D. L. Fried and T. Clark, “Extruding Kolmogorov-type phase screen ribbons,” J. Opt. Soc. Am. A 25, 463–468 (2008).

[CrossRef]

M. A. Vorontsov, P. V. Paramonov, M. T. Valley, and A. Vorontsov, “Generation of infinitely long phase screens for modeling of optical wave propagation in atmospheric turbulence,” Waves Random Complex Media 18, 91–108 (2008).

[CrossRef]

A. Beghi, A. Cenedese, and A. Masiero, “Stochastic realization approach to the efficient simulation of phase screens.” J. Opt. Soc. Am. A 25, 515–525 (2008).

[CrossRef]

V. Sriram and D. Kearney, “Multiple parallel FPGA implementations of a Kolmogorov phase screen generator,” J. Real-Time Image Proc. 3, 195–200 (2008).

[CrossRef]

D. G. Perez and L. Zunino, “Generalized wave front phase for non-Kolmogorov turbulence,” Opt. Lett. 33, 572–574 (2008).

[CrossRef]

B. M. Welsh, “Fourier-series-based atmospheric phase screen generator for simulating nonisoplanatic geometries and temporal evolution,” Proc. SPIE 3125, 327–338 (1997).

G. J. M. Aitken, D. Rossille, and D. R. McGaughey, “Filtered fractional Brownian motion as a model for atmospherically induced wavefront distortions,” Proc. SPIE 3125, 310–317 (1997).

[CrossRef]

A. Glindemann, R. G. Lane, and J. C. Dainty, “Simulation of time-evolving speckle patterns using Kolmogorov statistics,” J. Mod. Opt. 40, 2381–2388 (1993).

[CrossRef]

R. G. Lane, A. Glindemann, and J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209–224 (1992).

[CrossRef]

J. Wallace and F. G. Gebhardt, “New method for numerical simulation of atmospheric turbulence,” Proc. SPIE 642, 261–268 (1986).

[CrossRef]

B. L. McGlamery, “Computer simulation studies of compensation of turbulence degraded images,” Proc. SPIE 74, 225–233 (1976).

[CrossRef]

G. J. M. Aitken, D. Rossille, and D. R. McGaughey, “Filtered fractional Brownian motion as a model for atmospherically induced wavefront distortions,” Proc. SPIE 3125, 310–317 (1997).

[CrossRef]

M. Charnotskii and G. Baker, “Long and short-term scintillations of focused beams and point spread functions in the turbulent atmosphere,” Proc. SPIE 8517, 85170L (2012).

[CrossRef]

M. Charnotskii and G. Baker, “Long and short-term scintillations of focused beams and point spread functions in the turbulent atmosphere,” Proc. SPIE 8517, 85170L (2012).

[CrossRef]

M. Charnotskii, “Sparse spectrum model of the sea surface,” in Proceedings of the 30th International Conference on Ocean, Offshore and Arctic Engineering, H. R. Riggs, ed. (ASME, 2011), p. 49958.

M. Charnotskii, “Sparse spectrum model of the sea surface elevations,” in Proceedings of the 22 International Offshore and Polar Engineering Conference.J. S. Chung, ed. (ISOPE, 2012), pp. 655–659.

A. Glindemann, R. G. Lane, and J. C. Dainty, “Simulation of time-evolving speckle patterns using Kolmogorov statistics,” J. Mod. Opt. 40, 2381–2388 (1993).

[CrossRef]

R. G. Lane, A. Glindemann, and J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209–224 (1992).

[CrossRef]

E. M. Johansson and D. T. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 2200, 372–383 (1994).

[CrossRef]

J. Wallace and F. G. Gebhardt, “New method for numerical simulation of atmospheric turbulence,” Proc. SPIE 642, 261–268 (1986).

[CrossRef]

A. Glindemann, R. G. Lane, and J. C. Dainty, “Simulation of time-evolving speckle patterns using Kolmogorov statistics,” J. Mod. Opt. 40, 2381–2388 (1993).

[CrossRef]

R. G. Lane, A. Glindemann, and J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209–224 (1992).

[CrossRef]

E. M. Johansson and D. T. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 2200, 372–383 (1994).

[CrossRef]

C. M. Harding, R. A. Johnston, and R. G. Lane, “Fast simulation of a Kolmogorov phase screen,” Appl. Opt. 38, 2161–2170 (1999).

[CrossRef]

A. Glindemann, R. G. Lane, and J. C. Dainty, “Simulation of time-evolving speckle patterns using Kolmogorov statistics,” J. Mod. Opt. 40, 2381–2388 (1993).

[CrossRef]

R. G. Lane, A. Glindemann, and J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209–224 (1992).

[CrossRef]

R. J. Mathar, “Karhunen–Loève basis of Kolmogorov phase screens covering a rectangular stripe,” Waves Random Complex Media 20, 23–35 (2010).

[CrossRef]

G. J. M. Aitken, D. Rossille, and D. R. McGaughey, “Filtered fractional Brownian motion as a model for atmospherically induced wavefront distortions,” Proc. SPIE 3125, 310–317 (1997).

[CrossRef]

B. L. McGlamery, “Computer simulation studies of compensation of turbulence degraded images,” Proc. SPIE 74, 225–233 (1976).

[CrossRef]

M. A. Vorontsov, P. V. Paramonov, M. T. Valley, and A. Vorontsov, “Generation of infinitely long phase screens for modeling of optical wave propagation in atmospheric turbulence,” Waves Random Complex Media 18, 91–108 (2008).

[CrossRef]

N. Roddier, “Atmospheric wave-front simulation using Zernike polynomials,” Opt. Eng. 29, 1174–1180 (1990).

[CrossRef]

G. J. M. Aitken, D. Rossille, and D. R. McGaughey, “Filtered fractional Brownian motion as a model for atmospherically induced wavefront distortions,” Proc. SPIE 3125, 310–317 (1997).

[CrossRef]

V. I. Tatarskii, Wave Propagation in a Turbulent Medium (McGraw-Hill, 1961).

T. A. ten Brummelaar, “Modeling atmospheric wave aberrations and astronomical instrumentation using the polynomials of Zernike,” Opt. Commun. 132, 329–342 (1996).

[CrossRef]

M. A. Vorontsov, P. V. Paramonov, M. T. Valley, and A. Vorontsov, “Generation of infinitely long phase screens for modeling of optical wave propagation in atmospheric turbulence,” Waves Random Complex Media 18, 91–108 (2008).

[CrossRef]

M. A. Vorontsov, P. V. Paramonov, M. T. Valley, and A. Vorontsov, “Generation of infinitely long phase screens for modeling of optical wave propagation in atmospheric turbulence,” Waves Random Complex Media 18, 91–108 (2008).

[CrossRef]

M. A. Vorontsov, P. V. Paramonov, M. T. Valley, and A. Vorontsov, “Generation of infinitely long phase screens for modeling of optical wave propagation in atmospheric turbulence,” Waves Random Complex Media 18, 91–108 (2008).

[CrossRef]

J. Wallace and F. G. Gebhardt, “New method for numerical simulation of atmospheric turbulence,” Proc. SPIE 642, 261–268 (1986).

[CrossRef]

H. Jakobsson, “Simulations of time series of atmospherically distorted wave fronts,” Appl. Opt. 35, 1561–1565 (1996).

[CrossRef]

G. Sedmak, “Performance analysis of and compensation for aspect-ratio effects of fast-Fourier-transform-based simulations of large atmospheric wave fronts,” Appl. Opt. 37, 4605–4613 (1998).

[CrossRef]

G. Sedmak, “Implementation of fast-Fourier-transform-based simulations of extra-large atmospheric phase and scintillation screens,” Appl. Opt. 43, 4527–4538 (2004).

[CrossRef]

M. C. Roggemann, B. M. Welsh, D. Montera, and T. A. Rhoadamer, “Method for simulating atmospheric turbulence phase effects for multiple time slices and anisoplanatic conditions,” Appl. Opt. 34, 4037–4051 (1995).

[CrossRef]

C. M. Harding, R. A. Johnston, and R. G. Lane, “Fast simulation of a Kolmogorov phase screen,” Appl. Opt. 38, 2161–2170 (1999).

[CrossRef]

B. Formwalt and S. Cain, “Optimized phase screen modeling for optical turbulence,” Appl. Opt. 45, 5657–5668 (2006).

[CrossRef]

M. Carbillet and A. Riccardi, “Numerical modeling of atmospherically perturbed phase screens: new solutions for classical fast Fourier transform and Zernike methods,” Appl. Opt. 49, G47–G52 (2010).

[CrossRef]

A. Beghi, A. Cenedese, and A. Masiero, “Multiscale stochastic approach for phase screens synthesis,” Appl. Opt. 50, 4124–4133 (2011).

[CrossRef]

A. Glindemann, R. G. Lane, and J. C. Dainty, “Simulation of time-evolving speckle patterns using Kolmogorov statistics,” J. Mod. Opt. 40, 2381–2388 (1993).

[CrossRef]

G. Welsh and R. Phillips, “Simulation of enhanced backscatter by a phase screen,” J. Opt. Soc. Am. A 7, 578–584 (1990).

[CrossRef]

R. Barakat and J. W. Beletic, “Influence of atmospherically induced random wave fronts on diffraction imagery: a computer simulation model for testing image reconstruction algorithms,” J. Opt. Soc. Am. A 7, 653–671 (1990).

[CrossRef]

D. L. Fried and T. Clark, “Extruding Kolmogorov-type phase screen ribbons,” J. Opt. Soc. Am. A 25, 463–468 (2008).

[CrossRef]

M. I. Charnotskii, “Common omissions and misconceptions of wave propagation in turbulence: discussion,” J. Opt. Soc. Am. A 29, 711–721 (2012).

[CrossRef]

C. Schwartz, G. Baum, and E. N. Ribak, “Turbulence-degraded wave fronts as fractal surfaces,” J. Opt. Soc. Am. A 11, 444–451 (1994).

[CrossRef]

D. G. Perez, L. Zunino, and M. Garavaglia, “Modeling turbulent wave-front phase as a fractional Brownian motion: A new approach,” J. Opt. Soc. Am. A 21, 1962–1969 (2004).

[CrossRef]

E. Thiebaut and M. Tallon, “Fast minimum variance wavefront reconstruction for extremely large telescope,” J. Opt. Soc. Am. A 27, 1046–1059 (2010).

[CrossRef]

A. Beghi, A. Cenedese, and A. Masiero, “Stochastic realization approach to the efficient simulation of phase screens.” J. Opt. Soc. Am. A 25, 515–525 (2008).

[CrossRef]

V. Sriram and D. Kearney, “Multiple parallel FPGA implementations of a Kolmogorov phase screen generator,” J. Real-Time Image Proc. 3, 195–200 (2008).

[CrossRef]

T. A. ten Brummelaar, “Modeling atmospheric wave aberrations and astronomical instrumentation using the polynomials of Zernike,” Opt. Commun. 132, 329–342 (1996).

[CrossRef]

N. Roddier, “Atmospheric wave-front simulation using Zernike polynomials,” Opt. Eng. 29, 1174–1180 (1990).

[CrossRef]

H. L. Wu, H. X. Yan, X. Y. Li, and S. S. Li, “Statistical interpolation method of turbulent phase screen,” Opt. Express 17, 14649–14664 (2009).

[CrossRef]

J. Xiang, “Accurate compensation of the low-frequency components for the FFT-based turbulent phase screen,” Opt. Express 20, 681–687 (2012).

[CrossRef]

F. Assemat, R. W. Wilson, and E. Gendron, “Method for simulating infinitely long and non-stationary phase screens with optimized memory storage,” Opt. Express 14, 988–999(2006).

[CrossRef]

V. Sriram and D. Kearney, “An ultra fast Kolmogorov phase screen generator suitable for parallel implementation,” Opt. Express 15, 13709–13714 (2007).

[CrossRef]

G. J. M. Aitken, D. Rossille, and D. R. McGaughey, “Filtered fractional Brownian motion as a model for atmospherically induced wavefront distortions,” Proc. SPIE 3125, 310–317 (1997).

[CrossRef]

M. Charnotskii and G. Baker, “Long and short-term scintillations of focused beams and point spread functions in the turbulent atmosphere,” Proc. SPIE 8517, 85170L (2012).

[CrossRef]

J. Wallace and F. G. Gebhardt, “New method for numerical simulation of atmospheric turbulence,” Proc. SPIE 642, 261–268 (1986).

[CrossRef]

B. L. McGlamery, “Computer simulation studies of compensation of turbulence degraded images,” Proc. SPIE 74, 225–233 (1976).

[CrossRef]

E. M. Johansson and D. T. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 2200, 372–383 (1994).

[CrossRef]

B. M. Welsh, “Fourier-series-based atmospheric phase screen generator for simulating nonisoplanatic geometries and temporal evolution,” Proc. SPIE 3125, 327–338 (1997).

M. A. Vorontsov, P. V. Paramonov, M. T. Valley, and A. Vorontsov, “Generation of infinitely long phase screens for modeling of optical wave propagation in atmospheric turbulence,” Waves Random Complex Media 18, 91–108 (2008).

[CrossRef]

R. J. Mathar, “Karhunen–Loève basis of Kolmogorov phase screens covering a rectangular stripe,” Waves Random Complex Media 20, 23–35 (2010).

[CrossRef]

R. G. Lane, A. Glindemann, and J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209–224 (1992).

[CrossRef]

V. I. Tatarskii, Wave Propagation in a Turbulent Medium (McGraw-Hill, 1961).

M. Charnotskii, “Sparse spectrum model of the sea surface,” in Proceedings of the 30th International Conference on Ocean, Offshore and Arctic Engineering, H. R. Riggs, ed. (ASME, 2011), p. 49958.

M. Charnotskii, “Sparse spectrum model of the sea surface elevations,” in Proceedings of the 22 International Offshore and Polar Engineering Conference.J. S. Chung, ed. (ISOPE, 2012), pp. 655–659.