Abstract

In order to derive full-wave solutions for electromagnetic wave scattering from rough interfaces between achiral media (free space for instance) and chiral media that satisfy generalized constitutive relations, it is necessary to employ complete modal expansions for the electromagnetic fields above and below the interface. To this end, the familiar Fourier transforms of the fields are expressed as generalized field transforms consisting of the radiation term, the lateral waves, and the surface waves. Maxwell’s equations are converted into generalized telegraphists’ equations [in the companion paper (this issue), J. Opt. Soc. Am. A 30, 335 (2013)] upon the imposition of exact boundary conditions. These telegraphists’ equations are coupled first-order differential equations for the forward- and backward-traveling wave amplitudes associated with all the different species of waves (radiation, lateral, and surface waves) excited at the surface of the chiral medium. The analysis presented here includes the completeness and orthogonal relations of the basis functions associated with the modal expansions. This work is used to distinguish between depolarization due to the chiral properties of the medium and depolarization due to surface irregularities. It has applications in remote sensing and identification of biological and chemical materials based on their optical activity.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (100)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription