Abstract

The well-known simultaneous color contrast effect is traditionally explained in terms of visual color constancy mechanisms correcting for the confounding influence of ambient illumination on the retinal color signal. Recent research, however, suggests that the traditional gross quantitative laws of simultaneous color contrast, which are readily compatible with this functional explanation, should be revised and replaced by others, which are not readily understandable in terms of this perspective. Here, we show that the revised laws of simultaneous color contrast are well accounted for by an alternative theory explaining the simultaneous contrast effect in terms of mechanisms subserving the perception of transparent media.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Metelli, “The perception of transparency,” Sci. Am. 230, 90–98 (1974).
    [CrossRef]
  2. M. A. Webster, “Light adaptation, contrast adaptation, and human color vision,” in Colour—Mind and the Physical World, R. Mausfeld and D. Heyer, eds. (Oxford University, 2003).
  3. M. A. Webster and J. A. Wilson, “Interactions between chromatic adaptation and contrast adaptation in color appearance,” Vis. Res. 40, 3801–3816 (2000).
    [CrossRef]
  4. M. Webster and D. Leonard, “Adaptation and perceptual norms in color vision,” J. Opt. Soc. Am. A 25, 2817–2825 (2008).
    [CrossRef]
  5. R. O. Brown and D. I. A. MacLeod, “Color appearance depends on the variance of surround colors,” Curr. Biol. 7, 844–849 (1997).
    [CrossRef]
  6. F. Faul, V. Ekroll, and G. Wendt, “Color appearance: the limited role of chromatic surround variance in the ‘gamut expansion effect,’” J. Vis. 8(3):30, 1–20 (2008).
    [CrossRef]
  7. V. Ekroll, F. Faul, and G. Wendt, “The strengths of simultaneous colour contrast and the gamut expansion effect correlate across observers: evidence for a common mechanism,” Vis. Res. 51, 311–322 (2011).
  8. E. Brenner and F. Cornelissen, “The influence of chromatic and achromatic variability on chromatic induction and perceived colour,” Perception 31, 225–232 (2002).
    [CrossRef]
  9. E. Brenner, J. Ruiz, E. Herráiz, F. Cornelissen, and J. Smeets, “Chromatic induction and the layout of colours within a complex scene,” Vis. Res. 43, 1413–1421 (2003).
    [CrossRef]
  10. V. Ekroll and F. Faul, “New laws of simultaneous colour contrast?” Seeing Perceiving 25, 107–141 (2012).
    [CrossRef]
  11. V. Ekroll and F. Faul, “Basic characteristics of simultaneous colour contrast revisited,” Psychol. Sci. 23, 1246–1255 (2012).
    [CrossRef]
  12. O. Rinner and K. R. Gegenfurtner, “Time course of chromatic adaptation for color appearance and discrimination,” Vis. Res. 40, 1813–1826 (2000).
    [CrossRef]
  13. J. Walraven, “Discounting the background—The missing link in the explanation of chromatic induction,” Vis. Res. 16, 289–295 (1976).
    [CrossRef]
  14. P. Whittle and P. D. C. Challands, “The effect of background luminance on the brightness of flashes,” Vis. Res. 9, 1095–1110(1969).
    [CrossRef]
  15. H. von Helmholtz, ed., Handbuch der Physiologischen Optik (Verlag von Leopold Vos, 1911).
  16. J. Walraven, T. L. Benzschawel, and B. E. Rogowitz, “Color-constancy interpretation of chromatic induction,” Die Farbe 34, 269–273 (1987).
  17. R. B. Lotto and D. Purves, “From the cover: an empirical explanation of color contrast,” Proc. Natl. Acad. Sci. U.S.A. 97, 12834–12839 (2000).
    [CrossRef]
  18. E. Hering, Grundzüge der Lehre vom Lichtsinn (Verlag von Julius Springer, 1920).
  19. F. Metelli, “An algebraic development of the theory of perceptual transparency,” Ergonomics 13, 59–66 (1970).
    [CrossRef]
  20. A. Kirschmann, “Some effects of contrast,” Am. J. Psychol. 4, 542–557 (1892).
    [CrossRef]
  21. J. Bosten and J. Mollon, “Kirschmann’s fourth law,” Vis. Res. 53, 40–46 (2012).
    [CrossRef]
  22. V. Ekroll, F. Faul, and R. Niederée, “The peculiar nature of simultaneous colour contrast in uniform surrounds,” Vis. Res 44, 1765–1786 (2004).
    [CrossRef]
  23. V. Ekroll and F. Faul, “A simple model describes large individual differences in simultaneous colour contrast,” Vis. Res. 49, 2261–2272 (2009).
    [CrossRef]
  24. D. H. Brainard, “Calibration of a computer controlled color monitor,” Color Res. Appl. 14, 23–34 (1989).
    [CrossRef]
  25. J. Golz and D. I. A. MacLeod, “Colorimetry for CRT displays,” J. Opt. Soc. Am. A 20, 769–781 (2003).
    [CrossRef]
  26. A. Stockman, D. I. MacLeod, and N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10, 2491–2521 (1993).
    [CrossRef]
  27. J. Foley, A. Van Dam, S. Feiner, and J. Hughes, Computer Graphics: Principles and Practice in C (Addison-Wesley, 1995).
  28. V. J. Chen and M. D’Zmura, “Test of a convergence model for color transparency perception,” Perception 27, 595–608 (1998).
    [CrossRef]
  29. M. D’Zmura, P. Colantoni, K. Knoblauch, and B. Laget, “Color transparency,” Perception 26, 471–492 (1997).
    [CrossRef]
  30. F. Faul, “Theoretische und experimentelle Untersuchung chromatischer Determinanten perzeptueller Transparenz,” Dissertation (Christian-Albrechts-Universität, 1997).
  31. R. Kasrai and F. A. A. Kingdom, “Precision, accuracy, and range of perceived achromatic transparency,” J. Opt. Soc. Am. A 18, 1–11 (2001).
    [CrossRef]
  32. M. Singh and B. L. Anderson, “Toward a perceptual theory of transparency,” Psychol. Rev. 109, 492–519 (2002).
  33. H. Helson and W. C. Michels, “The effect of chromatic adaptation on achromaticity,” J. Opt. Soc. Am. 38, 1025–1032 (1948).
    [CrossRef]
  34. D. Brainard and B. Wandell, “Asymmetric color matching: how color appearance depends on the illuminant,” J. Opt. Soc. Am. A 9, 1433–1448 (1992).
    [CrossRef]
  35. D. I. A. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
    [CrossRef]
  36. B. Khang and Q. Zaidi, “Accuracy of color scission for spectral transparencies,” J. Vis. 2(6):3, 451–466 (2002).
    [CrossRef]
  37. B. G. Khang and Q. Zaidi, “Cues and strategies for color constancy: perceptual scission, image junctions and transformational color matching,” Vis. Res. 42, 211–226. (2002).
    [CrossRef]
  38. A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795–834 (1999).
    [CrossRef]
  39. R. Mausfeld, “Color perception: from Grassman codes to a dual code for object and illumination colors,” in Color Vision, W. G. K. Backhaus, R. Kliegl, and J. S. Werner, eds. (De Gruyter, 1998), pp. 219–250.
  40. E. Brenner and F. W. Cornelissen, “Spatial interactions in color vision depend on distances between boundaries,” Naturwissenschaften 78, 70–73 (1991).
    [CrossRef]
  41. V. Ekroll, F. Faul, R. Niederée, and E. Richter, “The natural center of chromaticity space is not always achromatic: a new look at color induction,” Proc. Natl. Acad. Sci. USA 99, 13352–13356 (2002).
    [CrossRef]
  42. R. M. Evans, “Variables of perceived color,” J. Opt. Soc. Am. 54, 1467–1474 (1964).
    [CrossRef]
  43. P. Heggelund, “Simultaneous luminance contrast with chromatic colors,” Vis. Res. 33, 1709–1722 (1993).
    [CrossRef]
  44. R. Niederée, “More than three dimensions: what continuity considerations can tell us about perceived colour,” in Color Ontology and Color Science, J. Cohen and M. Matthen, eds. (MIT, 2010), pp. 91–122.
  45. N. Umbach and J. Heller, “Dimensionality of achromatic color space,” Perception40, ECVP Abstract Supplement (2011), p. 196.
  46. P. Whittle, “Contrast colours,” in Colour Perception: Mind and the Physical World, R. Mausfeld and D. Heyer, eds. (Oxford University, 2003), pp. 115–138.
  47. W. Richards, J. Koenderink, and A. van Doorn, “Transparency and imaginary colors,” J. Opt. Soc. Am. A 26, 1119–1128 (2009).
    [CrossRef]
  48. R. B. Lotto and D. Purves, “The empirical basis of color perception,” Conscious Cogn. 11, 609–629 (2002).
    [CrossRef]
  49. D. H. Brainard, “Color constancy in the nearly natural image. 2. achromatic loci,” J. Opt. Soc. Am. A 15, 307–325 (1998).
    [CrossRef]
  50. R. M. Evans, The Perception of Color (Wiley, 1974).
  51. P. Whittle, “The psychophysics of contrast brightness,” in Lightness, Brightness and Transparency, A. L. Gilchrist, ed. (Lawrence Erlbaum Associates, 1994), pp. 35–110.
  52. P. Whittle, “Contrast brightness and ordinary seeing,” in Lightness, Brightness and Transparency, A. L. Gilchrist, ed. (Lawrence Erlbaum Associates, 1994), pp. 111–158.
  53. H. Meyer, “Über Kontrast- und Komplementärfarben,” Ann. Phys. XCV, 170–171 (1855).
    [CrossRef]
  54. E. Hering, “Ueber die Theorie des simultanen Contrastes von Helmholtz: II. Der Contrastversuch von H. Meyer und die Versuche am Farbenkreisel,” Pflügers Archiv für Physiologie 41, 1–29 (1887).
    [CrossRef]
  55. S. Runeson, “On the possibility of “smart” perceptual mechanisms,” Scand. J. Psychol. 18, 172–179 (1977).
    [CrossRef]
  56. R. Mausfeld, “The physicalistic trap in perception theory,” in Perception and the Physical World: Psychological and Philosophical Issues in Perception, D. Heyer and R. Mausfeld, eds. (Wiley, 2002), pp. 75–112.
  57. R. Mausfeld, “‘Colour’ as part of the format of different perceptual primitives: the dual coding of colour,” in Colour Perception: Mind and the Physical World, R. Mausfeld and D. Heyer, eds. (Oxford University, 2003), pp. 381–429.
  58. R. Mausfeld, “Colour within an internalist framework: the role of ‘colour’ in the structure of the perceptual system,” in Color Ontology and Color Science, J. Cohen and M. Matthen, eds. (MIT, 2010), pp. 381–429.
  59. B. L. Anderson, “A theory of illusory lightness and transparency in monocular and binocular images: the role of contour junctions,” Perception 26, 419–453 (1997).
    [CrossRef]
  60. B. L. Anderson and J. Winawer, “Image segmentation and lightness perception,” Nature 434, 79–83 (2005).
    [CrossRef]
  61. D. Wollschläger and B. L. Anderson, “The role of layered scene representations in color appearance,” Curr. Biol. 19, 430–435 (2009).
    [CrossRef]
  62. F. A. A. Kingdom, “Lightness, brightness and transparency: a quarter century of new ideas, captivating demonstrations and unrelenting controversy,” Vis. Res. 51, 652–673 (2011).
    [CrossRef]

2012

V. Ekroll and F. Faul, “New laws of simultaneous colour contrast?” Seeing Perceiving 25, 107–141 (2012).
[CrossRef]

V. Ekroll and F. Faul, “Basic characteristics of simultaneous colour contrast revisited,” Psychol. Sci. 23, 1246–1255 (2012).
[CrossRef]

J. Bosten and J. Mollon, “Kirschmann’s fourth law,” Vis. Res. 53, 40–46 (2012).
[CrossRef]

2011

V. Ekroll, F. Faul, and G. Wendt, “The strengths of simultaneous colour contrast and the gamut expansion effect correlate across observers: evidence for a common mechanism,” Vis. Res. 51, 311–322 (2011).

F. A. A. Kingdom, “Lightness, brightness and transparency: a quarter century of new ideas, captivating demonstrations and unrelenting controversy,” Vis. Res. 51, 652–673 (2011).
[CrossRef]

2009

V. Ekroll and F. Faul, “A simple model describes large individual differences in simultaneous colour contrast,” Vis. Res. 49, 2261–2272 (2009).
[CrossRef]

D. Wollschläger and B. L. Anderson, “The role of layered scene representations in color appearance,” Curr. Biol. 19, 430–435 (2009).
[CrossRef]

W. Richards, J. Koenderink, and A. van Doorn, “Transparency and imaginary colors,” J. Opt. Soc. Am. A 26, 1119–1128 (2009).
[CrossRef]

2008

M. Webster and D. Leonard, “Adaptation and perceptual norms in color vision,” J. Opt. Soc. Am. A 25, 2817–2825 (2008).
[CrossRef]

F. Faul, V. Ekroll, and G. Wendt, “Color appearance: the limited role of chromatic surround variance in the ‘gamut expansion effect,’” J. Vis. 8(3):30, 1–20 (2008).
[CrossRef]

2005

B. L. Anderson and J. Winawer, “Image segmentation and lightness perception,” Nature 434, 79–83 (2005).
[CrossRef]

2004

V. Ekroll, F. Faul, and R. Niederée, “The peculiar nature of simultaneous colour contrast in uniform surrounds,” Vis. Res 44, 1765–1786 (2004).
[CrossRef]

2003

E. Brenner, J. Ruiz, E. Herráiz, F. Cornelissen, and J. Smeets, “Chromatic induction and the layout of colours within a complex scene,” Vis. Res. 43, 1413–1421 (2003).
[CrossRef]

J. Golz and D. I. A. MacLeod, “Colorimetry for CRT displays,” J. Opt. Soc. Am. A 20, 769–781 (2003).
[CrossRef]

2002

E. Brenner and F. Cornelissen, “The influence of chromatic and achromatic variability on chromatic induction and perceived colour,” Perception 31, 225–232 (2002).
[CrossRef]

R. B. Lotto and D. Purves, “The empirical basis of color perception,” Conscious Cogn. 11, 609–629 (2002).
[CrossRef]

M. Singh and B. L. Anderson, “Toward a perceptual theory of transparency,” Psychol. Rev. 109, 492–519 (2002).

B. Khang and Q. Zaidi, “Accuracy of color scission for spectral transparencies,” J. Vis. 2(6):3, 451–466 (2002).
[CrossRef]

B. G. Khang and Q. Zaidi, “Cues and strategies for color constancy: perceptual scission, image junctions and transformational color matching,” Vis. Res. 42, 211–226. (2002).
[CrossRef]

V. Ekroll, F. Faul, R. Niederée, and E. Richter, “The natural center of chromaticity space is not always achromatic: a new look at color induction,” Proc. Natl. Acad. Sci. USA 99, 13352–13356 (2002).
[CrossRef]

2001

2000

M. A. Webster and J. A. Wilson, “Interactions between chromatic adaptation and contrast adaptation in color appearance,” Vis. Res. 40, 3801–3816 (2000).
[CrossRef]

O. Rinner and K. R. Gegenfurtner, “Time course of chromatic adaptation for color appearance and discrimination,” Vis. Res. 40, 1813–1826 (2000).
[CrossRef]

R. B. Lotto and D. Purves, “From the cover: an empirical explanation of color contrast,” Proc. Natl. Acad. Sci. U.S.A. 97, 12834–12839 (2000).
[CrossRef]

1999

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795–834 (1999).
[CrossRef]

1998

V. J. Chen and M. D’Zmura, “Test of a convergence model for color transparency perception,” Perception 27, 595–608 (1998).
[CrossRef]

D. H. Brainard, “Color constancy in the nearly natural image. 2. achromatic loci,” J. Opt. Soc. Am. A 15, 307–325 (1998).
[CrossRef]

1997

B. L. Anderson, “A theory of illusory lightness and transparency in monocular and binocular images: the role of contour junctions,” Perception 26, 419–453 (1997).
[CrossRef]

M. D’Zmura, P. Colantoni, K. Knoblauch, and B. Laget, “Color transparency,” Perception 26, 471–492 (1997).
[CrossRef]

R. O. Brown and D. I. A. MacLeod, “Color appearance depends on the variance of surround colors,” Curr. Biol. 7, 844–849 (1997).
[CrossRef]

1993

P. Heggelund, “Simultaneous luminance contrast with chromatic colors,” Vis. Res. 33, 1709–1722 (1993).
[CrossRef]

A. Stockman, D. I. MacLeod, and N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10, 2491–2521 (1993).
[CrossRef]

1992

1991

E. Brenner and F. W. Cornelissen, “Spatial interactions in color vision depend on distances between boundaries,” Naturwissenschaften 78, 70–73 (1991).
[CrossRef]

1989

D. H. Brainard, “Calibration of a computer controlled color monitor,” Color Res. Appl. 14, 23–34 (1989).
[CrossRef]

1987

J. Walraven, T. L. Benzschawel, and B. E. Rogowitz, “Color-constancy interpretation of chromatic induction,” Die Farbe 34, 269–273 (1987).

1979

1977

S. Runeson, “On the possibility of “smart” perceptual mechanisms,” Scand. J. Psychol. 18, 172–179 (1977).
[CrossRef]

1976

J. Walraven, “Discounting the background—The missing link in the explanation of chromatic induction,” Vis. Res. 16, 289–295 (1976).
[CrossRef]

1974

F. Metelli, “The perception of transparency,” Sci. Am. 230, 90–98 (1974).
[CrossRef]

1970

F. Metelli, “An algebraic development of the theory of perceptual transparency,” Ergonomics 13, 59–66 (1970).
[CrossRef]

1969

P. Whittle and P. D. C. Challands, “The effect of background luminance on the brightness of flashes,” Vis. Res. 9, 1095–1110(1969).
[CrossRef]

1964

1948

1892

A. Kirschmann, “Some effects of contrast,” Am. J. Psychol. 4, 542–557 (1892).
[CrossRef]

1887

E. Hering, “Ueber die Theorie des simultanen Contrastes von Helmholtz: II. Der Contrastversuch von H. Meyer und die Versuche am Farbenkreisel,” Pflügers Archiv für Physiologie 41, 1–29 (1887).
[CrossRef]

1855

H. Meyer, “Über Kontrast- und Komplementärfarben,” Ann. Phys. XCV, 170–171 (1855).
[CrossRef]

Agostini, T.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795–834 (1999).
[CrossRef]

Anderson, B. L.

D. Wollschläger and B. L. Anderson, “The role of layered scene representations in color appearance,” Curr. Biol. 19, 430–435 (2009).
[CrossRef]

B. L. Anderson and J. Winawer, “Image segmentation and lightness perception,” Nature 434, 79–83 (2005).
[CrossRef]

M. Singh and B. L. Anderson, “Toward a perceptual theory of transparency,” Psychol. Rev. 109, 492–519 (2002).

B. L. Anderson, “A theory of illusory lightness and transparency in monocular and binocular images: the role of contour junctions,” Perception 26, 419–453 (1997).
[CrossRef]

Annan, V.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795–834 (1999).
[CrossRef]

Benzschawel, T. L.

J. Walraven, T. L. Benzschawel, and B. E. Rogowitz, “Color-constancy interpretation of chromatic induction,” Die Farbe 34, 269–273 (1987).

Bonato, F.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795–834 (1999).
[CrossRef]

Bosten, J.

J. Bosten and J. Mollon, “Kirschmann’s fourth law,” Vis. Res. 53, 40–46 (2012).
[CrossRef]

Boynton, R. M.

Brainard, D.

Brainard, D. H.

D. H. Brainard, “Color constancy in the nearly natural image. 2. achromatic loci,” J. Opt. Soc. Am. A 15, 307–325 (1998).
[CrossRef]

D. H. Brainard, “Calibration of a computer controlled color monitor,” Color Res. Appl. 14, 23–34 (1989).
[CrossRef]

Brenner, E.

E. Brenner, J. Ruiz, E. Herráiz, F. Cornelissen, and J. Smeets, “Chromatic induction and the layout of colours within a complex scene,” Vis. Res. 43, 1413–1421 (2003).
[CrossRef]

E. Brenner and F. Cornelissen, “The influence of chromatic and achromatic variability on chromatic induction and perceived colour,” Perception 31, 225–232 (2002).
[CrossRef]

E. Brenner and F. W. Cornelissen, “Spatial interactions in color vision depend on distances between boundaries,” Naturwissenschaften 78, 70–73 (1991).
[CrossRef]

Brown, R. O.

R. O. Brown and D. I. A. MacLeod, “Color appearance depends on the variance of surround colors,” Curr. Biol. 7, 844–849 (1997).
[CrossRef]

Cataliotti, J.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795–834 (1999).
[CrossRef]

Challands, P. D. C.

P. Whittle and P. D. C. Challands, “The effect of background luminance on the brightness of flashes,” Vis. Res. 9, 1095–1110(1969).
[CrossRef]

Chen, V. J.

V. J. Chen and M. D’Zmura, “Test of a convergence model for color transparency perception,” Perception 27, 595–608 (1998).
[CrossRef]

Colantoni, P.

M. D’Zmura, P. Colantoni, K. Knoblauch, and B. Laget, “Color transparency,” Perception 26, 471–492 (1997).
[CrossRef]

Cornelissen, F.

E. Brenner, J. Ruiz, E. Herráiz, F. Cornelissen, and J. Smeets, “Chromatic induction and the layout of colours within a complex scene,” Vis. Res. 43, 1413–1421 (2003).
[CrossRef]

E. Brenner and F. Cornelissen, “The influence of chromatic and achromatic variability on chromatic induction and perceived colour,” Perception 31, 225–232 (2002).
[CrossRef]

Cornelissen, F. W.

E. Brenner and F. W. Cornelissen, “Spatial interactions in color vision depend on distances between boundaries,” Naturwissenschaften 78, 70–73 (1991).
[CrossRef]

D’Zmura, M.

V. J. Chen and M. D’Zmura, “Test of a convergence model for color transparency perception,” Perception 27, 595–608 (1998).
[CrossRef]

M. D’Zmura, P. Colantoni, K. Knoblauch, and B. Laget, “Color transparency,” Perception 26, 471–492 (1997).
[CrossRef]

Economou, E.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795–834 (1999).
[CrossRef]

Ekroll, V.

V. Ekroll and F. Faul, “New laws of simultaneous colour contrast?” Seeing Perceiving 25, 107–141 (2012).
[CrossRef]

V. Ekroll and F. Faul, “Basic characteristics of simultaneous colour contrast revisited,” Psychol. Sci. 23, 1246–1255 (2012).
[CrossRef]

V. Ekroll, F. Faul, and G. Wendt, “The strengths of simultaneous colour contrast and the gamut expansion effect correlate across observers: evidence for a common mechanism,” Vis. Res. 51, 311–322 (2011).

V. Ekroll and F. Faul, “A simple model describes large individual differences in simultaneous colour contrast,” Vis. Res. 49, 2261–2272 (2009).
[CrossRef]

F. Faul, V. Ekroll, and G. Wendt, “Color appearance: the limited role of chromatic surround variance in the ‘gamut expansion effect,’” J. Vis. 8(3):30, 1–20 (2008).
[CrossRef]

V. Ekroll, F. Faul, and R. Niederée, “The peculiar nature of simultaneous colour contrast in uniform surrounds,” Vis. Res 44, 1765–1786 (2004).
[CrossRef]

V. Ekroll, F. Faul, R. Niederée, and E. Richter, “The natural center of chromaticity space is not always achromatic: a new look at color induction,” Proc. Natl. Acad. Sci. USA 99, 13352–13356 (2002).
[CrossRef]

Evans, R. M.

Faul, F.

V. Ekroll and F. Faul, “New laws of simultaneous colour contrast?” Seeing Perceiving 25, 107–141 (2012).
[CrossRef]

V. Ekroll and F. Faul, “Basic characteristics of simultaneous colour contrast revisited,” Psychol. Sci. 23, 1246–1255 (2012).
[CrossRef]

V. Ekroll, F. Faul, and G. Wendt, “The strengths of simultaneous colour contrast and the gamut expansion effect correlate across observers: evidence for a common mechanism,” Vis. Res. 51, 311–322 (2011).

V. Ekroll and F. Faul, “A simple model describes large individual differences in simultaneous colour contrast,” Vis. Res. 49, 2261–2272 (2009).
[CrossRef]

F. Faul, V. Ekroll, and G. Wendt, “Color appearance: the limited role of chromatic surround variance in the ‘gamut expansion effect,’” J. Vis. 8(3):30, 1–20 (2008).
[CrossRef]

V. Ekroll, F. Faul, and R. Niederée, “The peculiar nature of simultaneous colour contrast in uniform surrounds,” Vis. Res 44, 1765–1786 (2004).
[CrossRef]

V. Ekroll, F. Faul, R. Niederée, and E. Richter, “The natural center of chromaticity space is not always achromatic: a new look at color induction,” Proc. Natl. Acad. Sci. USA 99, 13352–13356 (2002).
[CrossRef]

F. Faul, “Theoretische und experimentelle Untersuchung chromatischer Determinanten perzeptueller Transparenz,” Dissertation (Christian-Albrechts-Universität, 1997).

Feiner, S.

J. Foley, A. Van Dam, S. Feiner, and J. Hughes, Computer Graphics: Principles and Practice in C (Addison-Wesley, 1995).

Foley, J.

J. Foley, A. Van Dam, S. Feiner, and J. Hughes, Computer Graphics: Principles and Practice in C (Addison-Wesley, 1995).

Gegenfurtner, K. R.

O. Rinner and K. R. Gegenfurtner, “Time course of chromatic adaptation for color appearance and discrimination,” Vis. Res. 40, 1813–1826 (2000).
[CrossRef]

Gilchrist, A.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795–834 (1999).
[CrossRef]

Golz, J.

Heggelund, P.

P. Heggelund, “Simultaneous luminance contrast with chromatic colors,” Vis. Res. 33, 1709–1722 (1993).
[CrossRef]

Heller, J.

N. Umbach and J. Heller, “Dimensionality of achromatic color space,” Perception40, ECVP Abstract Supplement (2011), p. 196.

Helson, H.

Hering, E.

E. Hering, “Ueber die Theorie des simultanen Contrastes von Helmholtz: II. Der Contrastversuch von H. Meyer und die Versuche am Farbenkreisel,” Pflügers Archiv für Physiologie 41, 1–29 (1887).
[CrossRef]

E. Hering, Grundzüge der Lehre vom Lichtsinn (Verlag von Julius Springer, 1920).

Herráiz, E.

E. Brenner, J. Ruiz, E. Herráiz, F. Cornelissen, and J. Smeets, “Chromatic induction and the layout of colours within a complex scene,” Vis. Res. 43, 1413–1421 (2003).
[CrossRef]

Hughes, J.

J. Foley, A. Van Dam, S. Feiner, and J. Hughes, Computer Graphics: Principles and Practice in C (Addison-Wesley, 1995).

Johnson, N. E.

Kasrai, R.

Khang, B.

B. Khang and Q. Zaidi, “Accuracy of color scission for spectral transparencies,” J. Vis. 2(6):3, 451–466 (2002).
[CrossRef]

Khang, B. G.

B. G. Khang and Q. Zaidi, “Cues and strategies for color constancy: perceptual scission, image junctions and transformational color matching,” Vis. Res. 42, 211–226. (2002).
[CrossRef]

Kingdom, F. A. A.

F. A. A. Kingdom, “Lightness, brightness and transparency: a quarter century of new ideas, captivating demonstrations and unrelenting controversy,” Vis. Res. 51, 652–673 (2011).
[CrossRef]

R. Kasrai and F. A. A. Kingdom, “Precision, accuracy, and range of perceived achromatic transparency,” J. Opt. Soc. Am. A 18, 1–11 (2001).
[CrossRef]

Kirschmann, A.

A. Kirschmann, “Some effects of contrast,” Am. J. Psychol. 4, 542–557 (1892).
[CrossRef]

Knoblauch, K.

M. D’Zmura, P. Colantoni, K. Knoblauch, and B. Laget, “Color transparency,” Perception 26, 471–492 (1997).
[CrossRef]

Koenderink, J.

Kossyfidis, C.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795–834 (1999).
[CrossRef]

Laget, B.

M. D’Zmura, P. Colantoni, K. Knoblauch, and B. Laget, “Color transparency,” Perception 26, 471–492 (1997).
[CrossRef]

Leonard, D.

Li, X.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795–834 (1999).
[CrossRef]

Lotto, R. B.

R. B. Lotto and D. Purves, “The empirical basis of color perception,” Conscious Cogn. 11, 609–629 (2002).
[CrossRef]

R. B. Lotto and D. Purves, “From the cover: an empirical explanation of color contrast,” Proc. Natl. Acad. Sci. U.S.A. 97, 12834–12839 (2000).
[CrossRef]

MacLeod, D. I.

MacLeod, D. I. A.

Mausfeld, R.

R. Mausfeld, “‘Colour’ as part of the format of different perceptual primitives: the dual coding of colour,” in Colour Perception: Mind and the Physical World, R. Mausfeld and D. Heyer, eds. (Oxford University, 2003), pp. 381–429.

R. Mausfeld, “Color perception: from Grassman codes to a dual code for object and illumination colors,” in Color Vision, W. G. K. Backhaus, R. Kliegl, and J. S. Werner, eds. (De Gruyter, 1998), pp. 219–250.

R. Mausfeld, “The physicalistic trap in perception theory,” in Perception and the Physical World: Psychological and Philosophical Issues in Perception, D. Heyer and R. Mausfeld, eds. (Wiley, 2002), pp. 75–112.

R. Mausfeld, “Colour within an internalist framework: the role of ‘colour’ in the structure of the perceptual system,” in Color Ontology and Color Science, J. Cohen and M. Matthen, eds. (MIT, 2010), pp. 381–429.

Metelli, F.

F. Metelli, “The perception of transparency,” Sci. Am. 230, 90–98 (1974).
[CrossRef]

F. Metelli, “An algebraic development of the theory of perceptual transparency,” Ergonomics 13, 59–66 (1970).
[CrossRef]

Meyer, H.

H. Meyer, “Über Kontrast- und Komplementärfarben,” Ann. Phys. XCV, 170–171 (1855).
[CrossRef]

Michels, W. C.

Mollon, J.

J. Bosten and J. Mollon, “Kirschmann’s fourth law,” Vis. Res. 53, 40–46 (2012).
[CrossRef]

Niederée, R.

V. Ekroll, F. Faul, and R. Niederée, “The peculiar nature of simultaneous colour contrast in uniform surrounds,” Vis. Res 44, 1765–1786 (2004).
[CrossRef]

V. Ekroll, F. Faul, R. Niederée, and E. Richter, “The natural center of chromaticity space is not always achromatic: a new look at color induction,” Proc. Natl. Acad. Sci. USA 99, 13352–13356 (2002).
[CrossRef]

R. Niederée, “More than three dimensions: what continuity considerations can tell us about perceived colour,” in Color Ontology and Color Science, J. Cohen and M. Matthen, eds. (MIT, 2010), pp. 91–122.

Purves, D.

R. B. Lotto and D. Purves, “The empirical basis of color perception,” Conscious Cogn. 11, 609–629 (2002).
[CrossRef]

R. B. Lotto and D. Purves, “From the cover: an empirical explanation of color contrast,” Proc. Natl. Acad. Sci. U.S.A. 97, 12834–12839 (2000).
[CrossRef]

Richards, W.

Richter, E.

V. Ekroll, F. Faul, R. Niederée, and E. Richter, “The natural center of chromaticity space is not always achromatic: a new look at color induction,” Proc. Natl. Acad. Sci. USA 99, 13352–13356 (2002).
[CrossRef]

Rinner, O.

O. Rinner and K. R. Gegenfurtner, “Time course of chromatic adaptation for color appearance and discrimination,” Vis. Res. 40, 1813–1826 (2000).
[CrossRef]

Rogowitz, B. E.

J. Walraven, T. L. Benzschawel, and B. E. Rogowitz, “Color-constancy interpretation of chromatic induction,” Die Farbe 34, 269–273 (1987).

Ruiz, J.

E. Brenner, J. Ruiz, E. Herráiz, F. Cornelissen, and J. Smeets, “Chromatic induction and the layout of colours within a complex scene,” Vis. Res. 43, 1413–1421 (2003).
[CrossRef]

Runeson, S.

S. Runeson, “On the possibility of “smart” perceptual mechanisms,” Scand. J. Psychol. 18, 172–179 (1977).
[CrossRef]

Singh, M.

M. Singh and B. L. Anderson, “Toward a perceptual theory of transparency,” Psychol. Rev. 109, 492–519 (2002).

Smeets, J.

E. Brenner, J. Ruiz, E. Herráiz, F. Cornelissen, and J. Smeets, “Chromatic induction and the layout of colours within a complex scene,” Vis. Res. 43, 1413–1421 (2003).
[CrossRef]

Spehar, B.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795–834 (1999).
[CrossRef]

Stockman, A.

Umbach, N.

N. Umbach and J. Heller, “Dimensionality of achromatic color space,” Perception40, ECVP Abstract Supplement (2011), p. 196.

Van Dam, A.

J. Foley, A. Van Dam, S. Feiner, and J. Hughes, Computer Graphics: Principles and Practice in C (Addison-Wesley, 1995).

van Doorn, A.

Walraven, J.

J. Walraven, T. L. Benzschawel, and B. E. Rogowitz, “Color-constancy interpretation of chromatic induction,” Die Farbe 34, 269–273 (1987).

J. Walraven, “Discounting the background—The missing link in the explanation of chromatic induction,” Vis. Res. 16, 289–295 (1976).
[CrossRef]

Wandell, B.

Webster, M.

Webster, M. A.

M. A. Webster and J. A. Wilson, “Interactions between chromatic adaptation and contrast adaptation in color appearance,” Vis. Res. 40, 3801–3816 (2000).
[CrossRef]

M. A. Webster, “Light adaptation, contrast adaptation, and human color vision,” in Colour—Mind and the Physical World, R. Mausfeld and D. Heyer, eds. (Oxford University, 2003).

Wendt, G.

V. Ekroll, F. Faul, and G. Wendt, “The strengths of simultaneous colour contrast and the gamut expansion effect correlate across observers: evidence for a common mechanism,” Vis. Res. 51, 311–322 (2011).

F. Faul, V. Ekroll, and G. Wendt, “Color appearance: the limited role of chromatic surround variance in the ‘gamut expansion effect,’” J. Vis. 8(3):30, 1–20 (2008).
[CrossRef]

Whittle, P.

P. Whittle and P. D. C. Challands, “The effect of background luminance on the brightness of flashes,” Vis. Res. 9, 1095–1110(1969).
[CrossRef]

P. Whittle, “Contrast colours,” in Colour Perception: Mind and the Physical World, R. Mausfeld and D. Heyer, eds. (Oxford University, 2003), pp. 115–138.

P. Whittle, “Contrast brightness and ordinary seeing,” in Lightness, Brightness and Transparency, A. L. Gilchrist, ed. (Lawrence Erlbaum Associates, 1994), pp. 111–158.

P. Whittle, “The psychophysics of contrast brightness,” in Lightness, Brightness and Transparency, A. L. Gilchrist, ed. (Lawrence Erlbaum Associates, 1994), pp. 35–110.

Wilson, J. A.

M. A. Webster and J. A. Wilson, “Interactions between chromatic adaptation and contrast adaptation in color appearance,” Vis. Res. 40, 3801–3816 (2000).
[CrossRef]

Winawer, J.

B. L. Anderson and J. Winawer, “Image segmentation and lightness perception,” Nature 434, 79–83 (2005).
[CrossRef]

Wollschläger, D.

D. Wollschläger and B. L. Anderson, “The role of layered scene representations in color appearance,” Curr. Biol. 19, 430–435 (2009).
[CrossRef]

Zaidi, Q.

B. G. Khang and Q. Zaidi, “Cues and strategies for color constancy: perceptual scission, image junctions and transformational color matching,” Vis. Res. 42, 211–226. (2002).
[CrossRef]

B. Khang and Q. Zaidi, “Accuracy of color scission for spectral transparencies,” J. Vis. 2(6):3, 451–466 (2002).
[CrossRef]

Am. J. Psychol.

A. Kirschmann, “Some effects of contrast,” Am. J. Psychol. 4, 542–557 (1892).
[CrossRef]

Ann. Phys.

H. Meyer, “Über Kontrast- und Komplementärfarben,” Ann. Phys. XCV, 170–171 (1855).
[CrossRef]

Color Res. Appl.

D. H. Brainard, “Calibration of a computer controlled color monitor,” Color Res. Appl. 14, 23–34 (1989).
[CrossRef]

Conscious Cogn.

R. B. Lotto and D. Purves, “The empirical basis of color perception,” Conscious Cogn. 11, 609–629 (2002).
[CrossRef]

Curr. Biol.

D. Wollschläger and B. L. Anderson, “The role of layered scene representations in color appearance,” Curr. Biol. 19, 430–435 (2009).
[CrossRef]

R. O. Brown and D. I. A. MacLeod, “Color appearance depends on the variance of surround colors,” Curr. Biol. 7, 844–849 (1997).
[CrossRef]

Die Farbe

J. Walraven, T. L. Benzschawel, and B. E. Rogowitz, “Color-constancy interpretation of chromatic induction,” Die Farbe 34, 269–273 (1987).

Ergonomics

F. Metelli, “An algebraic development of the theory of perceptual transparency,” Ergonomics 13, 59–66 (1970).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Vis.

F. Faul, V. Ekroll, and G. Wendt, “Color appearance: the limited role of chromatic surround variance in the ‘gamut expansion effect,’” J. Vis. 8(3):30, 1–20 (2008).
[CrossRef]

B. Khang and Q. Zaidi, “Accuracy of color scission for spectral transparencies,” J. Vis. 2(6):3, 451–466 (2002).
[CrossRef]

Nature

B. L. Anderson and J. Winawer, “Image segmentation and lightness perception,” Nature 434, 79–83 (2005).
[CrossRef]

Naturwissenschaften

E. Brenner and F. W. Cornelissen, “Spatial interactions in color vision depend on distances between boundaries,” Naturwissenschaften 78, 70–73 (1991).
[CrossRef]

Perception

V. J. Chen and M. D’Zmura, “Test of a convergence model for color transparency perception,” Perception 27, 595–608 (1998).
[CrossRef]

M. D’Zmura, P. Colantoni, K. Knoblauch, and B. Laget, “Color transparency,” Perception 26, 471–492 (1997).
[CrossRef]

E. Brenner and F. Cornelissen, “The influence of chromatic and achromatic variability on chromatic induction and perceived colour,” Perception 31, 225–232 (2002).
[CrossRef]

B. L. Anderson, “A theory of illusory lightness and transparency in monocular and binocular images: the role of contour junctions,” Perception 26, 419–453 (1997).
[CrossRef]

Pflügers Archiv für Physiologie

E. Hering, “Ueber die Theorie des simultanen Contrastes von Helmholtz: II. Der Contrastversuch von H. Meyer und die Versuche am Farbenkreisel,” Pflügers Archiv für Physiologie 41, 1–29 (1887).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

R. B. Lotto and D. Purves, “From the cover: an empirical explanation of color contrast,” Proc. Natl. Acad. Sci. U.S.A. 97, 12834–12839 (2000).
[CrossRef]

Proc. Natl. Acad. Sci. USA

V. Ekroll, F. Faul, R. Niederée, and E. Richter, “The natural center of chromaticity space is not always achromatic: a new look at color induction,” Proc. Natl. Acad. Sci. USA 99, 13352–13356 (2002).
[CrossRef]

Psychol. Rev.

M. Singh and B. L. Anderson, “Toward a perceptual theory of transparency,” Psychol. Rev. 109, 492–519 (2002).

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795–834 (1999).
[CrossRef]

Psychol. Sci.

V. Ekroll and F. Faul, “Basic characteristics of simultaneous colour contrast revisited,” Psychol. Sci. 23, 1246–1255 (2012).
[CrossRef]

Scand. J. Psychol.

S. Runeson, “On the possibility of “smart” perceptual mechanisms,” Scand. J. Psychol. 18, 172–179 (1977).
[CrossRef]

Sci. Am.

F. Metelli, “The perception of transparency,” Sci. Am. 230, 90–98 (1974).
[CrossRef]

Seeing Perceiving

V. Ekroll and F. Faul, “New laws of simultaneous colour contrast?” Seeing Perceiving 25, 107–141 (2012).
[CrossRef]

Vis. Res

V. Ekroll, F. Faul, and R. Niederée, “The peculiar nature of simultaneous colour contrast in uniform surrounds,” Vis. Res 44, 1765–1786 (2004).
[CrossRef]

Vis. Res.

V. Ekroll and F. Faul, “A simple model describes large individual differences in simultaneous colour contrast,” Vis. Res. 49, 2261–2272 (2009).
[CrossRef]

J. Bosten and J. Mollon, “Kirschmann’s fourth law,” Vis. Res. 53, 40–46 (2012).
[CrossRef]

O. Rinner and K. R. Gegenfurtner, “Time course of chromatic adaptation for color appearance and discrimination,” Vis. Res. 40, 1813–1826 (2000).
[CrossRef]

J. Walraven, “Discounting the background—The missing link in the explanation of chromatic induction,” Vis. Res. 16, 289–295 (1976).
[CrossRef]

P. Whittle and P. D. C. Challands, “The effect of background luminance on the brightness of flashes,” Vis. Res. 9, 1095–1110(1969).
[CrossRef]

E. Brenner, J. Ruiz, E. Herráiz, F. Cornelissen, and J. Smeets, “Chromatic induction and the layout of colours within a complex scene,” Vis. Res. 43, 1413–1421 (2003).
[CrossRef]

V. Ekroll, F. Faul, and G. Wendt, “The strengths of simultaneous colour contrast and the gamut expansion effect correlate across observers: evidence for a common mechanism,” Vis. Res. 51, 311–322 (2011).

M. A. Webster and J. A. Wilson, “Interactions between chromatic adaptation and contrast adaptation in color appearance,” Vis. Res. 40, 3801–3816 (2000).
[CrossRef]

B. G. Khang and Q. Zaidi, “Cues and strategies for color constancy: perceptual scission, image junctions and transformational color matching,” Vis. Res. 42, 211–226. (2002).
[CrossRef]

F. A. A. Kingdom, “Lightness, brightness and transparency: a quarter century of new ideas, captivating demonstrations and unrelenting controversy,” Vis. Res. 51, 652–673 (2011).
[CrossRef]

P. Heggelund, “Simultaneous luminance contrast with chromatic colors,” Vis. Res. 33, 1709–1722 (1993).
[CrossRef]

Other

R. Niederée, “More than three dimensions: what continuity considerations can tell us about perceived colour,” in Color Ontology and Color Science, J. Cohen and M. Matthen, eds. (MIT, 2010), pp. 91–122.

N. Umbach and J. Heller, “Dimensionality of achromatic color space,” Perception40, ECVP Abstract Supplement (2011), p. 196.

P. Whittle, “Contrast colours,” in Colour Perception: Mind and the Physical World, R. Mausfeld and D. Heyer, eds. (Oxford University, 2003), pp. 115–138.

R. Mausfeld, “Color perception: from Grassman codes to a dual code for object and illumination colors,” in Color Vision, W. G. K. Backhaus, R. Kliegl, and J. S. Werner, eds. (De Gruyter, 1998), pp. 219–250.

F. Faul, “Theoretische und experimentelle Untersuchung chromatischer Determinanten perzeptueller Transparenz,” Dissertation (Christian-Albrechts-Universität, 1997).

J. Foley, A. Van Dam, S. Feiner, and J. Hughes, Computer Graphics: Principles and Practice in C (Addison-Wesley, 1995).

M. A. Webster, “Light adaptation, contrast adaptation, and human color vision,” in Colour—Mind and the Physical World, R. Mausfeld and D. Heyer, eds. (Oxford University, 2003).

R. Mausfeld, “The physicalistic trap in perception theory,” in Perception and the Physical World: Psychological and Philosophical Issues in Perception, D. Heyer and R. Mausfeld, eds. (Wiley, 2002), pp. 75–112.

R. Mausfeld, “‘Colour’ as part of the format of different perceptual primitives: the dual coding of colour,” in Colour Perception: Mind and the Physical World, R. Mausfeld and D. Heyer, eds. (Oxford University, 2003), pp. 381–429.

R. Mausfeld, “Colour within an internalist framework: the role of ‘colour’ in the structure of the perceptual system,” in Color Ontology and Color Science, J. Cohen and M. Matthen, eds. (MIT, 2010), pp. 381–429.

R. M. Evans, The Perception of Color (Wiley, 1974).

P. Whittle, “The psychophysics of contrast brightness,” in Lightness, Brightness and Transparency, A. L. Gilchrist, ed. (Lawrence Erlbaum Associates, 1994), pp. 35–110.

P. Whittle, “Contrast brightness and ordinary seeing,” in Lightness, Brightness and Transparency, A. L. Gilchrist, ed. (Lawrence Erlbaum Associates, 1994), pp. 111–158.

H. von Helmholtz, ed., Handbuch der Physiologischen Optik (Verlag von Leopold Vos, 1911).

E. Hering, Grundzüge der Lehre vom Lichtsinn (Verlag von Julius Springer, 1920).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) The gamut expansion effect. The four disks embedded in the uniform gray surround are identical to those embedded in the variegated one, yet they appear more saturated. (b) A standard demonstration of the simultaneous contrast effect. The two disks are printed in the same gray ink, yet they appear differently colored. Panels (c) and (d) show stimuli of the kind traditionally used in studies of perceptual transparency and simultaneous color contrast, respectively. It is commonly believed that perception of transparency requires stimuli involving at least two different surround regions [1]. Accordingly, the simple simultaneous contrast display should not evoke the perception of transparency. We argue, however, that simultaneous contrast displays may lead to a perceptual interpretation in terms of transparency (f) of essentially the same kind as that evoked by classical transparency stimuli (e).

Fig. 2.
Fig. 2.

(a) The predicted simultaneous contrast effect (dashed arrows) for different targets (small dots) in a given surround (large dot), assuming a transmittance value of α=0.5. This illustration refers to a two-dimensional color plane rather than to three-dimensional color space. Note that the direction of the simultaneous contrast effect (dashed arrows) is always identical to the direction of the vector from surround to target (solid arrows). (b) Same as (a), but for a smaller value of α (0.4). (c) For a given target–surround vector, the predicted magnitude of the simultaneous contrast effect increases nonlinearly with α. The relationship shown here refers to a target–surround vector of unit length.

Fig. 3.
Fig. 3.

Illustration of the geometrical relation (in color space) between surround colors Bi, proximal colors Pi of the corresponding regions inside the transparent layer [see Figs. 4(c) and 4(d)], and the color L of the layer itself. Note that the lines defined by each corresponding pair of proximal colors (Bi,Pi) intersect at the layer color L. Thus, the latter can be reconstructed based on the proximal colors in the stimulus, provided that there are at least two different surround colors.

Fig. 4.
Fig. 4.

Stimuli used in the matching experiment. Subjects viewed a uniformly colored test disk embedded in (a) a uniformly colored gray surround next to (b) a comparison disk embedded in a mosaic surround. In the experiment, the test disk was colored and equiluminant to the surround, while it is shown as achromatic and brighter than the surround in this illustration. Similarly, the comparison disk is shown as achromatic in this illustration, while its color could be adjusted freely in the experiment. The task of the observers was to adjust the color and the transmittance of the comparison disk to make it appear as similar as possible to the test disk. The comparison disk shown in panel (b) has a transmittance of zero, which makes it appear opaque, while that shown in panel (c) has a non-zero transmittance (0.5), which makes it appear transparent. Panel (d) shows the naming of the regions in the comparison display.

Fig. 5.
Fig. 5.

Chromaticities of the test targets used in the experiment, plotted in the MacLeod–Boynton [35] chromaticity diagram. The large X marks the chromaticity of the gray surround. Some of the test chromaticites are marked with a small x in order to indicate which subset of the results are shown in Fig. 6.

Fig. 6.
Fig. 6.

Average color matches for three of the eight saturation levels (those ticked by crosses in Fig. 5), plotted in the MacLeod–Boynton [35] chromaticity diagram. Note that the simultaneous contrast effect (dashed lines) always has essentially the same direction as the vector from surround to target (solid lines). Note also that the magnitude of the simultaneous contrast effect is largest in the left-hand panels, where the difference between test target and surround is smallest, and smallest when the target–surround difference is largest (right panels). The magnitude of the effect measured with the HSB-α method (top panels) is generally larger than that measured with the traditional HSB method (bottom panels).

Fig. 7.
Fig. 7.

(a) Chromaticity matches for targets varying along the r-axis. The average r-coordinate setting for the comparison patch is plotted against the r-coordinate of the test patch. The horizontal and vertical lines represent the coordinates corresponding to the gray surround and the diagonal identity line indicates where matches would fall in the absence of any effect. (c) The corresponding simultaneous contrast effect [i.e., the deviations from the diagonal in (a)]. The solid curve is the function given in Eq. (5) fitted to the data from the HSB-α condition. (e) Corresponding transmittance settings. The solid curve is the prediction based on the transparency model assuming the simultaneous contrast effect given by the solid line in (c). The right panels (b), (d), (f) are analogous to the left ones (a), (c), (e), respectively, but show the results for the control condition, in which both surrounds were variegated. Error bars represent one SEM across observers in each direction.

Fig. 8.
Fig. 8.

Same as Fig. 7, but for targets varying along the b axis.

Fig. 9.
Fig. 9.

(a) Same as Fig. 7(a), but here the virtual layer color L is replaced by the average proximal color P¯i in the layer region. Expressed this way, the simultaneous contrast effect is essentially absent in the HSB-α condition, as predicted by the transparency model. (b) Same as (a), but for the b axis. (c) Analogous to (a) but here average luminance rather than average chromaticity is plotted on the vertical axis. The transparency model predicts that the settings in the HSB-α condition should fall on the horizontal line representing the fixed luminance of the test targets. The dashed curve shows the corresponding prediction assuming a confounding influence of lightness anchoring (See Appendix for details). (d) Same as (c), but for targets varying along the b axis.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

P=α·B+(1α)·L,
L=PαB1α,
S=(PB)α1α,
Pi=αBi+(1α)L,
f(Δ)sgn(Δ)·k·e|Δ|s
P¯i=αBi+(1α)L¯=αB¯i+(1α)L.
P=α·Bt+(1α)·L
P¯ci=α·B¯ci+(1α)L
Pt=α·Bt+(1α)·L
k·P¯ci=α·k·B¯ci+(1α)L,
Ptα·Bt=k·P¯ciα·k·B¯ci.
P¯ci=(Ptα·Bt+α·k·B¯ci)·1k.
P¯ci=(Pt+α·Bt·(k1))·1k.
(P¯ci)=((Pt)+α·(Bt)·(k1))·1k.
(P¯ci)=(Bt)·(1k+αα·1k),
(P¯ci)=(Bt)·g(α)

Metrics