X.-M. Pan, W.-C. Pi, and X.-Q. Sheng, “On OpenMP parallelization of the multilevel fast multipole algorithm,” Prog. Electromagn. Res. 112, 199–213 (2011).

[CrossRef]

X.-M. Pan and X.-Q. Sheng, “A sophisticated parallel MLFMA for scattering by extremely large targets,” IEEE Antennas Propag. Mag. 50(3), 129–138 (2008).

[CrossRef]

X.-Q. Sheng, J.-M. Jin, J. Song, W. C. Chew, and C.-C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[CrossRef]

S. Velamparambil, W. C. Chew, and J. Song, “10 million unknowns: Is it that big?,” IEEE Antennas Propag. Mag. 45(2), 43–58 (2003).

[CrossRef]

X.-Q. Sheng, J.-M. Jin, J. Song, W. C. Chew, and C.-C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[CrossRef]

J. Song, C.-C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects,” IEEE Trans. Antennas Propag. 45, 1488–1493 (1997).

[CrossRef]

W. C. Chew, J.-M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics(Artech House, 2001).

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).

[CrossRef]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).

[CrossRef]

J. Rivero, J. M. Taboada, L. Landesa, F. Obelleiro, and I. Garcia-Tunon, “Surface integral equation formulation for the analysis of left-handed metamaterials,” Opt. Express 18, 15876–15886 (2010).

[CrossRef]

M. G. Araujo, J. M. Taboada, F. Obelleiro, J. M. Bertolo, L. Landesa, J. Rivero, and J. L. Rodriguez, “Supercomputer aware approach for the solution of challenging electromagnetic problems,” Prog. Electromagn. Res. 101, 241–256 (2010).

[CrossRef]

J. M. Taboada, M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, “MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,” Prog. Electromagn. Res. 105, 15–30 (2010).

[CrossRef]

K. Tap, “Complex source point beam expansions for some electromagnetic radiation and scattering problems,” Ph.D. dissertation (The Ohio State University, 2007).

P. Ylä-Oijala, M. Taskinen, and J. Sarvas, “Surface integral equation method for general integral equation method for general composite metallic and dielectric structures with junctions,” Prog. Electromagn. Res. 52, 81–108 (2005).

[CrossRef]

P. Ylä-Oijala, M. Taskinen, and S. Järvenpää, “Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods,” Radio Sci. 40, RS6002 (2005).

[CrossRef]

P. Ylä-Oijala and M. Taskinen, “Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects,” IEEE Trans. Antennas Propag. 53, 1168–1173 (2005).

[CrossRef]

Ö. Ergül, I. van den Bosch, and L. Gürel, “Two-step Lagrange interpolation method for the multilevel fast multipole algorithm,” IEEE Antennas Wirel. Propag. Lett. 8, 69–71 (2009).

[CrossRef]

H. van der Vorst, “Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput. 13, 631–644 (1992).

[CrossRef]

S. Velamparambil and W. C. Chew, “Analysis and performance of a distributed memory multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 53, 2719–2727 (2005).

[CrossRef]

S. Velamparambil, W. C. Chew, and J. Song, “10 million unknowns: Is it that big?,” IEEE Antennas Propag. Mag. 45(2), 43–58 (2003).

[CrossRef]

R. Coifman, V. Rokhlin, and S. Wandzura, “The fast multipole method for the wave equation: a pedestrian prescription,” IEEE Antennas Propag. Mag. 35(3), 7–12 (1993).

[CrossRef]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).

[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).

[CrossRef]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).

[CrossRef]

P. Ylä-Oijala, M. Taskinen, and J. Sarvas, “Surface integral equation method for general integral equation method for general composite metallic and dielectric structures with junctions,” Prog. Electromagn. Res. 52, 81–108 (2005).

[CrossRef]

P. Ylä-Oijala, M. Taskinen, and S. Järvenpää, “Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods,” Radio Sci. 40, RS6002 (2005).

[CrossRef]

P. Ylä-Oijala and M. Taskinen, “Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects,” IEEE Trans. Antennas Propag. 53, 1168–1173 (2005).

[CrossRef]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).

[CrossRef]

Y. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 16, 15439–15448 (2008).

[CrossRef]

A. Brandt, “Multilevel computations of integral transforms and particle interactions with oscillatory kernels,” Comput. Phys. Commun. 65, 24–38 (1991).

[CrossRef]

L. Gürel and Ö. Ergül, “Fast and accurate solutions of extremely large integral-equation problems discretised with tens of millions of unknowns,” Electron. Lett. 43, 499–500 (2007).

[CrossRef]

Ö. Ergül and L. Gürel, “Hierarchical parallelisation strategy for multilevel fast multipole algorithm in computational electromagnetics,” Electron. Lett. 44, 3–5 (2008).

[CrossRef]

J. Fostier and F. Olyslager, “Provably scalable parallel multilevel fast multipole algorithm,” Electron. Lett. 44, 1111–1113 (2008).

[CrossRef]

J. Fostier, and F. Olyslager, “Full-wave electromagnetic scattering at extremely large 2-D objects,” Electron. Lett. 45, 245–246(2009).

[CrossRef]

J. Fostier and F. Olyslager, “An open-source implementation for full-wave 2D scattering by million-wavelength-size objects,” IEEE Antennas Propag. Mag. 52(5), 23–34 (2010).

[CrossRef]

Ö. Ergül and L. Gürel, “Rigorous solutions of electromagnetics problems involving hundreds of millions of unknowns,” IEEE Antennas Propag. Mag. 53(1), 18–27 (2011).

[CrossRef]

X.-M. Pan and X.-Q. Sheng, “A sophisticated parallel MLFMA for scattering by extremely large targets,” IEEE Antennas Propag. Mag. 50(3), 129–138 (2008).

[CrossRef]

S. Velamparambil, W. C. Chew, and J. Song, “10 million unknowns: Is it that big?,” IEEE Antennas Propag. Mag. 45(2), 43–58 (2003).

[CrossRef]

R. Coifman, V. Rokhlin, and S. Wandzura, “The fast multipole method for the wave equation: a pedestrian prescription,” IEEE Antennas Propag. Mag. 35(3), 7–12 (1993).

[CrossRef]

Ö. Ergül, I. van den Bosch, and L. Gürel, “Two-step Lagrange interpolation method for the multilevel fast multipole algorithm,” IEEE Antennas Wirel. Propag. Lett. 8, 69–71 (2009).

[CrossRef]

Ö. Ergül, “Fast and accurate analysis of homogenized metamaterials with the surface integral equations and the multilevel fast multipole algorithm,” IEEE Antennas Wirel. Propag. Lett. 10, 1286–1289 (2011).

[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).

[CrossRef]

P. Ylä-Oijala and M. Taskinen, “Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects,” IEEE Trans. Antennas Propag. 53, 1168–1173 (2005).

[CrossRef]

Ö. Ergül and L. Gürel, “Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 176–187 (2009).

[CrossRef]

S. Velamparambil and W. C. Chew, “Analysis and performance of a distributed memory multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 53, 2719–2727 (2005).

[CrossRef]

J. Song, C.-C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects,” IEEE Trans. Antennas Propag. 45, 1488–1493 (1997).

[CrossRef]

X.-Q. Sheng, J.-M. Jin, J. Song, W. C. Chew, and C.-C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[CrossRef]

Ö. Ergül and L. Gürel, “Efficient parallelization of the multilevel fast multipole algorithm for the solution of large-scale scattering problems,” IEEE Trans. Antennas Propag. 56, 2335–2345(2008).

[CrossRef]

J. Fostier and F. Olyslager, “An asynchronous parallel MLFMA for scattering at multiple dielectric objects,” IEEE Trans. Antennas Propag. 56, 2346–2355 (2008).

[CrossRef]

V. Melapudi, B. Shanker, S. Seal, and S. Aluru, “A scalable parallel wideband MLFMA for efficient electromagnetic simulations on large scale clusters,” IEEE Trans. Antennas Propag. 59, 2565–2577 (2011).

[CrossRef]

Ö. Ergül and L. Gürel, “A hierarchical partitioning strategy for an efficient parallelization of the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 1740–1750 (2009).

[CrossRef]

Ö. Ergül, “Analysis of composite nanoparticles with surface integral equations and the multilevel fast multipole algorithm,” J. Opt. 14, 062701 (2012).

[CrossRef]

Y. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 16, 15439–15448 (2008).

[CrossRef]

J. Rivero, J. M. Taboada, L. Landesa, F. Obelleiro, and I. Garcia-Tunon, “Surface integral equation formulation for the analysis of left-handed metamaterials,” Opt. Express 18, 15876–15886 (2010).

[CrossRef]

Ö. Ergül and L. Gürel, “Accurate solutions of extremely large integral-equation problems in computational electromagnetics,” Proc. IEEE 101, 342–349 (2013).

[CrossRef]

Ö. Ergül, “Parallel implementation of MLFMA for homogeneous objects with various material properties,” Prog. Electromagn. Res. 121, 505–520 (2011).

[CrossRef]

P. Ylä-Oijala, M. Taskinen, and J. Sarvas, “Surface integral equation method for general integral equation method for general composite metallic and dielectric structures with junctions,” Prog. Electromagn. Res. 52, 81–108 (2005).

[CrossRef]

M. G. Araujo, J. M. Taboada, F. Obelleiro, J. M. Bertolo, L. Landesa, J. Rivero, and J. L. Rodriguez, “Supercomputer aware approach for the solution of challenging electromagnetic problems,” Prog. Electromagn. Res. 101, 241–256 (2010).

[CrossRef]

J. M. Taboada, M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, “MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,” Prog. Electromagn. Res. 105, 15–30 (2010).

[CrossRef]

X.-M. Pan, W.-C. Pi, and X.-Q. Sheng, “On OpenMP parallelization of the multilevel fast multipole algorithm,” Prog. Electromagn. Res. 112, 199–213 (2011).

[CrossRef]

J. Fostier, B. Michiels, I. Bogaert, and D. De Zutter, “A fast 2-D parallel multilevel fast multipole algorithm solver for oblique plane wave incidence,” Radio Sci. 46, RS6006 (2011).

[CrossRef]

P. Ylä-Oijala, M. Taskinen, and S. Järvenpää, “Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods,” Radio Sci. 40, RS6002 (2005).

[CrossRef]

Ö. Ergül and L. Gürel, “Efficient solution of the electric and magnetic current combined-field integral equation with the multilevel fast multipole algorithm and block-diagonal preconditioning,” Radio Sci. 44, RS6001 (2009).

[CrossRef]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).

[CrossRef]

S. Ohnuki and W. C. Chew, “Truncation error analysis of multipole expansion,” SIAM J. Sci. Comput. 25, 1293–1306 (2004).

[CrossRef]

H. van der Vorst, “Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput. 13, 631–644 (1992).

[CrossRef]

K. Tap, “Complex source point beam expansions for some electromagnetic radiation and scattering problems,” Ph.D. dissertation (The Ohio State University, 2007).

W. C. Chew, J.-M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics(Artech House, 2001).